In the Northeasternmost Stands in Europe, Beech Shows Similar Wind Resistance to Birch
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites and Sample Trees
2.2. Static Tree-Pulling Tests
2.3. Data Processing and Analysis
3. Results and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stanturf, J.A.; Palik, B.J.; Dumroese, R.K. Contemporary forest restoration: A review emphasizing function. For. Ecol. Manag. 2014, 331, 292–323. [Google Scholar] [CrossRef]
- Konnert, M.; Fady, B.; Gömöry, D.; A’Hara, S.; Wolter, F.; Ducci, F.; Koskela, J.; Bozzano, M.; Maaten, T.; Kowalczyk, J. Use and Transfer of Forest Reproductive Material in Europe in the Context of Climate Change; Euforgen, Bioversity International: Rome, Italy, 2015. [Google Scholar]
- Bolte, A.; Czajkowski, T.; Kompa, T. The north-eastern distribution range of European beech—A review. Forestry 2007, 80, 413–429. [Google Scholar] [CrossRef]
- Buras, A.; Menzel, A. Projecting tree species composition changes of European forest for 2061–2090 under RCP 4.5 and RCP 8.5 scenarios. Front. Plant Sci. 2019, 9, 1986. [Google Scholar] [CrossRef] [PubMed]
- Hickler, T.; Vohland, K.; Feehan, J.; Miller, P.A.; Smith, B.; Costa, L.; Giesecke, T.; Fronzek, S.; Carter, T.R.; Cramer, W.; et al. Projecting the future distribution of European potential natural vegetation zones with a generalized, tree species-based dynamic vegetation model. Glob. Ecol. Biogeogr. 2012, 21, 50–63. [Google Scholar] [CrossRef]
- Lindner, M.; Maroschek, M.; Netherer, S.; Kremer, A.; Barbati, A.; Garcia-Gonzalo, J.; Seidl, R.; Delzon, S.; Corona, P.; Kolström, M.; et al. Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. For. Ecol. Manag. 2010, 259, 698–709. [Google Scholar] [CrossRef]
- Jansons, Ā.; Matisons, R.; Puriņa, L.; Neimane, U.; Jansons, J. Relationships between climatic variables and tree-ring width of European beech and European larch growing outside of their natural distribution area. Silva. Fenn. 2015, 49, 1255. [Google Scholar] [CrossRef]
- Matisons, R.; Puriņa, L.; Adamovičs, A.; Robalte, L.; Jansons, Ā. European beech in its northeasternmost stands in Europe: Varying climate-growth relationships among generations and diameter classes. Dendrochronologia 2017, 45, 123–131. [Google Scholar] [CrossRef]
- Boruvka, V.; Zeidler, A.; Holecek, T.; Dudík, R. Elastic and Strength Properties of Heat-Treated Beech and Birch Wood. Forests 2018, 9, 197. [Google Scholar] [CrossRef]
- Dubois, H.; Verkasalo, E.; Claessens, H. Potential of Birch (Betula pendula Roth and B. pubescens Ehrh.) for Forestry and Forest-Based Industry Sector within the Changing Climatic and Socio-Economic Context of Western Europe. Forests 2020, 11, 336. [Google Scholar] [CrossRef]
- Venäläinen, A.; Lehtonen, I.; Laapas, M.; Ruosteenoja, K.; Tikkanen, O.P.; Viiri, H.; Ikonen, V.-P.; Peltola, H. Climate change induces multiple risks to boreal forests and forestry in Finland: A literature review. Glob. Chang. Biol. 2020, 26, 4178–4196. [Google Scholar] [CrossRef]
- Matisons, R.; Jansone, D.; Elferts, D.; Schneck, V.; Kowalczyk, J.; Wojda, T.; Jansons, Ā. Silver birch shows nonlinear responses to moisture availability and temperature in the eastern Baltic Sea region. Dendrochronologia 2022, 76, 126003. [Google Scholar] [CrossRef]
- Ikonen, V.P.; Kilpeläinen, A.; Strandman, H.; Asikainen, A.; Venäläinen, A.; Peltola, H. Effects of using certain tree species in forest regeneration on regional wind damage risks in Finnish boreal forests under different CMIP5 projections. Eur. J. For. Res. 2020, 139, 685–707. [Google Scholar] [CrossRef]
- Pötzelsberger, E.; Spiecker, H.; Neophytou, C.; Mohren, F.; Gazda, A.; Hasenauer, H. Growing Non-Native Trees in European Forests Brings Benefits and Opportunities but Also Has Its Risks and Limits. Curr. For. Rep. 2020, 6, 339–353. [Google Scholar] [CrossRef]
- Gregow, H.; Laurila, T.K.; Mäkelä, A.; Rantanen, M. Review on Winds, Extratropical Cyclones and Their Impacts in Northern Europe and Finland; Finnish Meteorological Institute: Helsinki, Finland, 2020. [Google Scholar]
