The Utilization of European Beech Wood (Fagus sylvatica L.) in Europe
Abstract
:1. Introduction
2. The Characteristics of European Beech Wood
3. The Historical Utilization of European Beech Wood in Austria
4. Modern Utilization of European Beech Wood
4.1. Established Products
4.2. Selected Research Fields
5. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schadauer, K.; Freudenschuss, A. Zwischenauswertung Der ÖWI 2016/18—Bund. Available online: https://bfw.ac.at/cms_stamm/500/images/OEWI/Bundesergebnisse_OEWI_16_18.pdf (accessed on 24 May 2023).
- BMEL Dritte Bundeswaldinventur. Available online: https://bwi.info/inhalt1.3.aspx?Text=1.04%20Baumartengruppe%20(rechnerischer%20Reinbestand)&prRolle=public&prInv=BWI2012&prKapitel=1.04 (accessed on 22 May 2023).
- BMLFUW. Holzeinschlagsmeldung Über Das Kalenderjahr 2020; BMLFUW: Vienna, Austria, 2021.
- Zobel, B.J.; van Buijtenen, J.P. Wood Variation. Its Causes and Control; Springer: Berlin/Heidelberg, Germany, 1989. [Google Scholar]
- Wimmer, R. Structural, Chemical and Mechanical Trends within Coniferous Trees. In Modelling of Tree-Ring Development—Cell Structure and Environment; Spiecker, H., Kahle, H.P., Eds.; Institut für Waldwachstum, Universität Freiburg: Freiburg, Germany, 1994; pp. 2–11. [Google Scholar]
- Takahashi, A.; Tanaka, C.; Shiota, Y. Compilation of Data on the Mechanical Properties of Foreign Woods. (Part IV) European Woods; Reprint from Research Report of Foreign Wood (No. 11); Faculty of Forestry Shimane University: Matsue, Japan, 1983. [Google Scholar]
- Wagenführ, R. Holzatlas; Carl Hanser Verlag GmbH & Co. KG: Munich, Germany, 2006; ISBN 978-3-446-40649-0. [Google Scholar]
- Sell, J. Eigenschaften und Kenngrößen von Holzarten; Baufachverlag AG: Zürich, Switzerland, 1989. [Google Scholar]
- Grabner, M. WerkHolz. Eigenschaften und Historische Nutzung 60 Mitteleuropäischer Baum- und Straucharten; Verlag Kessel: Remagen, Germany, 2017; ISBN 978-3-945941-24-9. [Google Scholar]
- Koch, G.; Koch, S. Demonstration of the Database MacroHOLZdata Computer-Aided Identification and Description of Trade Timbers. In Proceedings of the 8th Hardwood Conference, Sopron, Hungary, 25–26 October 2018; pp. 72–73. [Google Scholar]
- Koch, G.; Koch, S. Holzartenwissen im App-Format: Neue App "Macroholzdata" zur Holzartenbestimmung und -beschreibung. Furnier Magazin. 2022, 26, 52–56. [Google Scholar]
- Anonymous. Forest Products Research: A Handbook of Empire Timbers; Dept. of Scientific and lndustrial Research: London, UK, 1945.
- Vorreiter, L. Holztechnologisches Handbuch, Band I.; Verlag Georg Fromme &Co.: Wien, Austria, 1949. [Google Scholar]
- Mozina, I. Comparative Studies of Home-Grown Timbers, Beech (Komparativna Raziskovanja Lesa Domacih Drevesnih Vrst Bukev). Zb. Kmet. Gozd. 1958, 5. [Google Scholar]
- Ursulescu, A.; Pana, G.I. The Physical and Mechanical Properties of Rumanian Beech and Spruce Wood (Contributii La Stabil-irea Proprietailor Fizico-Mecanice Ale Lemnului de Fag Si Molid Din R.P.R.). Ind. Lemn. 1959, 3, 86–91. [Google Scholar]
- Anonymous. Houtinstituut, T.N.0.: Europees Beuken, Europees Lariks; Houtinstitut: Delft, The Netherland, 1967. [Google Scholar]
- Horvat, I. The Principal Physical and Mechanical Properties of Beech Wood from the Zumberak, Petrova Gora, Senjsko Bilo, and Velebit Forest District (Osnovne Fizicke i Mehanicke Karak-teristike Bukovine s Podrucja Zumberka, Petrove Gore, Senjskog Bila i Velebita). Drv. Ind. 1969, 20, 183–277. [Google Scholar]
