Effects of Tree Competition on Biomass Allocation of Stump and Coarse Roots of Larix olgensis of Different Site Classes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites and Sampling
2.2. Biomass Measurements
2.3. Data Analysis
3. Results
3.1. Distribution of Stump and Coarse Root Biomass under Different Site Classes
3.2. Changes in Biomass Allocation with Competition Index
3.3. Statistical Results of Multivariate Analysis of Variance
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Harmon, M.E.; Franklin, J.F.; Swanson, F.J.; Sollins, P.; Gregory, S.V.; Lattin, J.D.; Anderson, N.H.; Cline, S.P.; Aumen, N.G.; Sedell, J.R.; et al. Ecology of coarse woody debris in temperate ecosystems. Adv. Ecol. Res. 1986, 15, 133–302. [Google Scholar]
- Janisch, J.E.; Harmon, M.E.; Chen, H.; Fasth, B.; Sexton, J. Decomposition of coarse woody debris originating by clearcutting of an old-growth conifer forest. Ecoscience 2005, 12, 151–160. [Google Scholar]
- Huang, Z.Q.; Liao, L.P.; Gao, H.; Yu, X. Decomposition process of Chinese fir stump roots and changes of nutrient concentration. Chin. J. Appl. Ecol. 2000, 1, 41–43. [Google Scholar] [CrossRef]
- LY/T 2101-2013; Technical Regulations on Quality Inspection of Cutting Area Operations Key State-Owned Forests of Inner Mongolia and Northeast China. the State Forestry Administration of the People’s Republic of China, Standards Press of China: Beijing, China, 2013.
- Hellsten, S.; Helmisaari, H.S.; Melin, Y.; Skovsgaard, J.P.; Kaakinen, S.; Kukkola, M.; Akselsson, C. Nutrient concentrations in stumps and coarse roots of Norway spruce, Scots pine and silver birch in Sweden, Finland and Denmark. For. Ecol. Manag. 2013, 290, 40–48. [Google Scholar] [CrossRef]
- Kimmins, P. Above- and below-ground biomass and production of lodgepole pine on sites with differing soil moisture regimes. Can. J. For. Res. 1989, 19, 447–454. [Google Scholar] [CrossRef]
- Olajuyigbe, S.O.; Tobin, B.; Gardiner, P.; Nieuwenhuis, M. Stocks and decay dynamics of above- and belowground coarse woody debris in managed sitka spruce forests in ireland. For. Ecol. Manag. 2011, 262, 1109–1118. [Google Scholar] [CrossRef]
- Harmon, M.E.; Sexton, J.G. Guidelines for Measurement S of Woody Detritus in Forest Ecosystems; Us Publication No. 20; Us Lter Network Office University of Washington: Seattle, WA, USA, 1996. [Google Scholar]
- Hovenden, M.J.; Newton, P.C.D.; Wills, K.E. Seasonal not annual rainfall determines grassland biomass response to carbon dioxide. Nature 2014, 511, 583–586. [Google Scholar] [CrossRef]
- Schimel, D.S. Terrestrial ecosystems and the carbon cycle. Glob. Change Biol. 1995, 1, 77–91. [Google Scholar] [CrossRef]
- Aguirre, A.; Río, M.D.; Ruiz-Peinado, R.; Condés, S. Stand-level biomass models for predicting c stock for the main spanish pine species. For. Ecosyst. 2021, 8, 29. [Google Scholar] [CrossRef]
- Yin, Q.; Tian, T.; Han, X.; Xu, J.; Chai, Y.; Mo, J. The relationships between biomass allocation and plant functional trait. Ecol. Indic. 2019, 102, 302–308. [Google Scholar] [CrossRef]
- Rizvi, R.H.; Dhyani, S.K.; Yadav, R.S.; Singh, R. Biomass production and carbon stock of poplar agroforestry systems in Yamunanagar and Saharanpur districts of northwestern India. Curr. Sci. 2011, 100, 736–742. [Google Scholar]
- De-Miguel, S.; Pukkala, T.; Assaf, N.; Shater, Z. Intra-specific differences in allometric equations for aboveground biomass of eastern Mediterranean Pinus brutia. Ann. For. Sci. 2014, 71, 101–112. [Google Scholar] [CrossRef] [Green Version]
