Volatile Compound Chemistry and Insect Herbivory: Pinus edulis Engelm. (Pinaceae) Seed Cone Resin
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Van Buren, R.; Cooper, J.G.; Shultz, L.M.; Harper, K.T. Woody Plants of Utah: A Field Guide with Identification Keys to Native and Naturalized Trees, Shrubs, Cacti, and Vines; University Press of Colorado: Denver, CO, USA, 2012; pp. 30, 118, 119. [Google Scholar]
- Flora of North American Editorial Committee. Flora of North America: Pteridophytes and Gymnosperms; Oxford University Press: New York, NY, USA, 1993; Volume 2, pp. 382–383. [Google Scholar]
- Cronquist, A.; Holmgren, A.H.; Holmgren, N.H.; Reveal, J.L. Intermountain Flora; Vascular Plants of the Intermountain West, USA; Hafner Publishing Company, Inc.: New York, NY, USA, 1972; Volume 1, p. 232. [Google Scholar]
- Welsh, S.L.; Atwood, N.D.; Goodrich, S.; Higgins, L.C. A Utah Flora, 5th ed.; Brigham Young University: Provo, UT, USA, 2016; p. 20. [Google Scholar]
- Ronco, F.P. Pinus edulis Engelm., pinyon. In Silvics of North America; United States Department of Agriculture: Washington, DC, USA, 1990; Volume 1, pp. 327–337. [Google Scholar]
- Langenheim, J.H. Plant Resins: Chemistry, Evolution, Ecology, Ethnobotany; Timber Press, Inc.: Portland, OR, USA, 2003; pp. 24, 33–36. [Google Scholar]
- Poulson, A.; Wilson, T.M.; Packer, C.; Carlson, R.E.; Buch, R.M. Essential oils of trunk, limbs, needles, and seed cones of Pinus edulis (Pinaceae) from Utah. Phytologia 2020, 102, 200–207. [Google Scholar]
- Kindscher, K. Medicinal Wild Plants of the Prairie; University Press of Kansas: Lawrence, KS, USA, 1992; p. 62. [Google Scholar]
- Murphy, E.V.A. Indian Uses of Native Plants; Desert Printers Inc.: Palm Desert, CA, USA, 1959; p. 44. [Google Scholar]
- Bentancourt, J.L.; Schuster, W.S.; Mitton, J.B.; Anderson, R.S. Fossil and genetic history of a pinyon pine (Pinus edulis) isolate. Ecology 1991, 72, 1685–1697. [Google Scholar] [CrossRef]
- Rhode, D.; Madsen, D.B. Pine nut use in the early Holocene and beyond: The Danger Cave archaeobotanical record. J. Archaeol. Sci. 1998, 25, 1199–1210. [Google Scholar] [CrossRef]
- Grand Canyon Nature Notes. Available online: http://npshistory.com/nature_notes/grca/vol8-9c.htm (accessed on 1 August 2023).
- Uphof, T.C.T. Dictionary of Economic Plants; J. Cramer Publisher: Lehre, Germany, 1968; p. 408. [Google Scholar]
- Christensen, K.M.; Whitham, T.G. Impact of insect herbivores on competition between birds and mammals for pinyon pine seeds. Ecology 1993, 74, 2270–2278. [Google Scholar] [CrossRef]
- Cobb, N.S.; Trotter, R.T.; Whitham, T.G. Long-term sexual allocation in herbivore resistant and susceptible pinyon pine (Pinus edulis). Oecologia 2002, 130, 78–87. [Google Scholar] [CrossRef] [PubMed]
- Christensen, K.M.; Whitham, T.G. Indirect herbivore mediation of avian seed dispersal in pinyon pine. Ecology 1991, 72, 534–542. [Google Scholar] [CrossRef]
- Siepielski, A.M.; Benkman, C.W. Selection by a predispersal seed predator constrains the evolution of avian seed dispersal in pines. Funct. Ecol. 2007, 21, 611–618. [Google Scholar] [CrossRef]
- Hollander, J.L.; Vander Wall, S.B. Effectiveness of six species of rodents as dispersers of singleleaf pinon pine (Pinus monophylla). Oecologia 2004, 138, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Vander Wall, S.B. Dispersal of singleleaf pinon pine (Pinus monophylla) by seed-caching rodents. J. Mammal. 1997, 78, 181–191. [Google Scholar] [CrossRef]
- Trowbridge, A.M.; Daly, R.W.; Helmig, D.; Stoy, P.C.; Monson, R.K. Herbivory and climate interact serially to control monoterpene emissions from pinyon pine forests. Ecology 2014, 95, 1591–1603. [Google Scholar] [CrossRef] [PubMed]
- Little, E.L. Common insects on pinyon (Pinus edulis). J. N. Y. Entomol. Soc. 1943, 51, 239–252. [Google Scholar]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Publ.: Carol Stream, IL, USA, 1997. [Google Scholar]
- National Institute of Standards and Technology Mass Spectrometry Data Center. Available online: https://chemdata.nist.gov (accessed on 7 March 2022).