- Stajduhar, F. Physical and Mechanical Properties of Beech Wood in Croatia (Prilog Istraživanja Fizičko-Mehaničkih Svojstava Bukovine u Hrvatskoj). Drv. Ind. 1973, 24, 43–59. [Google Scholar]
- Kühne, H.; Vodoz, J. Über Das Schwinden und Quellen Einiger Schweizerischer Hölzer; EMPA-Bericht Nr.179b: Zürich, Switzerland, 1951. [Google Scholar]
- Kühne, H.; Fischer, H.; Vodoz, J.; Wagner, T. About the Influence of Water Content, Density, Grain Direction, and Annual Ring Position on Strength and Deformability of Swiss Spruce, Fir, Larch, European Beech, and Oak; EMPA-Bericht Nr.183: Zürich, Switzerland, 1955. [Google Scholar]
- Fischer, H.; Kühne, H. Über Die Knickfestigkeit von Schweizerischem Firchten-, Tannen-, Lärchen-, Rotbuchen- Und Eichenholz. Bericht 1960, 190, 7–44. [Google Scholar]
- Lenz, O. The Wood of Conifers in the Chestnutregion of Ticino (Le Bois Des Coniferes de l ’etage Du Chataignier Au Tessin). In Mitteilungen der Schweizerischen Anstalt für das Forstl. Versuchswes; Birmensdorf, Switzerland, 1964; Volume 40. [Google Scholar]
- Bosshard, H.H. Holzkunde. Band 1, Mikroskopie Und Makroskopie Des Holzes; Birkhäuser Verlag: Basel und Stuttgart, Germany, 1974. [Google Scholar]
- Neusser, H.; Krames, U.; Strobach, D.; Zentner, M. Über Die Technologischen Eigenschaften von in Österreich Gewachsenen Douglasien. Holzforsch. Holzverwert. 1977, 29, 101–112. [Google Scholar]
- Giordano, G. Tecnologiadel Legno. Unione Tipogr. Torinese 1976, 3, 377–445. [Google Scholar]
- Marcu, G. Researches on Extending the Area of Plantation Ofsilver Firin Rumania (Cercetari Privindextinderea Culturii Bradului in Republica Socialista Romania); Editura Ceres: Bucharest, Romania, 1980. [Google Scholar]
- Göhre, K.; Wagenknecht, E. Die Roteiche Und Ihr Holz; Deutscher Bauernverlag: Berlin, Germany, 1955. [Google Scholar]
- Todorovski, S. Some Mechanical Properties of Wood of Quercus Cerris; Godisen Zbornik, Zemjodelsko-Sumarski Fakultet na Univer zitetot: Skopje, Yugoslavia, 1963. [Google Scholar]
- Sallenave, P. Proprietes Physiques et Mecaniques Des Bois Tropicaux de L’union Francaise; Publication du Centre Technique Forestier Tropical: Nogent-sur-marne, France, 1964. [Google Scholar]
- Enchev, E.A. Study of the Mechanical Properties of Wood of Quercus Petraea. Gorskostop. Nauk. 1972, 9, 53–64. [Google Scholar]
- Neusser, H.; Krames, U.; Serentschy, W.; Zentner, M. Vergleichsuntersuchung Heimischer Eichenarten Unter Besonderer Berücksichtigung Der Zerreiche, Teil II. Holzforsch. Holzverwertung 1975, 27, 99–108. [Google Scholar]
- Fellner, J.; Teischinger, A.; Zschokke, W. Holzspektrum—Ansichten, Beschreibungen Und Vergleichswerte; proHolz Austria: Wien; Österreich, 2006. [Google Scholar]
- Josef, B. Böhmerwälder Hausindustrie Und Volkskunst. Band 1: Wald- Und Holzarbeit; Calve: Prague, Czech Republic, 1917. [Google Scholar]
- Klein, A.; Bockhorn, O.; Mayer, K.; Grabner, M. Central European Wood Species: Characterisation Using Old Knowledge. J. Wood Sci. 2016, 62, 194–202. [Google Scholar] [CrossRef] [Green Version]
- Nemestothy, S.; Wächter, E.; Buchinger, G.; Grabner, M. Roof Constructions in Austria—An Overview. Int. J. Wood Cult. 2023, 3, 47–63. [Google Scholar] [CrossRef]
- Čufar, K.; Bizjak, M.; Kuzman, M.K.; Merela, M.; Grabner, M.; Brus, R. Castle Pišece, Slovenia—Building History and Wood Economy Revealed by Dendrochronology, Dendroprovenancing and Historical Sources. Dendrochronologia 2014, 32, 357–363. [Google Scholar] [CrossRef]
- BML. Holzeinschlagsmeldung Über Das Kalenderjahr 2022; BMLFUW: Vienna, Austria, 2023.