- Chave, J.; Condit, R.; Lao, S.; Caspersen, J.P.; Foster, R.B.; Hubbell, S.P. Spatial and temporal variation of biomass in a tropical forest: Results from a large census plot in Panama. J. Ecol. 2003, 91, 240–252. [Google Scholar] [CrossRef]
- Agathokleous, E.; Belz, R.G.; Kitao, M.; Koike, T.; Calabrese, E.J. Does the root to shoot ratio show a hormetic response to stress? An ecological and environmental perspective. J. For. Res. 2019, 30, 1569–1580. [Google Scholar] [CrossRef] [Green Version]
- Jing, J.L. Research on the Root System Distribution and Architecture of Populus euphratica in the Extremely Arid Region Beijing. Master’s Thesis, Beijing Forestry University, Beijing, China, 2014. [Google Scholar]
- Cairns, M.A.; Brown, S.; Helmer, E.H.; Baumgardner, G.A. Root biomass allocation in the world’s upland forests. Oecologia 1997, 111, 1–11. [Google Scholar] [CrossRef]
- Wang, Z.Q.; Guo, D.L.; Wang, X.R.; Mei, L. Fine root architecture, morphology, and biomass of different branch orders of two chinese temperate tree species. Plant. Soil. 2006, 288, 155–171. [Google Scholar] [CrossRef]
- Li, F.F.; Pei, N.C.; Shi, Z.W.; Luo, S.; Tang, Y.; Liu, X.; Chen, Z.; Sun, B. Relationships between Soil Nutrients and Root Biomass, Morphological Traits and Nutrients for Secondary Forests and Plantations. Ecol. Environ. Sci. 2019, 28, 2349–2355. [Google Scholar] [CrossRef]
- Heal, O.W.; Cheng, B.R.; Xu, G.S. Stump decomposition of Larch and red pine in the Changbai Mountains. For. Eco. Res. 1983, 3, 225–234. [Google Scholar]
- Li, S.F.; Jia, C.X.; Yang, L.H.; Zhong, H.; Huang, X.; Lang, X.; Liu, W.; Su, J. Effect of Stand Age on Root Biomass in Pinus kesiya var. langbianensis Plantation. For. Res. 2018, 31, 26–33. [Google Scholar] [CrossRef]
- Sun, N.; Zhang, Y.C.; Zhao, M.F. Root Biomass and Vertical Distribution Characteristics of Larch Plantation. For. Eng. 2021, 37, 6. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Wen, Z.W. Root Biomass of Pinus massoniana Plantations under Different Planting Densities. For. Res. 2011, 47, 75–81. [Google Scholar]
- Wang, G.; Ran, F.; Chang, R.; Yang, Y.; Luo, J.; Jianrong, F. Variations in the live biomass and carbon pools of abies georgei along an elevation gradient on the Tibetan Plateau, China. For. Ecol. Manag. 2014, 329, 255–263. [Google Scholar] [CrossRef]
- Cui, Q.F.; Feng, Z.P.; Yang, X.T. Distributions of fine and coarse tree roots in a semi-arid mountain region and their relationships with soil properties. Trees 2017, 31, 607–616. [Google Scholar] [CrossRef]
- Liao, Y.C.; Duan, H.L.; Shi, X.X.; Meng, Q.; Liu, W.; Shen, F.; Fan, H.; Zhu, T. The Relationship between the Stand Growth and Root Biomass of Cunninghamia lanceolate Plantations. Ecol. Environ. Sci. 2021, 30, 1121–1128. [Google Scholar] [CrossRef]
- National Forestry and Grassland Administration. Report on Forest Resources Inventory for Key State-Owned Forest in Inner Mongolia & Northeast China; China Forestry Publishing House: Beijing, China, 2020; ISBN 978-7-5219-0679-0. (In Chinese) [Google Scholar]
- Cui, J.Y.; Sun, Z.H.; Wang, Z.K.; Gong, L.F. Effects of the Application of Nutrients on Soil Bacterial Community Composition and Diversity in a Larix olgensis Plantation, Northeast China. Sustainability 2022, 14, 16759. [Google Scholar] [CrossRef]
- Liu, Q. Study on Photosynthetic Characteristics of Larix olgensis Henry Plantation; Northeast Forestry University: Harbin, China, 2015. [Google Scholar]
- LY/T 1385-99; The Professional Standard of the People’s Republic of China for Fast-Growing and High-Yield Plantation of Olga Bay Larch (Larix olgensis) and Dahurian Larch (Larix gmelini). The State Forestry Administration of the People’s Republic of China, Standards Press of China: Beijing, China, 1986.