- McCune, B.; Mefford, M.J. PC-ORD. Multivariate Analysis of Ecological Data, Version 7.10; MjM Software Design: Gleneden Beach, OR, USA, 2018. [Google Scholar]
- López, M.D.; Jordán, M.J.; Pascual-Villalobos, M.J. Toxic compounds in essential oils of coriander, caraway and basil active against stored rice pests. J. Stored. Prod. Res. 2008, 44, 273–278. [Google Scholar] [CrossRef]
- Reis, S.L.; Mantello, A.G.; Macedo, J.M.; Gelfuso, E.A.; Da Silva, C.P.; Fachin, A.L.; Cardoso, A.M.; Beleboni, R.O. Typical monoterpenes as insecticides and repellents against stored grain pests. Molecules 2016, 21, 258. [Google Scholar] [CrossRef] [PubMed]
- Langsi, J.D.; Nukenine, E.N.; Oumarou, K.M.; Moktar, H.; Fokunang, C.N.; Mbata, G.N. Evaluation of the insecticidal activities of α-pinene and 3-carene on Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae). Insects 2020, 11, 540. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Yu, Y.; Ge, J.; Xie, B.; Zhu, S.; Cheng, X. Effects of α-pinene on the pinewood nematode (Bursaphelenchus xylophilus) and its symbiotic bacteria. PLoS ONE 2019, 14, e0221099. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Hee, S.K.; Ho, S.H. Antifeedant and growth inhibitory effects of α-pinene on the stored-product insects, Tribolium castaneum (Herbst) and Sitophilus zeamais Motsch. Int. Pest. Control. 1998, 40, 18–20. [Google Scholar]
- Ruel, J.; Whitham, T.G. Fast-growing juvenile pinyons suffer greater herbivory when mature. Ecology 2002, 83, 2691–2699. [Google Scholar] [CrossRef]
- Croteau, R.; Martinkus, C. Metabolism of monoterpenes: Demonstration of (+)-neomenthyl-β-d-glucoside as a major metabolite of (−)-menthone in peppermint (Mentha piperita). Plant Physiol. 1979, 64, 169–175. [Google Scholar] [CrossRef] [PubMed]
- Croteau, R.; Sood, V.K. Metabolism of monoterpenes: Evidence for the function of monoterpene catabolism in peppermint (Mentha piperita) rhizomes. Plant Physiol. 1985, 77, 801–806. [Google Scholar] [CrossRef] [PubMed]
- Fairweather, M.L. Field Guide to Insects and Diseases of Arizona and New Mexico Forests; USDA Forest Service, Southwestern Region: Washington, DC, USA, 2006. [Google Scholar]
- Ramseyer, L.J.; Crawford, R.L. A survey of spiders found in fallen pine cones in eastern Washington State. West. N. Am. Nat. 2014, 74, 405–415. [Google Scholar] [CrossRef][Green Version]
Date/Condition | Cone Weight (g) | Cone # | Avg. Seed Cone Weight (g) | Volatile Oil Weight (g) | Yield (%) | |
---|---|---|---|---|---|---|
January | resinous | 437.49 | 75 | 5.83 | 2.60 | 0.59 |