- Nordwestdeutsche Forstliche Versuchsanstalt. Ergebnisse Angewandter Forschung Zur Buche; Universitätsverlag Göttingen: Göttingen, Germany, 2008; ISBN 9783940344441. [Google Scholar]
- Hanewinkel, M.; Cullmann, D.A.; Schelhaas, M.J.; Nabuurs, G.J.; Zimmermann, N.E. Climate Change May Cause Severe Loss in the Economic Value of European Forest Land. Nat. Clim. Chang. 2013, 3, 203–207. [Google Scholar] [CrossRef]
- Grosser, D.; Teetz, W. Buche. In Einheimische Nutzhölzer (Loseblattsammlung); Holzabsatzfonds: Bonn, Germany, 1998. [Google Scholar]
- Geoffrey, D. Wood and Fibre Morphology. In Pulp and Paper Chemistry and Technology; De Gruyter: Stockholm, Sweden, 2009; Volume 1, p. 320. ISBN 9783110213393. [Google Scholar]
- Torno, S.; Jentsch, A.; Lattke, F. Special—European Hardwood Structural Building Products (Spezial—Konstruktive Bauprodukte Aus Europäischen Laubhölzern); Informationsverein Holz e. V.: Düsseldorf, Germany, 2017; p. 60. [Google Scholar]
- Jauk, G.; Nöstler, M.; Fingerlos, B.; Zeman, R.; Gruber, B.; Pfeffer, C. BSP-Special 2021; Holzkurier: Vienna, Austria, 2021. [Google Scholar]
- Brandner, R.; Flatscher, G.; Ringhofer, A.; Schickhofer, G.; Thiel, A. Cross Laminated Timber (CLT): Overview and Development. Eur. J. Wood Wood Prod. 2016, 74, 331–351. [Google Scholar] [CrossRef]
- EN 338; Bauholz Für Tragende Zwecke—Festigkeitsklassen. Austrian Standards International: Vienna, Austria, 2009.
- ETA-18/1018; Brettschichtholz Aus Laubholz—Buchenfurnierschichtholz Für Tragende Zwecke. Österreichisches Institut für Bautechnik: Vienna, Austria, 2018.
- Z-9.1-679; BS-Holz Aus Buche Und BS-Holz Buche-Hybridträger und Zugehörige Bauarten. Deutsches Institut für Bautechnik: Wuppertal, Germany, 2019.
- ETA-14/0354; Träger Baubuche GL75. Österreichisches Institut für Bautechnik: Vienna, Austria, 2018.
- Z-9.1-838; Platte BauBuche S und Platte BauBuche Q. Deutsches Institut für Bautechnik: Wuppertal, Germany, 2018.
- Z-9.1-841; Sperrholz Aus Buchenfurnieren. Deutsches Institut für Bautechnik: Wuppertal, Germany, 2013.
- ÖNORM EN 12369-2; Holzwerkstoffe—Charakteristische Werte Für Die Berechnung und Bemessung von Holzbauwerken—Teil 2: Sperrholz. Austrian Standards International: Vienna, Austria, 2011.
- ÖNORM EN 14080; Holzbauwerke—Brettschichtholz und Balkenschichtholz—Anforderungen. Austrian Standards International: Vienna, Austria, 2013.
- ANSI 117-2020; Standard Specifications for Structural Glued Laminated Timber of Softwood Species. APA—The Engineered Wood Association: Tacoma, DC, YSA, 2004.
- ETA-11/0218; Diemme Legno—CLT. Holzforschung Austria: Vienna, Austria, 2016.
- ETA-06/009; Binderholz Brettsperrholz BBS. Deutsches Institut für Bautechnik: Wuppertal, Germany, 2017.
- ETA-12/0281; Hasslacher Cross Laminated Timber. Österreichisches Institut für Bautechnik: Vienna, Austria, 2020.
- ETA-06/0138; KLH-Massivholzplatten/KLH Solid Wood Slabs. Österreichisches Institut für Bautechnik: Vienna, Austria, 2017.
- ETA-09/0036; MM—Crosslam. Österreichisches Institut für Bautechnik: Vienna, Austria, 2015.
- ETA-14/0349; CLT—Cross Laminated Timber. Österreichisches Institut für Bautechnik: Vienna, Austria, 2020.
- EN 14374; Holzbauwerke—Furnierschichtholz Für Tragende Zwecke—Anforderungen. Austrian Standards International: Vienna, Austria, 2005.
- Eurofins Expert Service. DoP MW/LVL/311-001/CPR Kerto LVL S-Beam; Eurofins Expert Service: Espoo, Finland, 2019. [Google Scholar]
- Eurofins Expert Service. DoP MW/LVL/314-001/CPR Kerto LVL T-Stud; Eurofins Expert Service: Espoo, Finland, 2019. [Google Scholar]
- Eurofins Expert Service. DoP MW/LVL/312-001/CPR Kerto LVL Q-Panel; Eurofins Expert Service: Espoo, Finland, 2019. [Google Scholar]
- ETA-17/0941; VVR Wood Kerto Ripa Elements. VTT Publications: Espoo, Finland, 2018.
