Effects of Plant Growth Promoting Rhizospheric Bacteria (PGPR) on Survival, Growth and Rooting Architecture of Eucalyptus Hybrid Clones †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isolation of Rhizospheric Bacteria
2.2. DNA Extraction, Amplification and Sequencing
2.3. Screening Bacterial Isolates for IAA Production and Phosphate Solubilisation
2.4. Preparation of Bacterial Inoculum for Field Trials
2.5. Preparation of Treatments
2.6. Field Trials: Set up and Procedure
2.7. Field Trials: Growth Measurements
2.8. Statistical Analyses of Treatment Outcomes
3. Results
3.1. Isolation, Identification and Characterisation of Potential PGPR
3.2. Preparation and Monitoring of Bacterial Inoculums for Field Trials
3.3. Survival and Rooting of Cuttings
3.4. Growth Response of Cuttings
3.5. Rooting Architecture of Cuttings
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lock, P.; Legg, P.; Whittle, L.; Black, S. Global Outlook for Wood Markets to 2030 Projections of Future Production, Consumption and Trade Balance; Australian Bureau of Agricultural and Resource Economics and Sciences: Canberra, Australia, 2021.
- van Wyk, G.; Verryn, S. The Basic Principles of Tree Breeding in South Africa. In South African Forestry Handbook; Owen, D., Ed.; The South African Institute of Forestry: Pretoria, South Africa, 2000; Volume 1, pp. 61–68. [Google Scholar]
- Pita-Barbosa, A.; Oliveira, L.A.; de Barros, N.F.; Hodecker, B.E.R.; Oliveira, F.S.; Araújo, W.L.; Martins, S.C. V Developing a Roadmap to Define a Potential Ideotype for Drought Tolerance in Eucalyptus. For. Sci. 2023, 69, 101–114. [Google Scholar] [CrossRef]
- de Assis, T.; Fett-Neto, A.; Couto Alfenas, A. Current Techniques and Prospects for the Clonal Propagation of Hardwoods with Emphasis on Eucalyptus. In Plantation Forest Biotechnology for the 21st Century, 2004; Walter, C., Carson, M., Eds.; Research Signpost: Kerala, India, 2004; pp. 303–333. [Google Scholar]
- Ruaud, J.; Lawrence, N.; Pepper, S.; Potts, B.; Borralho, N. Genetic Variation of in Vitro Rooting Ability with Time in Eucalyptus Globulus. Silvae. Genet. 1999, 48, 4–7. [Google Scholar]
- Fogaça, C.M.; Fett-Neto, A.G. Role of Auxin and Its Modulators in the Adventitious Rooting of Eucalyptus Species Differing in Recalcitrance. Plant Growth Regul. 2005, 45, 1–10. [Google Scholar] [CrossRef]
- Díaz, K.; Valiente, C.; Martínez, M.; Castillo, M.; Sanfuentes, E. Root-Promoting Rhizobacteria in Eucalyptus Globulus Cuttings. World J. Microbiol. Biotechnol. 2009, 25, 867–873. [Google Scholar] [CrossRef]
- Liu, Y.M.; Zheng, F.; Liu, Z.H.; Lan, H.B.; Cui, Y.H.; Gao, T.G.; Roitto, M.; Wang, A.F. Enhanced Root and Stem Growth and Physiological Changes in Pinus Bungeana Zucc. Seedlings by Microbial Inoculant Application. Forests 2022, 13, 1836. [Google Scholar] [CrossRef]
- Zafar, M.; Abbasi, M.K.; Khan, M.A.; Khaliq, A.; Sultan, T.; Aslam, M.; Jammu, A. Effect of Plant Growth-Promoting Rhizobacteria on Growth, Nodulation and Nutrient Accumulation of Lentil Under Controlled Conditions. Pedosphere 2012, 22, 848–859. [Google Scholar] [CrossRef]
