Using Functional Traits to Improve Estimates of Height–Diameter Allometry in a Temperate Mixed Forest
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Data Measurements
2.3. Functional Traits
2.4. Other Expanded Variables
2.5. Base H–D Model Selection
2.6. Generalized H–D Model at Different Levels
2.7. Mixed-Effects H–D Model Building
2.8. Model Comparison
3. Results
3.1. Base Model
3.2. Trait-Based Model Test Results
3.3. Different Levels of Generalized H–D Comparison and Combination
3.4. Mixed-Effects H–D Development and Examination
4. Discussion
4.1. Modeling Thoughts and Methods for Natural Mixed Forests
4.2. Functional Traits Are Worthy of Attention in the H–D Model
4.3. Multi-Level Expanded Variables’ Application and Combination
4.4. Review and Outlook
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Anderson, M.G.; Clark, M.; Olivero, A.P.; Barnett, A.R.; Hall, K.R.; Cornett, M.W.; Ahlering, M.; Schindel, M.; Unnasch, B.; Schloss, C.; et al. A Resilient and Connected Network of Sites to Sustain Biodiversity under a Changing Climate. Proc. Natl. Acad. Sci. USA 2023, 120, e2204434119. [Google Scholar] [CrossRef]
- Lindroth, A.; Grelle, A.; Morén, A. Long-term Measurements of Boreal Forest Carbon Balance Reveal Large Temperature Sensitivity. Glob. Chang. Biol. 1998, 4, 443–450. [Google Scholar] [CrossRef]
- Pan, Y.; Birdsey, R.A.; Fang, J.; Houghton, R.; Kauppi, P.E.; Kurz, W.A.; Phillips, O.L.; Shvidenko, A.; Lewis, S.L.; Canadell, J.G.; et al. A Large and Persistent Carbon Sink in the World’s Forests. Science 2011, 333, 988–993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niklas, K.J. Plant Allometry: Is There a Grand Unifying Theory? Biol. Rev. 2004, 79, 871–889. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, M.; Kiviste, A.; von Gadow, K. A Spatially Explicit Height–Diameter Model for Scots Pine in Estonia. Eur. J. For. Res. 2011, 130, 303–315. [Google Scholar] [CrossRef] [Green Version]
- Von Gadow, K.; Álvarez González, J.G.; Zhang, C.; Pukkala, T.; Zhao, X. Sustaining Forest Ecosystems; Managing Forest Ecosystems; Springer International Publishing: Cham, Switzerland, 2021; Volume 37, ISBN 978-3-030-58713-0. [Google Scholar]
- Chave, J.; Condit, R.; Aguilar, S.; Hernandez, A.; Lao, S.; Perez, R. Error Propagation and Scaling for Tropical Forest Biomass Estimates. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2004, 359, 409–420. [Google Scholar] [CrossRef]
- Henry, M.; Bombelli, A.; Trotta, C.; Alessandrini, A.; Birigazzi, L.; Sola, G.; Vieilledent, G.; Santenoise, P.; Longuetaud, F.; Valentini, R.; et al. GlobAllomeTree: International Platform for Tree Allometric Equations to Support Volume, Biomass and Carbon Assessment. Ifor.—Biogeosci. For. 2013, 6, 326. [Google Scholar] [CrossRef] [Green Version]
- Chave, J.; Andalo, C.; Brown, S.; Cairns, M.A.; Chambers, J.Q.; Eamus, D.; Fölster, H.; Fromard, F.; Higuchi, N.; Kira, T.; et al. Tree Allometry and Improved Estimation of Carbon Stocks and Balance in Tropical Forests. Oecologia 2005, 145, 87–99. [Google Scholar] [CrossRef]
- Adame, P.; del Río, M.; Cañellas, I. A Mixed Nonlinear Height–Diameter Model for Pyrenean Oak (Quercus pyrenaica Willd.). For. Ecol. Manag. 2008, 256, 88–98. [Google Scholar] [CrossRef]
- Chi, X.; Tang, Z.; Xie, Z.; Guo, Q.; Zhang, M.; Ge, J.; Xiong, G.; Fang, J. Effects of Size, Neighbors, and Site Condition on Tree Growth in a Subtropical Evergreen and Deciduous Broad-leaved Mixed Forest, China. Ecol. Evol. 2015, 5, 5149–5161. [Google Scholar] [CrossRef]
- Falster, D.S.; Westoby, M. Plant Height and Evolutionary Games. Trends Ecol. Evol. 2003, 18, 337–343. [Google Scholar] [CrossRef]
- Hulshof, C.M.; Swenson, N.G.; Weiser, M.D. Tree Height–Diameter Allometry across the United States. Ecol. Evol. 2015, 5, 1193–1204. [Google Scholar] [CrossRef]
- Moles, A.T.; Warton, D.I.; Warman, L.; Swenson, N.G.; Laffan, S.W.; Zanne, A.E.; Pitman, A.; Hemmings, F.A.; Leishman, M.R. Global Patterns in Plant Height. J. Ecol. 2009, 97, 923–932. [Google Scholar] [CrossRef]
- Global Forest Resource Assessment 2020. Available online: http://www.fao.org/forest-resources-assessment/2020 (accessed on 4 July 2023).