- Eurofins Expert Service. DoP SEWPVARDOP 05 LVL by Stora Enso, s Grade; Eurofins Expert Service: Espoo, Finland, 2020. [Google Scholar]
- Eurofins Expert Service. DoP SEWPVARDOP 04 LVL by Stora Enso. T Grade; Eurofins Expert Service: Espoo, Finland, 2020. [Google Scholar]
- Eurofins Expert Service. DoP SEWPVARDOP 06 LVL by Stora Enso, x Grade; Eurofins Expert Service: Espoo, Finland, 2020. [Google Scholar]
- ETA-20/0291; LVL G by Stora Enso. Eurofins Expert Service: Espoo, Finland, 2021.
- Z-9.1-890; Pollmeier Fichte LVL S Und Pollmeier Fichte LVL Q. Deutsches Institut für Bautechnik: Wuppertal, Germany, 2019.
- DoP MW/PW/421-001/CPR Metsä Wood Konstruktives Fichten Sperrholz 2019.
- Finnish Forest Industries Federation. Handbook of Finnish Plywood; Finnish Forest Industries Federation: Helsinki, Finland, 2022. [Google Scholar]
- ÖNORM EN 350-2; Dauerhaftigkeit von Holz Und Holzprodukten—Prüfung und Klassifikation Der Dauerhaftigkeit von Holz und Holzprodukten Gegen Biologischen Angriff. Austrian Standards International: Vienna, Austria, 2017.
- European Commission. A European Green Deal—Striving to Be the First Climate-Neutral Continent. Available online: https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal_en (accessed on 23 May 2023).
- European Commission. Biodiversity Strategy for 2030. Available online: https://environment.ec.europa.eu/strategy/biodiversity-strategy-2030_en (accessed on 23 May 2023).
- Pramreiter, M.; Nenning, T.; Malzl, L.; Konnerth, J. A Plea for the Efficient Use of Wood in Construction. Nat. Rev. Mater. 2023, 8, 217–218. [Google Scholar] [CrossRef]
- Web of Science Search Results for “Norway Spruce” or “European Beech”. Available online: https://www-1webofscience-1com-100124bcy0f63.pisces.boku.ac.at/wos/woscc/basic-search (accessed on 24 May 2023).
- Google Scholar. Available online: https://scholar.google.de/schhp?hl=de (accessed on 3 July 2023).
- Ehrhart, T.; Steiger, R.; Frangi, A. Brettschichtholz Aus Buche. Bautechnik 2021, 98, 104–114. [Google Scholar] [CrossRef]
- Ehrhart, T.; Steiger, R.; Lehmann, M.; Frangi, A. European Beech (Fagus Sylvatica L.) Glued Laminated Timber: Lamination Strength Grading, Production and Mechanical Properties. Eur. J. Wood Wood Prod. 2020, 78, 971–984. [Google Scholar] [CrossRef]
- Ehrhart, T.; Steiger, R.; Palma, P.; Gehri, E.; Frangi, A. Glulam Columns Made of European Beech Timber: Compressive Strength and Stiffness Parallel to the Grain, Buckling Resistance and Adaptation of the Effective-Length Method According to Eurocode 5. Mater. Struct. 2020, 53, 91. [Google Scholar] [CrossRef]
- Aicher, S.; Ohnesorge, D. Shear Strength of Glued Laminated Timber Made from European Beech Timber. Eur. J. Wood Wood Prod. 2011, 69, 143–154. [Google Scholar] [CrossRef] [Green Version]
- Frese, M.; Riedler, T. Untersuchung von Buchenschnittholz (Fagus Sylvatica L.) Hinsichtlich Der Eignung Für Brettschichtholz. Eur. J. Wood Wood Prod. 2010, 68, 445–453. [Google Scholar] [CrossRef] [Green Version]
- Derkowski, A.; Kuliński, M.; Trociński, A.; Kawalerczyk, J.; Mirski, R. Mechanical Characterization of Glued Laminated Beams Containing Selected Wood Species in the Tension Zone. Materials 2022, 15, 6380. [Google Scholar] [CrossRef] [PubMed]
- Blaß, H.J.; Frese, M.; Glos, P.; Linsenmann, P.; Denzler, J. Biegefestigkeit von Brettschichtholz Aus Buche [Bending Strength of Beech Glued Laminated Timber]. Karlsruher Berichte zum Ingenieurholzbau, 2005; Universität Karlsruhe (TH): Karlsruhe, Germany, 2005; p. 137. [Google Scholar]
- Aicher, S.; Hirsch, M.; Christian, Z. Hybrid Cross-Laminated Timber Plates with Beech Wood Cross-Layers. Constr. Build. Mater. 2016, 124, 1007–1018. [Google Scholar] [CrossRef]