non-resinous | 194.98 | 45 | 4.33 | 0.01 | 0.01 | |
February | resinous | 384.36 | 68 | 5.65 | 1.83 | 0.48 |
non-resinous | 205.49 | 52 | 3.95 | 0.01 | <0.01 | |
March | resinous | 360.52 | 69 | 5.22 | 1.91 | 0.53 |
non-resinous | 191.70 | 51 | 3.76 | 0.01 | 0.01 | |
April | resinous | 384.39 | 74 | 5.19 | 1.55 | 0.40 |
non-resinous | 182.82 | 46 | 3.97 | 0.01 | 0.01 | |
May | resinous | 572.46 | 71 | 8.06 | 1.78 | 0.31 |
non-resinous | 263.91 | 49 | 5.39 | 0.02 | 0.01 | |
June | resinous | 380.99 | 77 | 4.95 | 1.71 | 0.45 |
non-resinous | 138.43 | 43 | 3.22 | 0.01 | 0.01 | |
July | resinous | 363.85 | 69 | 5.27 | 1.75 | 0.48 |
non-resinous | 167.46 | 51 | 3.28 | 0.01 | 0.01 | |
August | resinous | 369.89 | 72 | 5.14 | 1.48 | 0.40 |
non-resinous | 195.3 | 48 | 4.07 | 0.02 | 0.01 | |
September | resinous | 366.58 | 75 | 4.89 | 1.32 | 0.36 |
non-resinous | 164.49 | 45 | 3.66 | 0.02 | 0.01 | |
October | resinous | 354.99 | 68 | 5.22 | 1.33 | 0.37 |
non-resinous | 183.21 | 52 | 3.52 | 0.04 | 0.02 | |
November | resinous | 395.01 | 70 | 5.64 | 1.04 | 0.26 |
non-resinous | 195.08 | 50 | 3.90 | 0.01 | 0.01 | |
December | resinous | 318.52 | 62 | 5.14 | 0.98 | 0.31 |
non-resinous | 213.63 | 58 | 3.68 | 0.05 | 0.02 |
Compound Name | KI | Resinous Cones | Non-Resinous Cones | ||
---|---|---|---|---|---|
January | July | January | July | ||
hexanal | 801 | tr | nd | nd | nd |
tricyclene | 921 | 0.2 | 0.2 | nd | tr |
α-thujene | 924 | 0.2 | 0.2 | nd | tr |
α-pinene | 932 | 75.2 | 76.1 | 3.6 | 2.7 |
camphene | 946 | 0.9 | 1.0 | tr | tr |
thuja-2,4(10)diene | 953 | 0.4 | 0.9 | tr | 0.3 |
3,7,7-trimethyl-1,3,5-cycloheptatriene | 966 | 0.5 | 0.7 | tr | 0.2 |
sabinene | 969 | 2.2 | 1.5 | tr | 0.1 |
β-pinene | 974 | 2.5 | 2.9 | tr | 0.3 |
myrcene | 988 | 0.6 | 0.5 | nd | 0.5 |
δ-2-carene | 1001 | tr | tr | nd | nd |
δ-3-carene | 1008 | 8.8 | 7.4 | 0.6 | 1.7 |
α-terpinene | 1014 | 0.1 | 0.1 | nd | 0.1 |
p-cymene | 1020 | 0.1 | 0.1 | tr | tr |
1-p-menthene | 1021 | tr | tr | nd | nd |
o-cymene | 1022 | 0.3 | 0.4 | 0.6 | 1.0 |
limonene | 1024 | 1.6 | 1.7 | 0.5 | 0.6 |
β-phellandrene | 1025 | tr | tr | nd | tr |
1,8-cineole | 1026 | 0.1 | 0.1 | nd | nd |
(Z)-β-ocimene | 1032 | 0.2 | 0.1 | nd | 0.1 |
(E)-β-ocimene | 1044 | tr | tr | nd | nd |
γ-terpinene | 1054 | 0.1 | 0.1 | tr | 0.4 |
cis-sabinene hydrate | 1065 | tr | tr | nd | nd |
m-cymenene | 1082 | nd | tr | nd | nd |
terpinolene | 1086 | 0.4 | 0.3 | 0.9 | 2.4 |
linalool | 1095 | tr | tr | nd | nd |
n-nonanal | 1100 | nd | nd | nd | 0.2 |
α-campholenal | 1122 | 0.2 | 0.3 | 1.5 | 3.3 |