- Special Report on Climate Change and Land—IPCC Site. Available online: https://unfccc.int/documents/196536?gclid=EAIaIQobChMIibz-loPHgAMV6cwWBR19CwhEEAAYASAAEgLUaPD_BwE (accessed on 15 April 2023).
- Hua, F.; Bruijnzeel, L.A.; Meli, P.; Martin, P.A.; Zhang, J.; Nakagawa, S.; Miao, X.; Wang, W.; McEvoy, C.; Peña-Arancibia, J.L.; et al. The Biodiversity and Ecosystem Service Contributions and Trade-Offs of Forest Restoration Approaches. Science 2022, 376, 839–844. [Google Scholar] [CrossRef]
- Lewis, S.L.; Wheeler, C.E.; Mitchard, E.T.A.; Koch, A. Restoring Natural Forests Is the Best Way to Remove Atmospheric Carbon. Nature 2019, 568, 25–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aiba, S.-I.; Kohyama, T. Tree Species Stratification in Relation to Allometry and Demography in a Warm-Temperate Rain Forest. J. Ecol. 1996, 84, 207–218. [Google Scholar] [CrossRef]
- Wykoff, W.R.; Crookston, N.L.; Stage, A.R. User’s Guide to the Stand Prognosis Model; Gen. Tech. Rep. INT-133; U.S. Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station: Ogden, UT, USA, 1982; Volume 133, 112p. [CrossRef] [Green Version]
- Peng, C. Growth and Yield Models for Uneven-Aged Stands: Past, Present and Future. For. Ecol. Manag. 2000, 132, 259–279. [Google Scholar] [CrossRef]
- Porté, A.; Bartelink, H.H. Modelling Mixed Forest Growth: A Review of Models for Forest Management. Ecol. Model. 2002, 150, 141–188. [Google Scholar] [CrossRef]
- Temesgen, H.; Zhang, C.H.; Zhao, X.H. Modelling Tree Height–Diameter Relationships in Multi-Species and Multi-Layered Forests: A Large Observational Study from Northeast China. For. Ecol. Manag. 2014, 316, 78–89. [Google Scholar] [CrossRef]
- Fang, Z.; Bailey, R.L. Height–Diameter Models for Tropical Forests on Hainan Island in Southern China. For. Ecol. Manag. 1998, 110, 315–327. [Google Scholar] [CrossRef]
- Mensah, S.; Pienaar, O.L.; Kunneke, A.; du Toit, B.; Seydack, A.; Uhl, E.; Pretzsch, H.; Seifert, T. Height—Diameter Allometry in South Africa’s Indigenous High Forests: Assessing Generic Models Performance and Function Forms. For. Ecol. Manag. 2018, 410, 1–11. [Google Scholar] [CrossRef]
- Schmidt, M.; Breidenbach, J.; Astrup, R. Longitudinal Height-Diameter Curves for Norway Spruce, Scots Pine and Silver Birch in Norway Based on Shape Constraint Additive Regression Models. For. Ecosyst. 2018, 5, 9. [Google Scholar] [CrossRef] [Green Version]
- Cornelissen, J.H.C.; Lavorel, S.; Garnier, E.; Díaz, S.; Buchmann, N.; Gurvich, D.E.; Reich, P.B.; Ter Steege, H.; Morgan, H.D.; van der Heijden, M.G.A.; et al. A Handbook of Protocols for Standardised and Easy Measurement of Plant Functional Traits Worldwide. Aust. J. Bot. 2003, 51, 335. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Harguindeguy, N.; Díaz, S.; Garnier, E.; Lavorel, S.; Poorter, H.; Jaureguiberry, P.; Bret-Harte, M.S.; Cornwell, W.K.; Craine, J.M.; Gurvich, D.E.; et al. New Handbook for Standardised Measurement of Plant Functional Traits Worldwide. Aust. J. Bot. 2013, 61, 167. [Google Scholar] [CrossRef]
- Reich, P.B.; Wright, I.J.; Cavender-Bares, J.; Craine, J.M.; Oleksyn, J.; Westoby, M.; Walters, M.B. The Evolution of Plant Functional Variation: Traits, Spectra, and Strategies. Int. J. Plant Sci. 2003, 164, S143–S164. [Google Scholar] [CrossRef]
- Lavorel, S.; Garnier, E. Predicting Changes in Community Composition and Ecosystem Functioning from Plant Traits: Revisiting the Holy Grail. Funct. Ecol. 2002, 16, 545–556. [Google Scholar] [CrossRef]