- Teixeira, D.A.; Couto Alfenas, A.; Gonçalves Mafia, R.; Ferreira, E.M.; de Siqueira, L.; Maffia, L.A.; Mounteer, A.H. Rhizobacterial promotion of eucalypt rooting and growth. Braz. J. Microbiol. 2007, 38, 118–123. [Google Scholar] [CrossRef]
- Erturk, Y.; Ercisli, S.; Haznedar, A.; Cakmakci, R. BR Effects of Plant Growth Promoting Rhizobacteria (PGPR) on Rooting and Root Growth of Kiwifruit (Actinidia Deliciosa) Stem Cuttings. Biol. Res. 2010, 43, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Santoyo, G.; Alberto Urtis-Flores, C.; Damián Loeza-Lara, P.; del Carmen Orozco-Mosqueda, M.; Glick, B.R. Biology Rhizosphere Colonization Determinants by Plant Growth-Promoting Rhizobacteria (PGPR). Biology 2021, 10, 475. [Google Scholar] [CrossRef]
- Ahmad, F.; Ahmad, I.; Khan, M.S. Screening of Free-Living Rhizospheric Bacteria for Their Multiple Plant Growth Promoting Activities. Microbiol. Res. 2008, 163, 173–181. [Google Scholar] [CrossRef]
- Ji, S.H.; Gururani, M.A.; Chun, S.C. Isolation and Characterization of Plant Growth Promoting Endophytic Diazotrophic Bacteria from Korean Rice Cultivars. Microbiol. Res. 2014, 169, 83–98. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Rajkumar, M.; Zhang, C.; Freitas, H. Inoculation of Brassica oxyrrhina with Plant Growth Promoting Bacteria for the Improvement of Heavy Metal Phytoremediation under Drought Conditions. J. Hazard. Mater. 2016, 320, 36–44. [Google Scholar] [CrossRef] [PubMed]
- Arshad, M.; Frankenberger, W. Soil Microbial Ecology. In Microbial Production of Plant Growth Regulators; Blaine, F., Metting, J., Eds.; Mercel and Dekker, Inc.: New York, NY, USA, 1993; pp. 307–347. [Google Scholar]
- Glickmann, E.; Dessaux, Y. A Critical Examination of the Specificity of the Salkowski Reagent for Indolic Compounds Produced by Phytopathogenic Bacteria. Appl. Env. Microbiol. 1995, 61, 793–796. [Google Scholar] [CrossRef]
- Ljung, K.; Bhalerao, R.P.; Sandberg, G. Sites and Homeostatic Control of Auxin Biosynthesis in Arabidopsis during Vegetative Growth. Plant J. 2001, 28, 465–474. [Google Scholar] [CrossRef]
- Caboni, E.; Lauri, P.; Tonelli, M.; Falasca, G.; Damiano, C. Root Induction by Agrobacterium rhizogenes in Walnut. Plant Sci. 1996, 8, 203–208. [Google Scholar] [CrossRef]
- Blazkova, A.; Sotta, B.; Tranvan, H.; Maldiney, R.; Bonnet, M.; Einhorn, J.; Kerhoas, L.; Miginiac, E. Auxin Metabolism and Rooting in Young and Mature Clones of Sequoia sempervirens. Physiol. Plant 2006, 99, 73–80. [Google Scholar] [CrossRef]
- Gaspar, T.; Kevers, C.; Penel, C.; Greppin, H.; Reid, D.M.; Thorpe, T.A. Plant hormones and plant growth regulators in plant tissue culture. Vitr. Cell Dev. Biol. Plant 1996, 32, 272–289. [Google Scholar] [CrossRef]
- Gatineau, F.; Fouche, J.; Kevers, J.; Hausman, J.; Gaspar, T. Quantitative Variations of Indolyl Compounds Including IAA, IAA-Aspartate and Serotonin in Walnut Microcuttings during Root Induction. Biol. Plant. 1997, 39, 131–137. [Google Scholar] [CrossRef]
- Dilfuza, E. Indole-Acetic Acid Production by Root Associated Bacteria and Its Role in Plant Growth and Development. In Auxins: Structures, Biosynthesis and Functions; Keller, A., Fallon, M.D., Eds.; Nova Science Publishers Inc.: Hauppauge, NY, USA, 2011; pp. 1–13. [Google Scholar]