- Sciomenta, M.; Spera, L.; Bedon, C.; Rinaldi, V.; Fragiacomo, M.; Romagnoli, M. Mechanical Characterization of Novel Homogeneous Beech and Hybrid Beech-Corsican Pine Thin Cross-Laminated Timber Panels. Constr. Build. Mater. 2021, 271, 121589. [Google Scholar] [CrossRef]
- Hematabadi, H.; Madhoushi, M.; Khazaeian, A.; Ebrahimi, G. Structural Performance of Hybrid Poplar-Beech Cross-Laminated-Timber (CLT). J. Build. Eng. 2021, 44, 102959. [Google Scholar] [CrossRef]
- Franke, S. Mechanical Properties of Beech CLT. In Proceedings of the World Conference on Timber Engineering, Vienna, Austria, 22–25 August 2016. [Google Scholar]
- Brunetti, M.; Nocetti, M.; Pizzo, B.; Negro, F.; Aminti, G.; Burato, P.; Cremonini, C.; Zanuttini, R. Comparison of Different Bonding Parameters in the Production of Beech and Combined Beech-Spruce CLT by Standard and Optimized Tests Methods. Constr. Build. Mater. 2020, 265, 120168. [Google Scholar] [CrossRef]
- Fabbri, A.; Minghini, F.; Tullini, N. Monotonic and Cyclic Pull-Pull Tests on Dowel-Nut Connector in Laminated Veneer Lumber Made of European Beech Wood. Constr. Build. Mater. 2022, 359, 129461. [Google Scholar] [CrossRef]
- Grönquist, P.; Weibel, G.; Leyder, C.; Frangi, A. Calibration of Electrical Resistance to Moisture Content for Beech Laminated Veneer Lumber “BauBuche S” and “BauBuche Q”. Forests 2021, 12, 635. [Google Scholar] [CrossRef]
- Zimmermann, M.; Raßbach, H. A Study of the Deformation Behaviour of Veneers Resulting from Water Storage (A Methodological Approach for Determining the Swelling Characteristic Using the Example of European Beech Veneer). Eur. J. Wood Wood Prod. 2018, 76, 1677–1683. [Google Scholar] [CrossRef]
- Stepinac, M.; Rajčić, V.; Hunger, F.; van de Kuilen, J.W.G. Glued-in Rods in Beech Laminated Veneer Lumber. Eur. J. Wood Wood Prod. 2016, 74, 463–466. [Google Scholar] [CrossRef]
- Knorz, M.; Van De Kuilen, J.W.G. Development of a High-Capacity Engineered Wood Product—LVL Made of European Beech (Fagus Sylvatica L.). In Proceedings of the WCTE 2012—World Conference on Timber Engineering, Auckland, New Zealand, 15–19 July 2012. [Google Scholar]
- Kobel, P.; Steiger, R.; Frangi, A. Experimental Analysis on the Structural Behaviour of Connections with LVL Made of Beech Wood. In Proceedings of the Materials and Joints in Timber Structures; Springer: Dordrecht, Germany, 2014; Volume 9, pp. 211–220. [Google Scholar]
- Benthien, J.T.; Riegler, M.; Engehausen, N.; Nopens, M. Specific Dimensional Change Behavior of Laminated Beech Veneer Lumber (Baubuche) in Terms of Moisture Absorption and Desorption. Fibers 2020, 8, 47. [Google Scholar] [CrossRef]
- Thole, V. Oriented Strand Boards (OSB) Aus Buchenholz. Holztechnologie 2008, 49, 12–15. [Google Scholar]
- Akrami, A.; Frühwald, A.; Barbu, M.C. Supplementing Pine with European Beech and Poplar in Oriented Strand Boards. Wood Mater. Sci. Eng. 2015, 10, 313–318. [Google Scholar] [CrossRef]
- Akrami, A.; Fruehwald, A.; Barbu, M.C. The Effect of Fine Strands in Core Layer on Physical and Mechanical Properties of Oriented Strand Boards (OSB) Made of Beech (Fagus Sylvatica) and Poplar (Populus Tremula). Eur. J. Wood Wood Prod. 2014, 72, 521–525. [Google Scholar] [CrossRef]
- Akrami, A.; Barbu, M.C.; Fruehwald, A. Characterization of Properties of Oriented Strand Boards from Beech and Poplar. Eur. J. Wood Wood Prod. 2014, 72, 393–398. [Google Scholar] [CrossRef]
- Akrami, A.; Barbu, M.C.; Frühwald, A. European Hardwoods for Reducing Dependence on Pine for Oriented Strand Board. Int. Wood Prod. J. 2014, 5, 133–135. [Google Scholar] [CrossRef]