- Li, Y.; Li, Q.; Xu, L.; Li, M.; Chen, Z.; Song, Z.; Hou, J.; He, N. Plant Community Traits Can Explain Variation in Productivity of Selective Logging Forests after Different Restoration Times. Ecol. Indic. 2021, 131, 108181. [Google Scholar] [CrossRef]
- Yang, J.; Cao, M.; Swenson, N.G. Why Functional Traits Do Not Predict Tree Demographic Rates. Trends Ecol. Evol. 2018, 33, 326–336. [Google Scholar] [CrossRef] [PubMed]
- Violle, C.; Enquist, B.J.; McGill, B.J.; Jiang, L.; Albert, C.H.; Hulshof, C.; Jung, V.; Messier, J. The Return of the Variance: Intraspecific Variability in Community Ecology. Trends Ecol. Evol. 2012, 27, 244–252. [Google Scholar] [CrossRef]
- Westoby, M.; Falster, D.S.; Moles, A.T.; Vesk, P.A.; Wright, I.J. Plant Ecological Strategies: Some Leading Dimensions of Variation Between Species. Annu. Rev. Ecol. Syst. 2002, 33, 125–159. [Google Scholar] [CrossRef] [Green Version]
- Wright, S.J.; Kitajima, K.; Kraft, N.J.B.; Reich, P.B.; Wright, I.J.; Bunker, D.E.; Condit, R.; Dalling, J.W.; Davies, S.J.; Díaz, S.; et al. Functional Traits and the Growth–Mortality Trade-off in Tropical Trees. Ecology 2010, 91, 3664–3674. [Google Scholar] [CrossRef] [PubMed]
- Asner, G.P.; Knapp, D.E.; Anderson, C.B.; Martin, R.E.; Vaughn, N. Large-Scale Climatic and Geophysical Controls on the Leaf Economics Spectrum. Proc. Natl. Acad. Sci. USA 2016, 113, E4043–E4051. [Google Scholar] [CrossRef] [PubMed]
- He, N.; Li, Y.; Liu, C.; Xu, L.; Li, M.; Zhang, J.; He, J.; Tang, Z.; Han, X.; Ye, Q.; et al. Plant Trait Networks: Improved Resolution of the Dimensionality of Adaptation. Trends Ecol. Evol. 2020, 35, 908–918. [Google Scholar] [CrossRef] [PubMed]
- Temesgen, H.; v Gadow, K. Generalized Height–Diameter Models—An Application for Major Tree Species in Complex Stands of Interior British Columbia. Eur. J. For. Res. 2004, 123, 45–51. [Google Scholar] [CrossRef]
- China Forestry and Grassland Yearbook. Available online: https://www.forestry.gov.cn/c/www/lcgk.jhtml (accessed on 15 April 2023).
- Wright, I.J.; Reich, P.B.; Westoby, M.; Ackerly, D.D.; Baruch, Z.; Bongers, F.; Cavender-Bares, J.; Chapin, T.; Cornelissen, J.H.C.; Diemer, M.; et al. The Worldwide Leaf Economics Spectrum. Nature 2004, 428, 821–827. [Google Scholar] [CrossRef] [PubMed]
- Rüger, N.; Wirth, C.; Wright, S.J.; Condit, R. Functional Traits Explain Light and Size Response of Growth Rates in Tropical Tree Species. Ecology 2012, 93, 2626–2636. [Google Scholar] [CrossRef] [Green Version]
- Xiang, W.; Lei, X.; Zhang, X. Modelling Tree Recruitment in Relation to Climate and Competition in Semi-Natural Larix-Picea-Abies Forests in Northeast China. For. Ecol. Manag. 2016, 382, 100–109. [Google Scholar] [CrossRef]
- He, J.; Fan, C.; Geng, Y.; Zhang, C.; Zhao, X.; von Gadow, K. Assessing Scale-dependent Effects on Forest Biomass Productivity Based on Machine Learning. Ecol. Evol. 2022, 12, e9110. [Google Scholar] [CrossRef]
- Ciceu, A.; Garcia-Duro, J.; Seceleanu, I.; Badea, O. A Generalized Nonlinear Mixed-Effects Height–Diameter Model for Norway Spruce in Mixed-Uneven Aged Stands. For. Ecol. Manag. 2020, 477, 118507. [Google Scholar] [CrossRef]
- Bronisz, K.; Mehtätalo, L. Mixed-Effects Generalized Height–Diameter Model for Young Silver Birch Stands on Post-Agricultural Lands. For. Ecol. Manag. 2020, 460, 117901. [Google Scholar] [CrossRef]