- Gaur, A. Physiological Functions of Phosphate Solubilizing Micro-Organisms. In Phosphate Solubilizing Micro-Organisms as Biofertilizers; Gaur, A., Ed.; Omega Scientific Publishers: New Delhi, India, 1990; pp. 16–72. [Google Scholar]
- De Freitas, J.R.; Banerjee, M.R.; Germida, J.J. Phosphate-Solubilizing Rhizobacteria Enhance the Growth and Yield but Not Phosphorus Uptake of Canola (Brassica Napus L.). Biol. Fertil. Soils 1997, 4, 358–364. [Google Scholar] [CrossRef]
- Pikovskaya, R. Mobilization of Phosphorus in Soil Connection with the Vital Activity of Some Microbial Species. Microbiology 1948, 17, 362–370. [Google Scholar]
- Poyton, R. Tree Planting in Southern Africa: The Eucalypts; Department of Forestry, Southern African Regional Commission for the Conservation and Utilisation of the Soil: Pretoria, South Africa, 1979. [Google Scholar]
- Chetty, S. The Development of Clone-Unspecific Micropropagation Protocols for Three Commercially Important Eucalyptus Hybrids. Master’s Thesis, University of Natal, Durban, South Africa, 2001. [Google Scholar]
- Komakech, C.; Swain, T.L.; Fossey, A. Growth Potential of Eucalyptus cypellocarpa as an Alternative Species for the Mid-Altitude Summer Rainfall Region of South Africa. South For. 2013, 75, 149–154. [Google Scholar] [CrossRef]
- McMahon, L.; George, B.; Hean, R. Eucalyptus camaldulensis Species Summary. Primefacts 2010, 1054, 1–6. [Google Scholar]
- González, P.; Sossa, K.; Rodríguez, F.; Sanfuentes, E. Rhizobacteria Strains as Promoters of Rooting in Hybrids of Eucalyptus nitens × Eucalyptus globulus. Chil. J. Agric. Res. 2018, 78, 3–12. [Google Scholar] [CrossRef]
- Zul, D.; Elviana, M.; Ismi, K.R.N.; Tassyah, K.R.; Siregar, B.A.; Gafur, A.; Tjahjono, B. Potential of PGPR Isolated from Rhizosphere of Pulpwood Trees in Stimulating the Growth of Eucalyptus pellita F. Muell. Int. J. Agric. Technol. 2022, 18, 401–420. [Google Scholar]
- Labuschagne, M.; Albertyn, J. Cloning of an Epoxide Hydrolase-Encoding Gene from Rhodotorula mucilaginosa and Functional Expression in Yarrowia Lipolytica. Yeast 2007, 24, 69–78. [Google Scholar] [CrossRef]
- Marchesi, J.R.; Sato, T.; Weightman, A.J.; Martin, T.A.; Fry, J.C.; Hiom, S.J.; Wade, W.G. Design and Evaluation of Useful Bacterium-Specific PCR Primers That Amplify Genes Coding for Bacterial 16S RRNA. Appl. Environ. Microbiol. 1998, 64, 795–799. [Google Scholar] [CrossRef]
- Abellan-Schneyder, I.; Matchado, M.S.; Reitmeier, S.; Sommer, A.; Sewald, Z.; Baumbach, J.; List, M.; Neuhaus, K. Primer, Pipelines, Parameters: Issues in 16S RRNA Gene Sequencing. mSphere 2021, 6, e01202-20. [Google Scholar] [CrossRef]
- Bric, J.M.; Bostock, R.M.; Silverstonet, S.E. Rapid In Situ Assay for Indoleacetic Acid Production by Bacteria Immobilized on a Nitrocellulose Membrane. Appl. Environ. Microbiol. 1991, 57, 535–538. [Google Scholar] [CrossRef]
- Whitelaw, M.A.; Harden, T.J.; Helyar, K.R. Phosphate Solubilisation in Solution Culture by the Soil Fungus Penicillium radicum. Soil Biol. Biochem. 1999, 31, 655–665. [Google Scholar] [CrossRef]