- Trinh, H.; David, J.L.; Grahame, A.; Tom, L. Field methods for above and belowground biomass estimation in plantation forests. MethodsX 2021, 8, 101192. [Google Scholar] [CrossRef]
- Britton, T.G.; Richards, S.A.; Hovenden, M.J. Quantifying neighbour effects on tree growth: Are common ‘competition’ indices biased? J. Ecol. 2023, 111, 1270–1280. [Google Scholar] [CrossRef]
- Hegyi, F. A simulation model for managing jack-pine stands. In Growth Models for Tree and Stand Simulation; Fries, J., Ed.; Royal College of Forestry: Stockholm, Sweden, 1974; pp. 74–90. [Google Scholar]
- Wang, X.; Zhao, D.; Liu, G.; Yang, C.; Teskey, R.O. Additive tree biomass equations for Betula platyphylla Suk. plantations in northeast china. Ann. For. Sci. 2018, 75, 60. [Google Scholar] [CrossRef] [Green Version]
- Halonen, O.; Tulkki, H.; Derome, J. Nutrient analysis methods. Finn. For. Res. Inst. Res. 1983, 121, 28. Available online: http://urn.fi/URN:ISBN:951-40-0988-6 (accessed on 28 March 2023).
- Rubio, G.; Walk, T.; Ge, Z.; Yan, X.; Liao, H.; Lynch, J.P. Root gravitropism and below-ground competition among neighbouring plants: A modelling approach. Ann. Bot. 2001, 88, 929–940. [Google Scholar] [CrossRef] [Green Version]
- Wilson, J.B. Shoot competition and root competition. J. Appl. Ecol. 1988, 25, 279–296. [Google Scholar] [CrossRef]
- Yan, H.; Dong, X.; Feng, G.; Zhang, S.; Mucciardi, A. Coarse root spatial distribution determined using a ground-penetrating radar technique in a subtropical evergreen broad-leaved forest. Sci. China Life Sci. 2013, 43, 788–798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morais, M.C.; Pereira, H. Heartwood and sapwood variation in Eucalyptus globulus Labill. trees at the end of rotation for pulpwood production. Ann. Forest Sci. 2007, 64, 665–671. [Google Scholar] [CrossRef] [Green Version]
- Nawrot, M.; Pazdrowski, W.; Szymański, M. Dynamics of heartwood formation and axial and radial distribution of sapwood and heartwood in stems of european larch (Larix decidua Mill.). J. For. Sci. 2008, 54, 409–417. [Google Scholar] [CrossRef] [Green Version]
- Martinez-Vilalta, J.; Vanderklein, D.; Mencuccini, M. Tree height and age-related decline in growth in scots pine (Pinus sylvestris L.). Oecologia 2007, 150, 529–544. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Li, K.; Liao, S.; Cui, Y. Interspecific Competition, Population Structure and Growth Dynamics of Endangered Calocedrus macrolepis. For. Res. 2010, 46, 23–26. [Google Scholar]
- Wang, J.; Fan, X.; Fan, J.; Zhang, C.; Xia, F. Effect of aboveground competition on biomass partitioning of understory Korean pine (Pinus koraiensis). Acta Ecol. Sin. 2012, 32, 2447–2457. [Google Scholar] [CrossRef]