- Cui, K.; Wu, X.; Zhang, C.; Zhao, X.; von Gadow, K. Estimating Height-Diameter Relations for Structure Groups in the Natural Forests of Northeastern China. For. Ecol. Manag. 2022, 519, 120298. [Google Scholar] [CrossRef]
- Näslund, M. Skogsförsöksanstaltens Gallringsförsök i Tallskog; Meddelanden från Statens Skogsförsöksanstalt: Stockholm, Sweden, 1936. [Google Scholar]
- Schumacher, F.X. New growth curve and its application to timber-yield studies. J. For. 1939, 37, 819–820. [Google Scholar]
- Meyer, H.A. A Mathematical Expression for Height Curves. J. For. 1940, 38, 415–420. [Google Scholar]
- Bertalanffy, L.V. Quantitative laws in metabolism and growth. Q. Rev. Biol. 1957, 32, 217–231. [Google Scholar] [CrossRef]
- Curtis, R. Height-diameter and height-diameter-age equations for second-growth Douglas-fir. For. Sci. 1967, 13, 365–375. [Google Scholar] [CrossRef]
- Stage, A.R. Prediction of Height Increment for Models of Forest Growth; Intermountain Forest and Range Experiment Station, Forest Service, US Department of Agriculture: Ogden, UT, USA, 1975. [CrossRef]
- Bates, D.M.; Watts, D.G. Relative Curvature Measures of Nonlinearity. J. R. Stat. Soc. Ser. B (Methodol.) 1980, 42, 1–25. [Google Scholar] [CrossRef]
- Larson, B.C. Development and growth of even-aged stands of Douglas-fir and grand fir. Can. J. For. Res. 1986, 16, 367–372. [Google Scholar] [CrossRef]
- Qiu, H.; Liu, S.; Zhang, Y.; Li, J. Variation in Height-Diameter Allometry of Ponderosa Pine along Competition, Climate, and Species Diversity Gradients in the Western United States. For. Ecol. Manag. 2021, 497, 119477. [Google Scholar] [CrossRef]
- Pinheiro, J.C.; Bates, D.M. Mixed-Effects Models in S and S-PLUS; Statistics and Computing; Springer: New York, NY, USA, 2000; ISBN 978-0-387-98957-0. [Google Scholar]
- Yuancai, L.; Parresol, B.R. Remarks on Height-Diameter Modeling; U.S. Department of Agriculture, Forest Service, Southern Research Station: Asheville, NC, USA, 2001; p. SRS-RN-10.
- Huang, S.; Price, D.; Titus, S.J. Development of Ecoregion-Based Height–Diameter Models for White Spruce in Boreal Forests. For. Ecol. Manag. 2000, 129, 125–141. [Google Scholar] [CrossRef]
- Zheng, J.; Zang, H.; Yin, S.; Sun, N.; Zhu, P.; Han, Y.; Kang, H.; Liu, C. Modeling Height-Diameter Relationship for Artificial Monoculture Metasequoia Glyptostroboides in Sub-Tropic Coastal Megacity Shanghai, China. Urban For. Urban Green. 2018, 34, 226–232. [Google Scholar] [CrossRef]
- Tian, D.; Jiang, L.; Shahzad, M.K.; He, P.; Wang, J.; Yan, Y. Climate-Sensitive Tree Height-Diameter Models for Mixed Forests in Northeastern China. Agric. For. Meteorol. 2022, 326, 109182. [Google Scholar] [CrossRef]
- Poorter, L.; Castilho, C.V.; Schietti, J.; Oliveira, R.S.; Costa, F.R.C. Can Traits Predict Individual Growth Performance? A Test in a Hyperdiverse Tropical Forest. New Phytol. 2018, 219, 109–121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poorter, H.; Niklas, K.J.; Reich, P.B.; Oleksyn, J.; Poot, P.; Mommer, L. Biomass Allocation to Leaves, Stems and Roots: Meta-Analyses of Interspecific Variation and Environmental Control. New Phytol. 2012, 193, 30–50. [Google Scholar] [CrossRef] [PubMed]
- Crecente-Campo, F.; Tomé, M.; Soares, P.; Diéguez-Aranda, U. A Generalized Nonlinear Mixed-Effects Height–Diameter Model for Eucalyptus Globulus L. in Northwestern Spain. For. Ecol. Manag. 2010, 259, 943–952. [Google Scholar] [CrossRef] [Green Version]