- Ferreira, E.; Alfenas Couto, A.; Mafia Gonzalves, R.; Leite Garcia, H.; Sartorio Cardoso, R.; Filho Penchel, R.; Helio, L. Determination of the optimum time for rooting of mini-cuttings of Eucalyptus spp. CLONES. Reshvista Arvore 2004, 28, 183–187. [Google Scholar] [CrossRef]
- Brondani, G.E.; Wendling, I.; Brondani, A.E.; Araujo, M.A.; da Silva, A.L.L.; Gonçalves, A.N. Dynamics of adventitious rooting in mini-cuttings of Eucalyptus benthamii × Eucalyptus dunnii. Acta Sci. Agron. 2012, 34, 169–178. [Google Scholar] [CrossRef]
- Brondani, G.E.; Ferreira Dutra, L. Eucalyptus benthamii × Eucalyptus dunnii Minicutting Technique: (II) Minicutting Survival and Rooting in Relation to Collection and Seasons. Cienc. Florest. Santa Maria 2010, 20, 453–465. [Google Scholar] [CrossRef]
- Di Cello, F.; Bevivino, A.; Chiarini, L.; Fani, R.; Paffetti, D.; Tabacchioni, S.; Dalmastri, A.C. Biodiversity of a Burkholderia cepacia Population Isolated from the Maize Rhizosphere at Different Plant Growth Stages. Appl. Environ. Microbiol. 1997, 63, 4485–4493. [Google Scholar] [CrossRef]
- Nwigwe, C.; Fossey, A.; de Smidt, O. Characterisation of Eucalyptus Rhizospheric Communities Using Fatty Acid Methyl Ester (FAME) Profile Analysis. S. Afr. J. Plant Soil 2021, 38, 116–125. [Google Scholar] [CrossRef]
- Lan, Y.; Liao, L.; Yao, X.; Ye, S. Synergistic Effects of Nitrogen and Plant Growth-Promoting Rhizobacteria Inoculation on the Growth, Physiological Traits and Nutrient Absorption of Intercropped Eucalyptus urophylla × Eucalyptus grandis and Dalbergia odorifera. Trees Struct. Funct. 2023, 37, 319–330. [Google Scholar] [CrossRef]
- Armada, E.; Probanza, A.; Roldán, A.; Azcón, R. Native Plant Growth Promoting Bacteria Bacillus thuringiensis and Mixed or Individual Mycorrhizal Species Improved Drought Tolerance and Oxidative Metabolism in Lavandula dentata Plants. J. Plant Physiol. 2016, 192, 1–12. [Google Scholar] [CrossRef]
- Gontia-Mishra, I.; Sapre, S.; Tiwari, S. Zinc Solubilizing Bacteria from the Rhizosphere of Rice as Prospective Modulator of Zinc Biofortification in Rice. Rhizosphere 2017, 3, 185–190. [Google Scholar] [CrossRef]
- Saeed, Q.; Xiukang, W.; Haider, F.U.; Kučerik, J.; Mumtaz, M.Z.; Holatko, J.; Naseem, M.; Kintl, A.; Ejaz, M.; Naveed, M.; et al. Rhizosphere Bacteria in Plant Growth Promotion, Biocontrol, and Bioremediation of Contaminated Sites: A Comprehensive Review of Effects and Mechanisms. Int. J. Mol. Sci. 2021, 22, 10529. [Google Scholar] [CrossRef]
- Radzki, W.; Gutierrez Mañero, F.J.; Algar, E.; Lucas García, J.A.; García-Villaraco, A.; Ramos Solano, B. Bacterial Siderophores Efficiently Provide Iron to Iron-Starved Tomato Plants in Hydroponics Culture. Antonie Van Leeuwenhoek 2013, 104, 321–330. [Google Scholar] [CrossRef] [PubMed]
- Chhetri, G.; Kim, I.; Kim, J.; So, Y.; Seo, T. Chryseobacterium tagetis Sp. Nov., a Plant Growth Promoting Bacterium with an Antimicrobial Activity Isolated from the Roots of Medicinal Plant (Tagetes patula). J. Antibiot. 2022, 75, 312–320. [Google Scholar] [CrossRef]
- Zaspel, I.; Ewald, D. Tri-Trophic Interactions in the Rhizosphere and Root-Health Nematode-Fungal-Bacterial Interrelationships. In Promotion of Root Development and Root Growth of Forest Plants by Rhizobacteria; International Organization for Biological and Integrated Control of Noxious Animals and Plants, West Palaearctic Regional Section: Wageningen, The Netherlands, 2001; pp. 161–167. [Google Scholar]