- Wang, X.W.; Weng, Y.H.; Liu, G.F.; Krasowski, M.J.; Yang, C.P. Variations in carbon concentration, sequestration and partitioning among Betula platyphylla provenances. For. Ecol. Manag. 2015, 358, 344–352. [Google Scholar] [CrossRef]
- Bloom, A.J.; Chapin, F.S.; Mooney, H.A. Resource limitation in plants-an economic analogy. Annu. Rev. Ecol. Syst. 1985, 16, 363–392. [Google Scholar] [CrossRef]
- Poorter, H.; Niklas, K.J.; Reich, P.B.; Oleksyn, J.; Poot, P.; Mommer, L. Biomass allocateion to leaves, stems and roots: Meta-analyses of interspecific variation and environmental control. New Phytol. 2012, 193, 30–50. [Google Scholar]
- Wilson, S.D.; Tilman, D. Plant competition and resource availability in response to disturbance and fertilization. Ecology 1993, 74, 599–611. [Google Scholar] [CrossRef]
- Callaway, R.M. The detection of neighbors by plants. Trends. Ecol. Evol. 2002, 17, 104–106. [Google Scholar] [CrossRef]
- Arndal, M.F.; Merrild, M.P.; Michelsen, A.; Schmidt, I.K.; Mikkelsen, T.N.; Beier, C. Net root growth and nutrient acquisition in response to predicted climate change in two contrasting heathland species. Plant Soil. 2013, 369, 615–629. [Google Scholar] [CrossRef]
- De Boeck, H.J.; Lemmens, C.M.; Vicca, S.; Van den Berge, J.; Van Dongen, S.; Janssens, I.A.; Nijs, I. How do climate warming and species richness affect CO2 fluxes in experimental grasslands? New Phytol. 2007, 175, 512–522. [Google Scholar] [CrossRef]
- Shahzad, Z.; Amtmann, A. Food for thought: How nutrients regulate root system architecture. Curr. Opin. Plant Biol. 2017, 39, 80–87. [Google Scholar] [CrossRef]
- Zhang, S.Y.; Zheng, S.Q. Quantitive study on intraspecific and interspecific competition for dominant population of evergreen broad-leaved forest in Bijia mountain. Sci. Silvae Sin. 2001, 37, 185–188. [Google Scholar]
- Lv, F.Z. Study on the Forest Competition and Classification of Quercus mongolica Based on CSI. Master’s Thesis, Central South University of Forestry Technology, Changsha, China, 2016. Available online: https://kns.cnki.net/KCMS/detail/detail.aspx?dbname=CMFD201701&filename=1016296763.nh (accessed on 4 March 2023).
- Jin, Z.X.; Zhang, W.B. The quantitative relation of intraspecific and interspecific competition in endangered plant Heptacodium miconioides. Bull. Bot. Res. 2004, 24, 53–58. Available online: https://kns.cnki.net/kcms2/article/abstract?v=3uoqIhG8C44YLTlOAiTRKgchrJ08w1e7eeyE9jLkqq8eq2Cy3zSAdPaAvwSqCmHOJ6hdpJIu_zWY9px-KmxMjAhJ6xk5kGJe&uniplatform=NZKPT&src=copy (accessed on 4 March 2023).