- Ng’andwe, P.; Chungu, D.; Yambayamba, A.M.; Chilambwe, A. Modeling the Height-Diameter Relationship of Planted Pinus Kesiya in Zambia. For. Ecol. Manag. 2019, 447, 1–11. [Google Scholar] [CrossRef]
- Temesgen, H.; Monleon, V.J.; Hann, D.W. Analysis and Comparison of Nonlinear Tree Height Prediction Strategies for Douglas-Fir Forests. Can. J. For. Res. 2008, 38, 553–565. [Google Scholar] [CrossRef] [Green Version]
- King, D.A. Tree Form, Height Growth, and Susceptibility to Wind Damage in Acer Saccharum. Ecology 1986, 67, 980–990. [Google Scholar] [CrossRef]
- Chave, J.; Coomes, D.; Jansen, S.; Lewis, S.L.; Swenson, N.G.; Zanne, A.E. Towards a Worldwide Wood Economics Spectrum. Ecol. Lett. 2009, 12, 351–366. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Chen, X.; Niklas, K.J.; Sun, J.; Wang, Z.; Zhong, Q.; Hu, D.; Cheng, D. A Whole-plant Economics Spectrum Including Bark Functional Traits for 59 Subtropical Woody Plant Species. J. Ecol. 2022, 110, 248–261. [Google Scholar] [CrossRef]
- Rich, P.M.; Helenurm, K.; Kearns, D.; Morse, S.R.; Palmer, M.W.; Short, L. Height and Stem Diameter Relationships for Dicotyledonous Trees and Arborescent Palms of Costa Rican Tropical Wet Forest. Bull. Torrey Bot. Club 1986, 113, 241. [Google Scholar] [CrossRef]
- Borghetti, M.; Gentilesca, T.; Colangelo, M.; Ripullone, F.; Rita, A. Xylem Functional Traits as Indicators of Health in Mediterranean Forests. Curr. For. Rep. 2020, 6, 220–236. [Google Scholar] [CrossRef]
- Iida, Y.; Kohyama, T.S.; Swenson, N.G.; Su, S.-H.; Chen, C.-T.; Chiang, J.-M.; Sun, I.-F. Linking Functional Traits and Demographic Rates in a Subtropical Tree Community: The Importance of Size Dependency. J. Ecol. 2014, 102, 641–650. [Google Scholar] [CrossRef]
- Paine, C.E.T.; Amissah, L.; Auge, H.; Baraloto, C.; Baruffol, M.; Bourland, N.; Bruelheide, H.; Daïnou, K.; de Gouvenain, R.C.; Doucet, J.-L.; et al. Globally, Functional Traits Are Weak Predictors of Juvenile Tree Growth, and We Do Not Know Why. J. Ecol. 2015, 103, 978–989. [Google Scholar] [CrossRef] [Green Version]
- Poorter, L.; Wright, S.J.; Paz, H.; Ackerly, D.D.; Condit, R.; Ibarra-Manríquez, G.; Harms, K.E.; Licona, J.C.; Martínez-Ramos, M.; Mazer, S.J.; et al. Are Functional Traits Good Predictors of Demographic Rates? Evidence from Five Neotropical Forests. Ecology 2008, 89, 1908–1920. [Google Scholar] [CrossRef]
- Hagan, J.G.; Henn, J.J.; Osterman, W.H.A. Plant Traits Alone Are Good Predictors of Ecosystem Properties When Used Carefully. Nat. Ecol. Evol. 2023, 7, 332–334. [Google Scholar] [CrossRef] [PubMed]
- He, N.; Yan, P.; Liu, C.; Xu, L.; Li, M.; Van Meerbeek, K.; Zhou, G.; Zhou, G.; Liu, S.; Zhou, X.; et al. Predicting Ecosystem Productivity Based on Plant Community Traits. Trends Plant Sci. 2023, 28, 43–53. [Google Scholar] [CrossRef]
- van der Plas, F.; Schröder-Georgi, T.; Weigelt, A.; Barry, K.; Meyer, S.; Alzate, A.; Barnard, R.L.; Buchmann, N.; de Kroon, H.; Ebeling, A.; et al. Plant Traits Alone Are Poor Predictors of Ecosystem Properties and Long-Term Ecosystem Functioning. Nat. Ecol. Evol. 2020, 4, 1602–1611. [Google Scholar] [CrossRef]
- Funk, J.L.; Larson, J.E.; Ames, G.M.; Butterfield, B.J.; Cavender-Bares, J.; Firn, J.; Laughlin, D.C.; Sutton-Grier, A.E.; Williams, L.; Wright, J. Revisiting the H Oly G Rail: Using Plant Functional Traits to Understand Ecological Processes. Biol. Rev. 2017, 92, 1156–1173. [Google Scholar] [CrossRef]