trans-pinocarveol | 1135 | 0.2 | 0.1 | 1.4 | 0.8 |
cis-verbenol | 1137 | 0.1 | 0.1 | nd | nd |
trans-verbenol | 1140 | 0.3 | 0.3 | 0.7 | 0.3 |
unknown compound #1 | 1154 | 0.1 | 0.1 | 0.6 | 0.6 |
trans-pinocamphone | 1158 | tr | 0.1 | tr | 0.5 |
cis-pinocamphone | 1172 | 0.1 | 0.1 | tr | 0.7 |
terpinen-4-ol | 1174 | tr | tr | tr | 0.1 |
p-cymen-8-ol | 1179 | tr | tr | tr | tr |
α-terpineol | 1186 | tr | tr | nd | nd |
myrtenal | 1195 | 0.1 | 0.2 | 1.6 | 1.4 |
ethyl octanoate | 1196 | 0.5 | 0.5 | 4.4 | 3.4 |
verbenone | 1204 | tr | tr | 0.6 | 0.3 |
trans-carveol | 1215 | nd | tr | nd | nd |
thymol methyl ether | 1232 | tr | tr | tr | 0.3 |
cumin aldehyde | 1238 | nd | nd | nd | 0.1 |
carvone | 1239 | nd | tr | nd | nd |
(E)-anethole | 1282 | nd | nd | 0.7 | 0.1 |
bornyl acetate | 1284 | 0.2 | 0.2 | 6.1 | 4.4 |
ethyl nonanoate | 1286 | nd | nd | nd | tr |
thymol | 1289 | nd | nd | tr | nd |
α-terpinyl acetate | 1346 | 0.1 | 0.1 | 1.1 | 0.6 |
α-cubebene | 1348 | tr | tr | tr | 0.3 |
α-longipinene | 1350 | tr | tr | tr | 0.9 |
α-ylangene | 1373 | nd | nd | nd | 0.3 |
α-copaene | 1374 | 0.4 | 0.3 | 6.5 | 4.5 |
ethyl(4E)-decenoate | 1380 | tr | tr | 0.5 | 0.7 |
β-bourbonene | 1387 | 0.7 | 0.6 | 11.3 | 3.3 |
sativene | 1390 | 0.1 | tr | 1.1 | 0.1 |
ethyl decenoate | 1395 | tr | tr | tr | tr |
longifolene | 1407 | 0.4 | 0.4 | 13.3 | 8.9 |
(E)-caryophyllene | 1417 | tr | tr | 0.3 | 0.5 |
β-ylangene | 1419 | 0.1 | 0.1 | 0.5 | 0.7 |
β-copaene | 1430 | 0.1 | 0.1 | 1.4 | 0.6 |
isogermacrene D | 1445 | tr | tr | 0.9 | 0.3 |
α-humulene | 1452 | nd | nd | tr | 0.4 |
γ-muurolene | 1478 | tr | tr | 1.3 | 1.0 |
germacrene D | 1480 | 0.2 | 0.1 | 0.7 | 9.9 |
epi-cubebol | 1493 | tr | tr | 0.8 | 0.7 |
α-muurolene | 1500 | 0.1 | 0.1 | 3.8 | 2.8 |
γ-cadinene | 1513 | tr | tr | 0.1 | 0.8 |
cubebol | 1514 | tr | tr | 0.1 | 0.8 |
δ-cadinene | 1522 | 0.1 | 0.1 | 3.3 | 2.4 |
α-calacorene | 1544 | nd | nd | 0.3 | 0.3 |
longicamphenylone | 1562 | nd | nd | tr | 0.3 |
unknown compound #2 | 1564 | nd | nd | 1.1 | 1.0 |
caryophyllene oxide | 1582 | nd | nd | 1.0 | 1.2 |
6,10-epoxy-7(14)-isodaucene | 1586 | nd | nd | tr | 0.3 |
β-copaen-4α-ol | 1590 | nd | nd | tr | 0.6 |
unknown compound #3 | 1594 | nd | nd | 0.6 | 0.5 |
salvial-4(14)en-1-one | 1594 | nd | nd | 0.7 | 0.8 |
cedrol | 1600 | nd | nd | 0.6 | 0.4 |
unknown compound #4 | 1624 | nd | nd | 0.9 | 0.9 |
unknown compound #5 | 1667 | nd | nd | 0.6 | 0.9 |
unknown compound #6 | 1691 | nd | nd | nd | 0.5 |
ent-germacra-4(15),5,10(14)trien-β-ol | 1699 | nd | nd | 1.0 | 0.8 |
unknown compound #7 | 1901 | nd | nd | 2.6 | 1.0 |