- Akrami, A. Development and Characterization of Oriented Strand Boards Made from the European Hardwood Species: Beech (Fagus sylvatica L.) and Poplar (Populus tremula L.). Ph.D. Dissertation, University of Hamburg, Hamburg, Germany, 2014. [Google Scholar]
- Weigl, M.; Harm, M.; Wimmer, R. Influence of Wood Mixture on Particle Board Properties. In Proceedings of the Proceedings of the 42nd International Wood Composites Symposium, Seattle, DC, USA, 1–2 April 2018. [Google Scholar]
- Weigl, M.; Wimmer, R.; Leder, S.; Harm, M. Achieving Lower Density for Particle Boards by Means of Raw Material Selection. In Proceedings of the COST Action E49 International Workshop in Slovenia on Lightweight Wood–Based Composites—Production, Properties and Usage, Landudno, Wales; 2007; pp. 67–80. [Google Scholar]
- Breinig, L.; Linsenmann, P.; Brüchert, F.; Weidenhiller, A.; Sauter, U.H. Mechanical Properties of Roundwood and Boards of European Beech and Ash and Their Relationships. Holztechnologie 2019, 60, 35–48. [Google Scholar]
- Schlotzhauer, P.; Wilhelms, F.; Lux, C.; Bollmus, S. Comparison of Three Systems for Automatic Grain Angle Determination on European Hardwood for Construction Use. Eur. J. Wood Wood Prod. 2018, 76, 911–923. [Google Scholar] [CrossRef]
- Purba, C.Y.C.; Dlouha, J.; Ruelle, J.; Fournier, M. Mechanical Properties of Secondary Quality Beech (Fagus Sylvatica L.) and Oak (Quercus Petraea (Matt.) Liebl.) Obtained from Thinning, and Their Relationship to Structural Parameters. Ann. For. Sci. 2021, 78, 81. [Google Scholar] [CrossRef]
- Rais, A.; Bacher, M.; Khaloian-Sarnaghi, A.; Zeilhofer, M.; Kovryga, A.; Fontanini, F.; Hilmers, T.; Westermayr, M.; Jacobs, M.; Pretzsch, H.; et al. Local 3D Fibre Orientation for Tensile Strength Prediction of European Beech Timber. Constr. Build. Mater. 2021, 279, 122527. [Google Scholar] [CrossRef]
- Rais, A.; Pretzsch, H.; van de Kuilen, J.W.G. European Beech Log and Lumber Grading in Wet and Dry Conditions Using Longitudinal Vibration. Holzforschung 2020, 74, 939–947. [Google Scholar] [CrossRef]
- Plos, M.; Fortuna, B.; Šuligoj, T.; Turk, G. From Visual Grading and Dynamic Modulus of European Beech (Fagus Sylvatica) Logs to Tensile Strength of Boards. Forests 2022, 13, 77. [Google Scholar] [CrossRef]
- Ehrhart, T.; Steiger, R.; Frangi, A. A Non-Contact Method for the Determination of Fibre Direction of European Beech Wood (Fagus Sylvatica L.). Eur. J. Wood Wood Prod. 2018, 76, 925–935. [Google Scholar] [CrossRef]
- Ehrhart, T.; Palma, P.; Schubert, M.; Steiger, R.; Frangi, A. Predicting the Strength of European Beech (Fagus Sylvatica L.) Boards Using Image-Based Local Fibre Direction Data. Wood Sci. Technol. 2022, 56, 123–146. [Google Scholar] [CrossRef]
- Kovryga, A.; Stapel, P.; van de Kuilen, J.W.G. Mechanical Properties and Their Interrelationships for Medium-Density European Hardwoods, Focusing on Ash and Beech. Wood Mater. Sci. Eng. 2020, 15, 289–302. [Google Scholar] [CrossRef]
- Brunetti, M.; Nocetti, M.; Pizzo, B.; Aminti, G.; Cremonini, C.; Negro, F.; Zanuttini, R.; Romagnoli, M.; Scarascia Mugnozza, G. Structural Products Made of Beech Wood: Quality Assessment of the Raw Material. Eur. J. Wood Wood Prod. 2020, 78, 961–970. [Google Scholar] [CrossRef]
- Ammann, S.; Niemz, P. Fibre and Adhesive Bridging at Glue Joints in European Beech Wood. Wood Res. 2014, 59, 303–312. [Google Scholar]
- Stoeckel, F.; Konnerth, J.; Gindl-Altmutter, W. Mechanical Properties of Adhesives for Bonding Wood-A Review. Int. J. Adhes. Adhes. 2013, 45, 32–41. [Google Scholar] [CrossRef]
- Ammann, S.; Niemz, P. Specific Fracture Energy at Glue Joints in European Beech Wood. Int. J. Adhes. Adhes. 2015, 60, 47–53. [Google Scholar] [CrossRef]