- Forrester, D.I.; Benneter, A.; Bouriaud, O.; Bauhus, J. Diversity and Competition Influence Tree Allometric Relationships—Developing Functions for Mixed-Species Forests. J. Ecol. 2017, 105, 761–774. [Google Scholar] [CrossRef] [Green Version]
- Franceschini, T.; Schneider, R. Influence of Shade Tolerance and Development Stage on the Allometry of Ten Temperate Tree Species. Oecologia 2014, 176, 739–749. [Google Scholar] [CrossRef]
- Vizcaíno-Palomar, N.; Ibáñez, I.; González-Martínez, S.C.; Zavala, M.A.; Alía, R. Adaptation and Plasticity in Aboveground Allometry Variation of Four Pine Species along Environmental Gradients. Ecol. Evol. 2016, 6, 7561–7573. [Google Scholar] [CrossRef]
- Des Roches, S.; Post, D.M.; Turley, N.E.; Bailey, J.K.; Hendry, A.P.; Kinnison, M.T.; Schweitzer, J.A.; Palkovacs, E.P. The Ecological Importance of Intraspecific Variation. Nat. Ecol. Evol. 2017, 2, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Siefert, A.; Violle, C.; Chalmandrier, L.; Albert, C.H.; Taudiere, A.; Fajardo, A.; Aarssen, L.W.; Baraloto, C.; Carlucci, M.B.; Cianciaruso, M.V.; et al. A Global Meta-analysis of the Relative Extent of Intraspecific Trait Variation in Plant Communities. Ecol. Lett. 2015, 18, 1406–1419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lepš, J.; de Bello, F.; Šmilauer, P.; Doležal, J. Community Trait Response to Environment: Disentangling Species Turnover vs Intraspecific Trait Variability Effects. Ecography 2011, 34, 856–863. [Google Scholar] [CrossRef]
- Ng’andwe, P.; Chungu, D.; Tailoka, F. Stand Characteristics and Climate Modulate Height to Diameter Relationship in Pinus Merkusii and P. Michoacana in Zambia. Agric. For. Meteorol. 2021, 307, 108510. [Google Scholar] [CrossRef]
- Ogana, F.N.; Holmström, E.; Sharma, R.P.; Langvall, O.; Nilsson, U. Optimizing Height Measurement for the Long-Term Forest Experiments in Sweden. For. Ecol. Manag. 2023, 532, 120843. [Google Scholar] [CrossRef]
- Huang, S.; Titus, S.J. Estimating a System of Nonlinear Simultaneous Individual Tree Models for White Spruce in Boreal Mixed-Species Stands. Can. J. For. Res. 1999, 29, 1805–1811. [Google Scholar] [CrossRef]
- Fortin, M.; Van Couwenberghe, R.; Perez, V.; Piedallu, C. Evidence of Climate Effects on the Height-Diameter Relationships of Tree Species. Ann. For. Sci. 2019, 76, 1. [Google Scholar] [CrossRef] [Green Version]
- Saud, P.; Lynch, T.B.; Anup, K.C.; Guldin, J.M. Using Quadratic Mean Diameter and Relative Spacing Index to Enhance Height–Diameter and Crown Ratio Models Fitted to Longitudinal Data. For. Int. J. For. Res. 2016, 89, 215–229. [Google Scholar] [CrossRef] [Green Version]
- Hasenauer, H.; Monserud, R.A. Biased Predictions for Tree Height Increment Models Developed from Smoothed ‘Data’. Ecol. Model. 1997, 98, 13–22. [Google Scholar] [CrossRef]
- Ung, C.-H.; Bernier, P.Y.; Raulier, F.; Fournier, R.A.; Lambert, M.-C.; Régnière, J. Biophysical Site Indices for Shade Tolerant and Intolerant Boreal Species. For. Sci. 2001, 47, 83–95. [Google Scholar] [CrossRef]
- Geoff Wang, G. Is Height of Dominant Trees at a Reference Diameter an Adequate Measure of Site Quality? For. Ecol. Manag. 1998, 112, 49–54. [Google Scholar] [CrossRef]
- Kearsley, E.; de Haulleville, T.; Hufkens, K.; Kidimbu, A.; Toirambe, B.; Baert, G.; Huygens, D.; Kebede, Y.; Defourny, P.; Bogaert, J.; et al. Conventional Tree Height–Diameter Relationships Significantly Overestimate Aboveground Carbon Stocks in the Central Congo Basin. Nat. Commun. 2013, 4, 2269. [Google Scholar] [CrossRef] [Green Version]