- González-Díaz, A.; Ojeda-Morales, M.E.; Hernández-Rivera, M.A.; Córdova-Bautista, Y.; Díaz-Flores, L.L.; López-Lázaro, J.D.L.S.; Álvarez-Ramírez, J.G. Effect of Biofertilizers Application on the Growth of Eucalyptus grandis Seedlings under Greenhouse Conditions. J. Plant Nutr. 2019, 42, 2560–2576. [Google Scholar] [CrossRef]
- Haldar, S.; Sengupta, S. Plant-Microbe Cross-Talk in the Rhizosphere: Insight and Biotechnological Potential. Open Microbiol. J. 2015, 9, 1–7. [Google Scholar] [CrossRef] [PubMed]
Isolate # | Description | NCBI Number | Base Pairs | % Identity | IAA 1 | PS 2 |
---|---|---|---|---|---|---|
CSN-R12 | Brevibacterium frigoritolerans strain DSM 8801 | 117474.1 | 1062 | 99 | + | + |
CSN-R13 | Brevibacterium frigoritolerans strain DSM 8801 | 117474.1 | 1068 | 100 | + | + |
CSN-R15 | Aeromicrobium ginsengisoli strain Gsoil 098 | 041384.1 | 1033 | 99 | − | − |
CSN-R1 | Arthrobacter oryzae strain KV-651 | 041545.1 | 1045 | 98 | + | − |
CSN-R2 | Arthrobacter oryzae strain KV-651 | 041545.1 | 1035 | 98 | + | − |
CSN-R47 | Arthrobacter oryzae strain KV-651 | 041545.1 | 1157 | 98 | + | − |
CSN-R25 | Bacillus acidiceler strain CBD 119 | 043774.1 | 1245 | 99 | + | − |
CSN-R65 | Bacillus aryabhattai strain B8W22 | 115953.1 | 1301 | 100 | + | + |
CSN-P10 | Burkholderia phytofirmans strain PsJN | 042931.1 | 1261 | 99 | + | + |
CSN-P11 | Burkholderia phytofirmans strain PsJN | 042931.1 | 1117 | 99 | + | + |
CSN-P12 | Burkholderia phytofirmans strain PsJN | 042931.1 | 1259 | 99 | + | + |
CSN-P16 | Burkholderia phytofirmans strain PsJN | 042931.1 | 911 | 99 | + | + |
CSN-R9 | Chryseobacterium rhizosphaerae strain RSB3-1 | 125812.1 | 1147 | 99 | + | + |
CSN-R17 | Chryseobacterium rhizosphaerae strain RSB3-1 | 125812.1 | 1258 | 99 | + | + |
CSN-R44 | Chryseobacterium rhizosphaerae strain RSB3-1 | 125812.1 | 1122 | 99 | + | + |
CSN-R42 | Chryseobacterium rhizosphaerae strain RSB3-1 | 125812.1 | 1107 | 99 | + | + |
CSN-P13 | Curtobacterium oceanosedimentum strain ATCC 31317 | 104839.1 | 1107 | 99 | − | − |
CSN-R34 | Pseudomonas fluorescens Pf0-1 strain Pf0-1 | 102835.1 | 1172 | 99 | + | + |
CSN-R32 | Pseudomonas koreensis strain Ps 9-14 | 025228.1 | 1076 | 99 | + | + |
CSN-R35 | Pseudomonas koreensis strain Ps 9-14 | 025228.1 | 1137 | 99 | + | + |
CSN-R62 | Pseudomonas koreensis strain Ps 9-14 | 025228.1 | 1125 | 99 | + | + |
CSN-R63 | Pseudomonas koreensis strain Ps 9-14 | 025228.1 | 1101 | 99 | + | + |
CSN-R64 | Pseudomonas koreensis strain Ps 9-14 | 025228.1 | 1181 | 100 | + | + |
CSN-R39 | Pseudomonas graminis strain DSM 11,363 | 026395.1 | 1007 | 98 | + | − |
CSN-R5 | Pseudomonas putida F1 strain F1 | 074739.1 | 1121 | 99 | + | + |
CSN-R6 | Pseudomonas putida F1 strain F1 | 074739.1 | 1049 | 99 | + | + |
CSN-R45 | Pseudomonas putida F1 strain F1 | 074739.1 | 971 | 99 | + | + |
CSN-R14 | Pseudomonas putida KT2440 strain KT2440 | 074596.1 | 1076 | 99 | + | + |
CSN-R46 | Pseudomonas putida KT2440 strain KT2440 | 074596.1 | 1200 | 100 | + | + |