unknown compound #8 | 1935 | nd | nd | 1.2 | 0.9 |
manool oxide | 1987 | nd | nd | 1.8 | 0.9 |
unknown compound #9 | 1998 | nd | nd | 1.2 | 0.6 |
18-norabieta-8,11,13-triene | 2036 | tr | tr | 4.9 | 2.8 |
unknown compound #10 | 2061 | nd | nd | 0.5 | 0.2 |
unknown compound #11 | 2064 | nd | nd | 1.3 | 0.9 |
abietadiene | 2087 | nd | nd | 1.1 | 1.4 |
unknown compound #12 | 2106 | nd | nd | 0.9 | 0.6 |
unknown compound #13 | 2160 | nd | nd | 0.6 | 0.5 |
unknown compound #14 | 2201 | nd | nd | 0.9 | 0.9 |
unknown compound #15 | 2239 | nd | nd | 0.4 | 0.8 |
unknown compound #16 | 2280 | nd | nd | nd | 0.5 |
unknown compound #17 | 2291 | nd | nd | 0.4 | 0.5 |
neoabietal | 2319 | nd | nd | 1.2 | 0.9 |
Compound Name | KI | Jan. | Feb. | Mar. | Apr. | May | Jun. | Jul. | Aug. | Sept. | Oct. | Nov. | Dec. |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
α-pinene | 932 | 75.2 | 77.4 | 77.4 | 72.0 | 77.0 | 75.1 | 76.1 | 76.6 | 76.0 | 75.0 | 75.5 | 74.4 |
camphene | 946 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 1.0 | 1.0 | 1.0 | 1.0 | 1.1 | 1.0 |
thuja-2,4(10)diene | 953 | 0.4 | 0.5 | 0.5 | 0.8 | 0.5 | 0.8 | 0.9 | 1.1 | 1.4 | 1.2 | 1.4 | 1.4 |
3,7,7-trimethyl-1,3,5-cycloheptatriene | 966 | 0.5 | 0.5 | 0.5 | 0.6 | 0.5 | 0.6 | 0.7 | 0.8 | 0.8 | 1.0 | 0.9 | 1.0 |
sabinene | 969 | 2.2 | 1.8 | 1.4 | 1.9 | 2.0 | 1.7 | 1.5 | 1.5 | 1.4 | 1.3 | 1.3 | 1.3 |
β-pinene | 974 | 2.5 | 3.2 | 2.9 | 3.2 | 2.8 | 2.9 | 2.9 | 2.7 | 3.0 | 2.5 | 2.7 | 2.6 |
myrcene | 988 | 0.6 | 0.4 | 0.4 | 0.7 | 0.4 | 0.6 | 0.5 | 0.8 | 0.3 | 0.3 | 0.2 | 0.2 |
δ-3-carene | 1008 | 8.8 | 7.5 | 8.0 | 9.2 | 7.4 | 7.6 | 7.4 | 6.8 | 6.1 | 7.5 | 5.8 | 7.2 |
limonene | 1024 | 1.6 | 1.8 | 1.7 | 2.0 | 1.9 | 2.0 | 1.7 | 1.7 | 1.4 | 1.7 | 1.8 | 2.2 |
β-bourbonene | 1387 | 0.7 | 0.6 | 0.5 | 0.8 | 0.5 | 0.6 | 0.6 | 0.5 | 0.7 | 0.6 | 0.7 | 0.7 |
Compound Name | KI | Jan. | Feb. | Mar. | Apr. | May | Jun. | Jul. | Aug. | Sept. | Oct. | Nov. | Dec. |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
α-pinene | 932 | 3.6 | 0.0 | 2.6 | 0.0 | 0.3 | 0.0 | 2.7 | 20.8 | 23.9 | 47.6 | 15.5 | 58.8 |
thuja-2,4(10)diene | 953 | 0.0 | nd | 0.3 | nd | nd | nd | 0.3 | 2.3 | 2.6 | 2.2 | 2.1 | 3.3 |
β-pinene | 974 | 0.0 | nd | 0.2 | nd | nd | nd | 0.3 | 1.5 | 1.2 | 2.9 | 0.9 | 2.1 |
δ-3-carene | 1008 | 0.6 | nd | 0.6 | nd | nd | 0.0 | 1.7 | 4.7 | 4.3 | 11.8 | 9.5 | 7.0 |
limonene | 1024 | 0.5 | nd | 0.3 | 0.7 | 0.3 | 0.0 | 0.6 | 1.9 | 3.4 | 3.2 | 2.7 | 1.5 |
terpinolene | 1086 | 0.9 | 0.7 | 0.8 | 0.0 | 0.9 | 0.3 | 2.4 | 3.6 | 3.7 | 2.2 | 3.8 | 1.5 |