- van Oijen, M. Bayesian Methods for Quantifying and Reducing Uncertainty and Error in Forest Models. Curr. For. Rep. 2017, 3, 269–280. [Google Scholar] [CrossRef] [Green Version]
- Salas-Eljatib, C.; Mehtätalo, L.; Gregoire, T.G.; Soto, D.P.; Vargas-Gaete, R. Growth Equations in Forest Research: Mathematical Basis and Model Similarities. Curr. For. Rep. 2021, 7, 230–244. [Google Scholar] [CrossRef]
- Li, H.K.; Lei, Y.C. Estimation and Evaluation of Forest Biomass Carbon Storage in China; China Forestry Publishing House: Beijing, China, 2010. [Google Scholar]
- He, H.J. Effects of Thinning Disturbance on Carbon Storage and Carbon Balance in Coniferous and Broad-leaved Mixed Forest in Jiaohe, Jilin Province; Beijing Forestry University: Beijing, China, 2018. [Google Scholar]
- Westerband, A.C.; Funk, J.L.; Barton, K.E. Intraspecific Trait Variation in Plants: A Renewed Focus on Its Role in Ecological Processes. Ann. Bot. 2021, 127, 397–410. [Google Scholar] [CrossRef]
- Liu, X.; Swenson, N.G.; Zhang, J.; Ma, K. The Environment and Space, Not Phylogeny, Determine Trait Dispersion in a Subtropical Forest. Funct. Ecol. 2013, 27, 264–272. [Google Scholar] [CrossRef]
- van der Sande, M.T.; Peña-Claros, M.; Ascarrunz, N.; Arets, E.J.M.M.; Licona, J.C.; Toledo, M.; Poorter, L. Abiotic and Biotic Drivers of Biomass Change in a Neotropical Forest. J. Ecol. 2017, 105, 1223–1234. [Google Scholar] [CrossRef] [Green Version]
- Williamson, G.B.; Wiemann, M.C. Measuring Wood Specific Gravity…Correctly. Am. J. Bot. 2010, 97, 519–524. [Google Scholar] [CrossRef] [Green Version]
- Hao, M.; Zhang, C.; Zhao, X.; von Gadow, K. Functional and Phylogenetic Diversity Determine Woody Productivity in a Temperate Forest. Ecol. Evol. 2018, 8, 2395–2406. [Google Scholar] [CrossRef]
Species | Number | D (cm) | H (m) | ||||
---|---|---|---|---|---|---|---|
MaxD | MeanD | MinD | MaxH | MeanH | MinH | ||
Training dataset | |||||||
Abies fabri | 689 | 42.5 | 14.0 | 5.0 | 26.2 | 10.7 | 2.1 |
Acer pictum | 308 | 53.6 | 15.3 | 5.1 | 24.7 | 11.6 | 2.3 |
Betula costata | 200 | 75.0 | 18.2 | 6.0 | 30.8 | 15.9 | 6.2 |
Betula platyphylla | 72 | 39.7 | 21.5 | 8.9 | 26.2 | 17.4 | 8.4 |
Fraxinus mandshurica | 46 | 36.9 | 18.9 | 5.3 | 27.8 | 14.9 | 4.1 |
Larix gmelinii | 38 | 45.2 | 25.2 | 11.0 | 25.4 | 18.3 | 10.6 |
Picea asperata | 308 | 67.1 | 23.7 | 5.0 | 28.4 | 14.1 | 3.2 |
Pinus koraiensis | 315 | 78.5 | 24.2 | 5.0 | 28.4 | 13.9 | 2.0 |
Tilia amurensis | 539 | 56.5 | 16.6 | 5.1 | 26.3 | 12.0 | 3.1 |
Ulmus davidiana Planch. var. japonica | 87 | 52.0 | 18.9 | 5.2 | 26.1 | 13.2 | 4.6 |
Validation dataset | |||||||
Abies fabri | 64 | 36.5 | 14.4 | 5.1 | 26.8 | 10.0 | 3.0 |
Acer pictum | 36 | 41.7 | 19.2 | 5.6 | 22.3 | 12.0 | 4.7 |
Betula costata | 112 | 37.1 | 18.8 | 7.8 | 24.8 | 14.6 | 5.7 |
Betula platyphylla | 6 | 30.7 | 23.1 | 15.9 | 18.7 | 15.3 | 12.4 |
Fraxinus mandshurica | 26 | 38.3 | 22.2 | 6.8 | 22.8 | 14.3 | 5.1 |
Larix gmelinii | 175 | 48.2 | 24.1 | 7.4 | 25.6 | 16.9 | 4.1 |
Picea asperata | 77 | 50.8 | 26.0 | 5.5 | 28.3 | 15.4 | 3.2 |
Pinus koraiensis | 75 | 62.7 | 22.6 | 6.3 | 24.6 | 12.8 | 4.2 |
Tilia amurensis | 116 | 42.8 | 13.4 | 5.1 | 22.3 | 10.1 | 4.1 |
Ulmus davidiana Planch. var. japonica | 12 | 56.5 | 26.4 | 8.4 | 20.4 | 14.4 | 7.2 |
Measurement Level | Application Situation | Variable Type | Variable Name | Specific Description |