- Gregow, H.; Laaksonen, A.; Alper, M.E. Increasing large scale windstorm damage in Western, Central and Northern European forests, 1951–2010. Sci. Rep. 2017, 7, 46397. [Google Scholar] [CrossRef]
- Romagnoli, F.; Masiero, M.; Secco, L. Windstorm Impacts on Forest-Related Socio-Ecological Systems: An Analysis from a Socio-Economic and Institutional Perspective. Forests 2022, 13, 939. [Google Scholar] [CrossRef]
- Csilléry, K.; Kunstler, G.; Courbaud, B.; Allard, D.; Lassègues, P.; Haslinger, K.; Gardiner, B.A. Coupled effects of wind-storms and drought on tree mortality across 115 forest stands from the Western Alps and the Jura mountains. Glob. Chang. Biol. 2017, 23, 5092–5107. [Google Scholar] [CrossRef] [PubMed]
- Seidl, R.; Rammer, W. Climate change amplifies the interactions between wind and bark beetle disturbances in forest landscapes. Landsc. Ecol. 2017, 32, 1485–1498. [Google Scholar] [CrossRef] [PubMed]
- Nicoll, B.C.; Gardiner, B.A.; Rayner, B.; Peace, A.J. Anchorage of coniferous trees in relation to species, soil type, and rooting depth. Can. J. For. Res. 2006, 36, 1871–1883. [Google Scholar] [CrossRef]
- Peltola, H.; Kellomäki, S.; Hassinen, A.; Granander, M. Mechanical stability of Scots pine, Norway spruce and birch: An analysis of tree-pulling experiments in Finland. For. Ecol. Manag. 2000, 135, 143–153. [Google Scholar] [CrossRef]
- Krišāns, O.; Čakša, L.; Matisons, R.; Rust, S.; Elferts, D.; Seipulis, A.; Jansons, Ā. A Static Pulling Test Is a Suitable Method for Comparison of the Loading Resistance of Silver Birch (Betula pendula Roth.) between Urban and Peri-Urban Forests. Forests 2022, 13, 127. [Google Scholar] [CrossRef]
- Wessolly, L. Fracture diagnosis of trees—Part 1: Statics-Integrated Methods-measurement with tension test. Stadt und Grün 1995, 6, 416–422. [Google Scholar]
- Detter, A.; Richter, K.; Rust, C.; Rust, S. Aktuelle Untersuchungen zum Primärversagen von grünem Holz-Current studies on primary failure in green wood. In Proceedings of the Conference Deutsche Baumpflegetage, Augsburg, Germany, 5–7 May 2015; pp. 156–167. [Google Scholar]
- Detter, A.; Rust, S.; Rust, C.; Maybaum, G. Proceedings of the 18th International Nondestructive Testing and Evaluation of Wood Symposium, Madison, WI, USA, 24–27 September 2013; pp. 24–27.
- Cawley, K.M.; Campbell, J.; Zwilling, M.; Jaffé, R. Evaluation of forest disturbance legacy effects on dissolved organic matter characteristics in streams at the Hubbard Brook Experimental Forest, New Hampshire. Aquat. Sci. 2014, 76, 611–622. [Google Scholar] [CrossRef]
- Romeiro, J.M.N.; Eid, T.; Antón-Fernández, C.; Kangas, A.; Trømborg, E. Natural disturbances risks in European Boreal and Temperate forests and their links to climate change—A review of modelling approaches. For. Ecol. Manag. 2022, 509, 120071. [Google Scholar] [CrossRef]
- Mäll, M.; Nakamura, R.; Suursaar, Ü.; Shibayama, T. Pseudo-climate modelling study on projected changes in extreme extratropical cyclones, storm waves and surges under CMIP5 multi-model ensemble: Baltic Sea perspective. Nat. Hazards 2020, 102, 67–99. [Google Scholar] [CrossRef]
- Zipse, A.; Mattheck, C.; Gräbe, D.; Gardiner, B. The Effect of Wind on the Mechanical Properties of the Wood of Beech (Fagus sylvatica L.) Growing in the Borders of Scotland. Arboric. J. 1998, 22, 247–257. [Google Scholar] [CrossRef]
- Jucker, T.; Fischer, F.J.; Chave, J.; Coomes, D.A.; Caspersen, J.; Ali, A.; Loubota Panzou, G.J.; Feldpausch, T.R.; Falster, D.; Usoltsev, V.A.; et al. Tallo: A global tree allometry and crown architecture database. Glob. Chang. Biol. 2022, 28, 5254–5268. [Google Scholar] [CrossRef] [PubMed]
- Belda, M.; Holtanová, E.; Halenka, T.; Kalvová, J. Climate classification revisited: From Köppen to Trewartha. Clim. Res. 2014, 59, 1–13. [Google Scholar] [CrossRef]
- Jaagus, J.; Briede, A.; Rimkus, E.; Sepp, M. Changes in precipitation regime in the Baltic countries in 1966–2015. Theor. Appl. Climatol. 2018, 131, 433–443. [Google Scholar] [CrossRef]
- LEGMC Latvian Environment, Geology and Meteorology Centre. Available online: https://klimats.meteo.lv/klimats/latvijas_klimats/ (accessed on 3 January 2023).