- Pečnik, J.G.; Pondelak, A.; Burnard, M.D.; Sebera, V. Mode I Fracture of Beech-Adhesive Bondline at Three Different Temperatures. Wood Mater. Sci. Eng. 2022, 1–11. [Google Scholar] [CrossRef]
- Schmidt, M.; Glos, P.; Wegener, G. Verklebung von Buchenholz Für Tragende Holzbauteile. Eur. J. Wood Wood Prod. 2010, 68, 43–57. [Google Scholar] [CrossRef]
- Ohnesorge, D.; Richter, K.; Becker, G. Influence of Wood Properties and Bonding Parameters on Bond Durability of European Beech (Fagus Sylvatica L.) Glulams. Ann. For. Sci. 2010, 67, 601. [Google Scholar] [CrossRef] [Green Version]
- Fortuna, B.; Azinović, B.; Plos, M.; Šuligoj, T.; Turk, G. Tension Strength Capacity of Finger Joined Beech Lamellas. Eur. J. Wood Wood Prod. 2020, 78, 985–994. [Google Scholar] [CrossRef]
- Aicher, S.; Reinhardt, H.W. Delaminierungseigenschaften Und Scherfestigkeiten von Verklebten Rotkernigen Buchenholzlamellen. Holz. Roh Werkst. 2007, 65, 125–136. [Google Scholar] [CrossRef]
- Konnerth, J.; Kluge, M.; Schweizer, G.; Miljković, M.; Gindl-Altmutter, W. Survey of Selected Adhesive Bonding Properties of Nine European Softwood and Hardwood Species. Eur. J. Wood Wood Prod. 2016, 74, 809–819. [Google Scholar] [CrossRef] [Green Version]
- Luedtke, J.; Amen, C.; van Ofen, A.; Lehringer, C. 1C-PUR-Bonded Hardwoods for Engineered Wood Products: Influence of Selected Processing Parameters. Eur. J. Wood Wood Prod. 2015, 73, 167–178. [Google Scholar] [CrossRef]
- Baar, J.; Brabec, M.; Slávik, R.; Čermák, P. Effect of Hemp Oil Impregnation and Thermal Modification on European Beech Wood Properties. Eur. J. Wood Wood Prod. 2021, 79, 161–175. [Google Scholar] [CrossRef]
- Czajkowski, Ł.; Olek, W.; Weres, J. Effects of Heat Treatment on Thermal Properties of European Beech Wood. Eur. J. Wood Wood Prod. 2020, 78, 425–431. [Google Scholar] [CrossRef] [Green Version]
- Widmann, R.; Fernandez-Cabo, J.L.; Steiger, R. Mechanical Properties of Thermally Modified Beech Timber for Structural Purposes. Eur. J. Wood Wood Prod. 2012, 70, 775–784. [Google Scholar] [CrossRef] [Green Version]
- Grönquist, P.; Schnider, T.; Thoma, A.; Gramazio, F.; Kohler, M.; Burgert, I.; Rüggeberg, M. Investigations on Densified Beech Wood for Application as a Swelling Dowel in Timber Joints. Holzforschung 2019, 73, 559–568. [Google Scholar] [CrossRef] [Green Version]
- Pečnik, J.G.; Kutnar, A.; Militz, H.; Schwarzkopf, M.; Schwager, H. Fatigue Behavior of Beech and Pine Wood Modified with Low Molecular Weight Phenol-Formaldehyde Resin. Holzforschung 2021, 75, 37–47. [Google Scholar] [CrossRef]
- Gómez-Royuela, J.L.; Majano-Majano, A.; José Lara-Bocanegra, A.; Reynolds, T.P.S. Determination of the Elastic Constants of Thermally Modified Beech by Ultrasound and Static Tests Coupled with 3D Digital Image Correlation. Constr. Build. Mater. 2021, 302, 124270. [Google Scholar] [CrossRef]
- Altgen, M.; Willems, W.; Militz, H. Wood Degradation Affected by Process Conditions during Thermal Modification of European Beech in a High-Pressure Reactor System. Eur. J. Wood Wood Prod. 2016, 74, 653–662. [Google Scholar] [CrossRef]
- Cermák, P.; Horácek, P.; Rademacher, P. Measured Temperature and Moisture Profiles during Thermal Modification of Beech (Fagus Sylvatica L.) and Spruce (Picea Abies L. Karst.) Wood. Holzforschung 2014, 68, 175–183. [Google Scholar] [CrossRef]
- Hering, S.; Keunecke, D.; Niemz, P. Moisture-Dependent Orthotropic Elasticity of Beech Wood. Wood Sci. Technol. 2012, 46, 927–938. [Google Scholar] [CrossRef] [Green Version]
- Hering, S.; Niemz, P. Moisture-Dependent, Viscoelastic Creep of European Beech Wood in Longitudinal Direction. Eur. J. Wood Wood Prod. 2012, 70, 667–670. [Google Scholar] [CrossRef]