---|---|---|---|---|
Plot level | Modeling for dividing species or all trees | Topography | SIC | tan(slope) × cos(aspect) |
CE | cos(aspect) × ln(elevation) | |||
Competition | BA | Basal area | ||
Stand quality | DMH | Maximum tree height of Dominant species | ||
Species level | Modeling for all trees | Functional trait | LA | Leaf area |
LT | Leaf thickness | |||
LDMC | Leaf dry matter content | |||
SLA | Specific leaf area | |||
LN | Leaf nitrogen | |||
WD | Wood density | |||
Hmax | Maximum tree height | |||
Individual level | Modeling for dividing species or all trees | Competition | BAL | Basal area in larger trees |
Number | Equation | References |
---|---|---|
BM.1 | Näslund (1936) [47] | |
BM.2 | Schumacher (1939) [48] | |
BM.3 | Meyer (1940) [49] | |
BM.4 | Meyer (1940) [49] | |
BM.5 | Bertalanffy (1957) [50] | |
BM.6 | Curtis (1967) [51] | |
BM.7 | Stage (1975) [52] | |
BM.8 | Bates and Watts (1980) [53] | |
BM.9 | Wykoff et al. (1982) [20] | |
BM.10 | Larson (1986) [54] |
Model | RMSE | CV-MSE | AIC | BIC |
---|---|---|---|---|
BM.1 | 2.8805 | 2.8651 | 12,757.48 | 12,775.05 |
BM.2 | 2.8834 | 2.8690 | 12,765.07 | 12,782.64 |
BM.3 | 2.8876 | 2.8718 | 12,769.31 | 12,786.88 |
BM.4 | 2.9004 | 2.8844 | 12,791.41 | 12,808.97 |
BM.5 | 2.9554 | 2.9443 | 12,898.41 | 12,915.98 |
BM.6 | 2.8800 | 2.8653 | 12,758.24 | 12,775.81 |
BM.7 | 3.0826 | 3.0643 | 13,102.85 | 13,120.42 |
BM.8 | 2.9355 | 2.9187 | 12,852.45 | 12,870.02 |
BM.9 | 2.8785 | 2.8635 | 12,754.90 | 12,772.47 1 |
BM.10 | 3.2619 | 3.2426 | 13,393.53 | 13,411.10 |
Model Type | Expanded Variable | RMSE | NMSE | AIC | BIC | MSE |
---|---|---|---|---|---|---|
Base model | Null | 2.8785 | 2.8635 | 12,754.90 | 127,72.47 | 10.3711 |
Generalized model for one expanded variable | CE | 2.8571 | 2.8584 | 12,749.62 | 12,773.04 | 10.4462 |
BA | 2.8427 | 2.8424 | 12,721.31 | 12,744.74 | 10.3414 | |
DMH | 2.7225 | 2.7239 | 12,493.77 | 12,523.05 | 9.8701 | |
PC | 2.8348 | 2.8370 | 12,709.06 | 12,738.34 | 10.1739 | |
BAL | 2.8525 | 2.8525 | 12,739.78 | 12,763.20 | 10.4187 | |
Generalized model for mixed extra variable | Based on level (DMH + PC + BAL) | n.s. | n.s. | n.s. | n.s. | n.s. |
Based on feature 1 (CE + BA + DMH + PC + BAL) | 2.6704 | 2.6188 | 12,398.10 | 12,456.66 | 9.7457 | |
PC + CE | 2.8268 | 2.8037 | 12,702.12 | 12,737.25 | 10.2478 | |
PC + BA | 2.8111 | 2.7905 | 12,672.88 | 12,708.02 | 10.1766 | |
PC + DMH | 2.6965 | 2.6576 | 12,440.17 | 12,481.16 | 9.7707 | |
PC + BAL | 2.8214 | 2.7993 | 12,691.55 | 12,726.69 | 10.2587 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, H.; Cui, K.; von Gadow, K.; Wang, X. Using Functional Traits to Improve Estimates of Height–Diameter Allometry in a Temperate Mixed Forest. Forests 2023, 14, 1604. https://doi.org/10.3390/f14081604
Gao H, Cui K, von Gadow K, Wang X. Using Functional Traits to Improve Estimates of Height–Diameter Allometry in a Temperate Mixed Forest. Forests. 2023; 14(8):1604. https://doi.org/10.3390/f14081604
Chicago/Turabian StyleGao, Huanran, Keda Cui, Klaus von Gadow, and Xinjie Wang. 2023. "Using Functional Traits to Improve Estimates of Height–Diameter Allometry in a Temperate Mixed Forest" Forests 14, no. 8: 1604. https://doi.org/10.3390/f14081604
APA StyleGao, H., Cui, K., von Gadow, K., & Wang, X. (2023). Using Functional Traits to Improve Estimates of Height–Diameter Allometry in a Temperate Mixed Forest. Forests, 14(8), 1604. https://doi.org/10.3390/f14081604