- Karagali, I.; Hahmann, A.N.; Badger, M.; Hasager, C.B.; Mann, J. New European wind atlas offshore. J. Phys. Conf. Ser. 2018, 1037, 052007. [Google Scholar] [CrossRef]
- Krišāns, O.; Matisons, R.; Vuguls, J.; Bāders, E.; Rust, S.; Elferts, D.; Saleniece, R.; Jansons, Ā. Regularly Planted Rather than Natural Understory of Norway Spruce (Picea abies H. Karst.) Contributes to the Individual Stability of Canopy Silver Birch (Betula pendula Roth.). Forests 2022, 13, 942. [Google Scholar] [CrossRef]
- Krišāns, O.; Matisons, R.; Kitenberga, M.; Donis, J.; Rust, S.; Elferts, D.; Jansons, Ā. Wind Resistance of Eastern Baltic Silver Birch (Betula Pendula Roth.) Suggests Its Suitability for Periodically Waterlogged Sites. Forests 2020, 12, 21. [Google Scholar] [CrossRef]
- Nicoll, B.C.; Ray, D. Adaptive growth of tree root systems in response to wind action and site conditions. Tree Physiol. 1996, 16, 891–898. [Google Scholar] [CrossRef]
- Gardiner, B.; Schuck, A.R.T.; Schelhaas, M.J.; Orazio, C.; Blennow, K.; Nicoll, B. What Science Can Tell Us. Living with Storm Damage to Forests; European Forest Institute: Joensuu, Finland, 2013; Volume 13, ISBN 978-952-5980-09-7. [Google Scholar]
- Liepa, I. Meža taksācija; Latvia University of Agriculture: Jelgava, Latvia, 2018; pp. 26–41. ISBN 978-9934-534-78-2. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022; Available online: http://www.r-project.org/ (accessed on 3 January 2023).
- Bates, D.; Maechler, M.; Bolker, B.; Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Čakša, L.; Šenhofa, S.; Šnepsts, G.; Elferts, D.; Liepa, L.; Jansons, A. Effect of stem snapping on aspen timber assortment recovery in hemiboreal forests. Forests 2021, 12, 28. [Google Scholar] [CrossRef]
- Büttner, V.; Leuschner, C. Spatial and temporal patterns of fine-root abundance in a mixed oak beech forest. For. Ecol. Manag. 1994, 70, 11–21. [Google Scholar] [CrossRef]
- Curt, T.; Prévosto, B. Root biomass and rooting profile of naturally regenerated beech in mid-elevation Scots pine woodlands. Plant Ecol. 2003, 167, 269–282. [Google Scholar] [CrossRef]
- Gardiner, B. Wind damage to forests and trees: A review with an emphasis on planted and managed forests. J. For. Res. 2021, 26, 248–266. [Google Scholar] [CrossRef]
- Šņepsts, G.; Krišāns, O.; Matisons, R.; Seipulis, A.; Jansons, Ā. Cervid Bark-Stripping Is an Explicit Amplifier of Storm Legacy Effects in Norway Spruce (Picea abies (L.) Karst.) Stands. Forests 2022, 13, 1947. [Google Scholar] [CrossRef]
- Gardiner, B.; Berry, P.; Moulia, B. Review: Wind impacts on plant growth, mechanics and damage. Plant Sci. 2016, 245, 94–118. [Google Scholar] [CrossRef]
- Honkaniemi, J.; Ojansuu, R.; Kasanen, R.; Heliövaara, K. Interaction of disturbance agents on Norway spruce: A mechanistic model of bark beetle dynamics integrated in simulation framework WINDROT. Ecol. Model. 2018, 388, 45–60. [Google Scholar] [CrossRef]