- Niemz, P.; Ozyhar, T.; Hering, S.; Sonderegger, W. Zur Orthotropie Der Physikalisch-mechanischen Eigenschaften von Rotbuchenholz. Bautechnik 2015, 92, 3–8. [Google Scholar] [CrossRef]
- Ozyhar, T.; Hering, S.; Niemz, P. Moisture-Dependent Elastic and Strength Anisotropy of European Beech Wood in Tension. J. Mater. Sci. 2012, 47, 6141–6150. [Google Scholar] [CrossRef]
- Han, L.; Kutnar, A.; Sandberg, D. Creep Behaviour of Densified European Beech and Scots Pine under Constant Climate. Wood Mater. Sci. Eng. 2022, 17, 1025–1027. [Google Scholar] [CrossRef]
- Brabec, M.; Tippner, J.; Sebera, V.; Milch, J.; Rademacher, P. Standard and Non-Standard Deformation Behaviour of European Beech and Norway Spruce during Compression. Holzforschung 2015, 69, 1107–1116. [Google Scholar] [CrossRef]
- Jankowska, A.; Kozakiewicz, P.; Zbieć, M. The Effects of Slicing Parameters on Surface Quality of European Beech Wood. Drv. Ind. 2021, 72, 57–63. [Google Scholar] [CrossRef]
- Kubík, P.; Šebek, F.; Krejčí, P.; Brabec, M.; Tippner, J.; Dvořáček, O.; Lechowicz, D.; Frybort, S. Linear Woodcutting of European Beech: Experiments and Computations. Wood Sci. Technol. 2023, 57, 51–74. [Google Scholar] [CrossRef]
- Rohumaa, A.; Viguier, J.; Girardon, S.; Krebs, M.; Denaud, L. Lathe Check Development and Properties: Effect of Log Soaking Temperature, Compression Rate, Cutting Radius and Cutting Speed during Peeling Process of European Beech (Fagus Sylvatica L.) Veneer. Eur. J. Wood Wood Prod. 2018, 76, 1653–1661. [Google Scholar] [CrossRef] [Green Version]
- Dvoracek, O.; Lechowicz, D.; Krenke, T.; Möseler, B.; Tippner, J.; Haas, F.; Emsenhuber, G.; Frybort, S. Development of a Novel Device for Analysis of High-Speed Cutting Processes Considering the Influence of Dynamic Factors. Int. J. Adv. Manuf. Technol. 2021, 113, 1685–1697. [Google Scholar] [CrossRef]
Species | Wood Density [kg/m3] | Historical Wood Density [kg/m3] | Tensile Strength [MPa] | MOE [GPa] | Tangential Shrinkage [%] |
---|---|---|---|---|---|
European beech | 713 (530–910) | 691 (560–822) | 129 | 14.9 | 12.3 |
Pendunculate and Sessile oak | 701 (430–960) | 755 (395–1280) | 100 | 11.8 | 9.1 |
Norway spruce | 456 (330–680) | 479 (350–750) | 99 | 11.7 | 7.8 |
Product | ρ12% [kg/m3] | σB,char. [MPa] | MOEmean [GPa] | Source |
---|---|---|---|---|
Strength Graded Lumber | 767 (570–1080) | 48 (18–80) | 15.0 (9.5–24.0) | [45] |
Glued Laminated Timber | 726 (660–800) | 41 (28–75) | 14.2 (13.2–16.8) | [46,47] |
Laminated Veneer Lumber | 800 (-) | 74 (54–92) | 15.3 (11.8–16.8) | [46,48,49] |
Plywood | 745 (640–876) | 57 (53–78) | 7.5 (0.5–14.0) | [50,51] |
Product | ρ12% [kg/m3] | σB,char. [MPa] | MOEmean [GPa] | Source |
---|---|---|---|---|
Strength Graded Lumber | 432 (350–520) | 28 (14–50) | 11.3 (7.0–16.0) | [45] |
Glued Laminated Timber | 501 (370–550) | 27 (12–43) | 12.1 (8.3–15.2) | [52,53] |
Cross-Laminated Timber | 476 (420–500) | 24 (16–35) | 11.1 (8.0–13.7) | [54,55,56,57,58,59] |
Laminated Veneer Lumber | 544 (440–800) | 40 (19–80) | 11.4 (7.0–16.8) | [60,61,62,63,64,65,66,67,68,69] |
Plywood | 532 (459–640) | 22 (15–38) | 7.8 (0.5–14.0) | [51,70,71] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pramreiter, M.; Grabner, M. The Utilization of European Beech Wood (Fagus sylvatica L.) in Europe. Forests 2023, 14, 1419. https://doi.org/10.3390/f14071419
Pramreiter M, Grabner M. The Utilization of European Beech Wood (Fagus sylvatica L.) in Europe. Forests. 2023; 14(7):1419. https://doi.org/10.3390/f14071419
Chicago/Turabian StylePramreiter, Maximilian, and Michael Grabner. 2023. "The Utilization of European Beech Wood (Fagus sylvatica L.) in Europe" Forests 14, no. 7: 1419. https://doi.org/10.3390/f14071419