CSN-R48 | Pseudomonas putida KT2440 strain KT2440 | 074596.1 | 1234 | 100 | + | + |
CSN-R67 | Pseudomonas putida F1 strain F1 | 074739.1 | 1180 | 99 | + | + |
Treatment Number | Treatment Description | Composition |
---|---|---|
T1 | Nursery standard (NS 1) | indole-3-butyric acid (IBA) |
T2 | Commercial rooting agent (Eco-T) + NS | Trichoderma hertzian (fungus) |
T3 | Bacterial inoculum mix in 1:1:1:1 ratio + NS | Bacillus aryabhattai Pseudomonas fluorescens Pseudomonas koreensis Pseudomonas putida |
T4 | Bacterial inoculum mix in 1:1:1 ratio + NS | Brevibacterium frigoritolerans Burkholderia phytofirmans Chryseobacterium rhizosphaerae |
Species | Time (h) | Mean OD 1 ± SD 2 | Mean Population Density in CFU 3 mL−1 × 10 7 ± SD | |
---|---|---|---|---|
Before Freezing | Before Field Trial | |||
Bacillus aryabhattai | 9 | 0.66 ± 0.06 | 8.50 ± 0.38 | 8.02 ± 0.42 |
Brevibacterium frigoritolerans | 10 | 0.76 ± 0.004 | 1.93 ± 0.16 | 1.87 ± 0.13 |
Burkholderia phytofirmans | 8 | 0.22 ± 0.01 | 2.27 ± 0.16 | 2.33 ± 0.23 |
Chryseobacterium rhizosphaerae | 7 | 0.62 ± 0.03 | 1.72 ± 0.19 | 1.68 ± 0.24 |
Pseudomonas fluorescens | 7 | 0.64 ±0.06 | 3.00 ± 0.07 | 3.40 ± 0.60 |
Pseudomonas koreensis | 7 | 0.59 ± 0.007 | 2.92 ± 0.11 | 2.40 ± 0.27 |
Pseudomonas putida | 8 | 0.71 ± 0.02 | 3.91 ± 0.30 | 3.73 ± 0.46 |
Parameter | Source | Sum of Squares | Degrees of Freedom | Mean Square | F | p-Value |
---|---|---|---|---|---|---|
Total length | Hybrids | 8574.28 | 1 | 8574.28 | 67.85 | <0.0001 |
Treatments | 9851.25 | 3 | 3283.75 | 25.98 | <0.0001 | |
Hybrids/Treatments | 290.03 | 3 | 96.68 | 0.76 | 0.4612 | |
Within | 322,510.30 | 2252 | 126.38 | |||
Root length | Hybrids | 5849.45 | 1 | 5849.44 | 114.74 | <0.0001 |
Treatments | 2976.84 | 3 | 992.28 | 19.47 | <0.0001 | |
Hybrids/Treatments | 222.78 | 3 | 74.26 | 1.46 | 0.1972 | |
Within | 130,102 | 2552 | 50.98 | |||
Shoot length | Hybrids | 261.76 | 1 | 261.76 | 8.52 | <0.0147 |
Treatments | 2105.28 | 3 | 701.76 | 22.85 | <0.0001 | |
Hybrids/Treatments | 136.69 | 3 | 45.56 | 1.48 | 0.1588 | |
Within | 78,389.73 | 2552 | 30.72 |
Hybrid Clone | Treatment | Level 1 | Level 2 | Level 3 |
---|---|---|---|---|
GN 018B | 1 | 63.9 | 23.2 | 12.9 |
2 | 71.1 | 19.0 | 9.9 | |
3 | 60.4 | 19.1 | 20.4 | |
4 | 64.4 | 20.7 | 14.9 | |
GN 010 | 1 | 67.9 | 25.0 | 7.1 |
2 | 65.0 | 26.0 | 9.1 | |
3 | 69.4 | 20.6 | 9.9 | |
4 | 67.2 | 23.1 | 9.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nwigwe, C.; Fossey, A.; de Smidt, O. Effects of Plant Growth Promoting Rhizospheric Bacteria (PGPR) on Survival, Growth and Rooting Architecture of Eucalyptus Hybrid Clones. Forests 2023, 14, 1848. https://doi.org/10.3390/f14091848
Nwigwe C, Fossey A, de Smidt O. Effects of Plant Growth Promoting Rhizospheric Bacteria (PGPR) on Survival, Growth and Rooting Architecture of Eucalyptus Hybrid Clones. Forests. 2023; 14(9):1848. https://doi.org/10.3390/f14091848
Chicago/Turabian StyleNwigwe, Chimdi, Annabel Fossey, and Olga de Smidt. 2023. "Effects of Plant Growth Promoting Rhizospheric Bacteria (PGPR) on Survival, Growth and Rooting Architecture of Eucalyptus Hybrid Clones" Forests 14, no. 9: 1848. https://doi.org/10.3390/f14091848