- Rose, L.; Leuschner, C.; Köckemann, B.; Buschmann, H. Are marginal beech (Fagus sylvatica L.) provenances a source for drought tolerant ecotypes? Eur. J. For. Res. 2009, 128, 335–343. [Google Scholar] [CrossRef] [Green Version]
Site | Age | N | DBH (cm) | H (m) | Vs (m3) | DPr (m) | Vr (m3) | G (m2 ha−1) | ρsoil (kg m−3) | θg (%) |
---|---|---|---|---|---|---|---|---|---|---|
Beech | ||||||||||
1 | 72 | 6 | 34.7 ± 4.6 | 30.6 ± 2.1 | 1.59 ± 0.43 | 1.01 ± 0.11 | 2.93 ± 0.49 | 44.2 ± 3.2 | 1362 ± 60 | 15.6 ± 0.6 |
2 | 138 | 6 | 33.4 ± 4.9 | 30.0 ± 1.4 | 1.46 ± 0.38 | 0.66 ± 0.14 | 2.57 ± 0.98 | 33.6 ± 7.3 | 1324 ± 88 | 18.7 ± 1.1 |
3 | 48 | 6 | 32.7 ± 5.3 | 26.6 ± 0.5 | 1.23 ± 0.36 | 1.04 ± 0.18 | 3.23 ± 1.44 | 38.8 ± 2.3 | 1348 ± 59 | 15.7 ± 1.5 |
Birch | ||||||||||
4 | 73 | 9 | 27.0 ± 1.4 | 29.0 ± 1.7 | 0.75 ± 0.09 | 0.83 ± 0.09 | 1.71 ± 0.40 | 48.9 ± 6.0 | 1233 ± 36 | 7.3 ± 1.8 |
5 | 104 | 16 | 34.8 ± 3.7 | 32.9 ± 1.4 | 1.42 ± 0.30 | 0.86 ± 0.05 | 3.71 ± 1.06 | 38.1 ± 5.0 | 1268 ± 50 | 9.2 ± 1.0 |
6 | 46 | 6 | 30.0 ± 4.4 | 30.1 ± 1.0 | 0.99 ± 0.33 | 0.86 ± 0.06 | 1.84 ± 0.69 | 60.8 ± 3.6 | 1273 ± 39 | 10.0 ± 1.8 |
7 | 46 | 6 | 28.1 ± 3.0 | 30.6 ± 1.5 | 0.87 ± 0.21 | 0.77 ± 0.12 | 1.60 ± 0.70 | 69.9 ± 4.7 | 1260 ± 51 | 9.0 ± 4.1 |
8 | 53 | 6 | 29.4 ± 2.6 | 29.7 ± 1.1 | 0.92 ± 0.18 | 0.79 ± 0.12 | 2.20 ± 0.71 | 26.3 ± 0.3 | 1258 ± 10 | 26.2 ± 3.6 |
BBMPF | BBMSF | VROOTS | |
---|---|---|---|
Predictors (χ2) | χ2 | χ2 | χ2 |
(Intercept) | 1.57 | 0.29 | 0.11 |
Vstem | 47.71 *** | 52.71 *** | 19.33 *** |
species [birch] | 0.23 | 0.01 | 0.03 |
Vstem:species [birch] | 1.95 | 0.90 | 0.15 |
Random Effects | |||
σ2 | 1111.71 | 1424.36 | 0.71 |
τ00 | 176.50site | 423.33site | 0.16site |
ICC | 0.14 | 0.23 | 0.19 |
N | 8site | 8site | 7site |
Observations | 61 | 61 | 53 |
Marginal R2 | 0.67 | 0.69 | 0.52 |
Conditional R2 | 0.71 | 0.76 | 0.61 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krišāns, O.; Matisons, R.; Jansone, L.; Īstenais, N.; Kāpostiņš, R.; Šēnhofa, S.; Jansons, Ā. In the Northeasternmost Stands in Europe, Beech Shows Similar Wind Resistance to Birch. Forests 2023, 14, 313. https://doi.org/10.3390/f14020313
Krišāns O, Matisons R, Jansone L, Īstenais N, Kāpostiņš R, Šēnhofa S, Jansons Ā. In the Northeasternmost Stands in Europe, Beech Shows Similar Wind Resistance to Birch. Forests. 2023; 14(2):313. https://doi.org/10.3390/f14020313
Chicago/Turabian StyleKrišāns, Oskars, Roberts Matisons, Līga Jansone, Nauris Īstenais, Rolands Kāpostiņš, Silva Šēnhofa, and Āris Jansons. 2023. "In the Northeasternmost Stands in Europe, Beech Shows Similar Wind Resistance to Birch" Forests 14, no. 2: 313. https://doi.org/10.3390/f14020313
APA StyleKrišāns, O., Matisons, R., Jansone, L., Īstenais, N., Kāpostiņš, R., Šēnhofa, S., & Jansons, Ā. (2023). In the Northeasternmost Stands in Europe, Beech Shows Similar Wind Resistance to Birch. Forests, 14(2), 313. https://doi.org/10.3390/f14020313