- Dumroese, R.K.; Terzaghi, M.; Chiatante, D.; Scippa, G.S.; Lasserre, B.; Montagnoli, A. Functional Traits of Pinus ponderosa Coarse Roots in Response to Slope Conditions. Front. Plant. Sci. 2019, 10, 947. [Google Scholar] [CrossRef] [Green Version]
Site Class | Planting Time | Initial Planting Density (Trees·ha−1) | Canopy Density | Tree Numbers of Sample | Average Tree Height (m) | Average Diameter at Breast Height (cm) | Intermediate Thinning Times | Stand Density (Trees·ha−1) |
---|---|---|---|---|---|---|---|---|
Ⅱ | 1976 | 3330 | 0.7 | 33 | 25.70 | 23.10 | 2 | 676 |
Ⅳ | 1973 | 3330 | 0.8 | 31 | 24.30 | 24.60 | 2 | 661 |
Ⅴ | 1958 | 3330 | 0.7 | 30 | 23.27 | 31.90 | 2 | 548 |
Site Class | Slope (°) | Exposure | Slope Position | Soil Type | pH (1:2.5 H2O) | Altitude (m) | Soil Organic Matter (g·kg−1) |
---|---|---|---|---|---|---|---|
Ⅱ | 8 | southwest | mid-slope | dark brown soil | 5.41 | 230 | 65.08 |
Ⅳ | 13 | east | mid-slope | dark brown soil | 5.32 | 260 | 57.21 |
Ⅴ | 10 | west | mid-slope | albic soil | 5.51 | 240 | 72.03 |
Site Class | Sampled Trees | |||
---|---|---|---|---|
Ⅱ | 33 | 34.42 | 58.7 | 18.1 |
Ⅳ | 31 | 27.97 | 47.1 | 12.3 |
Ⅴ | 30 | 31.38 | 53.2 | 12.0 |
Site Class | Ⅱ | Ⅳ | Ⅴ | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Max | Min | CV | Max | Min | CV | Max | Min | CV | ||||
D (cm) | 26.40 | 44.10 | 15.26 | 4.85 | 21.87 | 40.07 | 9.10 | 4.21 | 25.25 | 41.40 | 5.72 | 2.95 |
Dw (m) | 4.45 | 6.31 | 0.63 | 2.51 | 3.31 | 5.39 | 0.55 | 2.30 | 4.36 | 7.24 | 0.60 | 2.50 |
CI | 1.36 | 3.47 | 0.28 | 1.85 | 2.10 | 5.65 | 0.66 | 2.08 | 1.57 | 4.08 | 0.13 | 1.61 |
Compartments | MSE | Significance | |||
---|---|---|---|---|---|
Site Class | Competitive Index | Site Class | Competitive | Site * Competitive | |
SD | 10.845 | 89.751 | * | *** | ns |
SK | 811.8 | 51.5 | *** | ns | ns |
CR1 | 459.6 | 3088.1 | * | *** | ns |
CR2 | 28.1 | 288.59 | ns | ** | * |
CR3 | 57.4 | 1316.8 | ns | *** | ns |
SD–S | 0.669 | 8.598 | ns | *** | ** |
SD–H | 6.17 | 42.79 | ** | *** | ns |
SK–S | 113.81 | 22.51 | *** | ns | * |
SK–H | 321.6 | 5.9 | *** | ns | ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Men, X.; Yue, Y.; Gu, H.; Wang, X.; Chen, X. Effects of Tree Competition on Biomass Allocation of Stump and Coarse Roots of Larix olgensis of Different Site Classes. Forests 2023, 14, 1431. https://doi.org/10.3390/f14071431
Men X, Yue Y, Gu H, Wang X, Chen X. Effects of Tree Competition on Biomass Allocation of Stump and Coarse Roots of Larix olgensis of Different Site Classes. Forests. 2023; 14(7):1431. https://doi.org/10.3390/f14071431
Chicago/Turabian StyleMen, Xiuli, Yang Yue, Huiyan Gu, Xiuwei Wang, and Xiangwei Chen. 2023. "Effects of Tree Competition on Biomass Allocation of Stump and Coarse Roots of Larix olgensis of Different Site Classes" Forests 14, no. 7: 1431. https://doi.org/10.3390/f14071431
APA StyleMen, X., Yue, Y., Gu, H., Wang, X., & Chen, X. (2023). Effects of Tree Competition on Biomass Allocation of Stump and Coarse Roots of Larix olgensis of Different Site Classes. Forests, 14(7), 1431. https://doi.org/10.3390/f14071431