α-campholenal | 1122 | 1.5 | 1.3 | 1.4 | 1.0 | 1.9 | 1.0 | 3.3 | 3.1 | 3.0 | 1.0 | 3.4 | 1.3 |
ethyl octanoate | 1196 | 4.4 | 1.1 | 6.0 | 0.7 | 1.1 | 0.8 | 3.4 | 3.8 | 4.6 | 1.2 | 4.4 | 0.7 |
bornyl acetate | 1284 | 6.1 | 4.9 | 10.1 | 2.2 | 4.5 | 3.0 | 4.4 | 3.7 | 3.9 | 1.1 | 3.4 | 1.1 |
α-copaene | 1374 | 6.5 | 2.9 | 5.8 | 2.7 | 3.2 | 2.3 | 4.5 | 3.1 | 2.8 | 1.6 | 2.9 | 1.0 |
β-bourbonene | 1387 | 11.3 | 5.5 | 11.5 | 5.8 | 3.8 | 5.0 | 3.3 | 4.6 | 3.8 | 1.8 | 4.4 | 0.9 |
longifolene | 1407 | 13.3 | 10.4 | 12.4 | 10.5 | 10.1 | 8.4 | 8.9 | 7.9 | 8.3 | 4.4 | 8.1 | 2.9 |
germacrene D | 1480 | 0.7 | 2.7 | 0.5 | 6.6 | 2.1 | 3.1 | 9.9 | 1.7 | 0.6 | 1.6 | 1.1 | 0.6 |
α-muurolene | 1500 | 3.8 | 3.8 | 3.4 | 3.7 | 2.5 | 2.6 | 2.8 | 1.3 | 1.1 | 0.5 | 1.3 | 0.4 |
δ-cadinene | 1522 | 3.3 | 3.8 | 2.2 | 3.8 | 2.5 | 2.4 | 2.4 | 1.1 | 0.9 | 0.4 | 1.1 | 0.4 |
unknown compound #7 | 1901 | 2.6 | 2.3 | 2.3 | 2.1 | 1.7 | 3.1 | 1.0 | 0.4 | 0.3 | 0.0 | 0.5 | 0.1 |
18-norabieta-8,11,13-triene | 2036 | 4.9 | 5.0 | 3.7 | 4.9 | 5.1 | 6.3 | 2.8 | 1.0 | 0.6 | 0.1 | 1.1 | 0.3 |
Taxa | Taxonomic Resolution | Order | Notes |
---|---|---|---|
Conophthorus | Genus | Coleoptera | Often damage whole cones |
Megastigmus | Genus | Hymenoptera | Develops in seeds |
Cecidomyiidae | Family | Diptera | Many species reported; develops in seeds |
Eucosma | Genus | Lepidoptera | Diverse group; larvae damages whole cones |
Spiders | Order | Araneae | Likely using cones for shelter and foraging |
Unknown | Unranked | Various | Rare in study (6 individuals); likely prey remains or, in one case, a hyperparasitoid |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wilson, T.M.; Rotter, M.C.; Ziebarth, E.A.; Carlson, R.E. Volatile Compound Chemistry and Insect Herbivory: Pinus edulis Engelm. (Pinaceae) Seed Cone Resin. Forests 2023, 14, 1862. https://doi.org/10.3390/f14091862
Wilson TM, Rotter MC, Ziebarth EA, Carlson RE. Volatile Compound Chemistry and Insect Herbivory: Pinus edulis Engelm. (Pinaceae) Seed Cone Resin. Forests. 2023; 14(9):1862. https://doi.org/10.3390/f14091862
Chicago/Turabian StyleWilson, Tyler M., Michael C. Rotter, Emma A. Ziebarth, and Richard E. Carlson. 2023. "Volatile Compound Chemistry and Insect Herbivory: Pinus edulis Engelm. (Pinaceae) Seed Cone Resin" Forests 14, no. 9: 1862. https://doi.org/10.3390/f14091862
APA StyleWilson, T. M., Rotter, M. C., Ziebarth, E. A., & Carlson, R. E. (2023). Volatile Compound Chemistry and Insect Herbivory: Pinus edulis Engelm. (Pinaceae) Seed Cone Resin. Forests, 14(9), 1862. https://doi.org/10.3390/f14091862