Morphophysiological Responses in Eucalyptus Demonstrate the Potential of the Entomopathogenic Fungus Beauveria bassiana to Promote Resistance against the Galling Wasp Leptocybe invasa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Breeding of L. invasa
2.2. Experimental Design
2.3. Morphophysiological Analysis of Eucalyptus Plants
2.4. Evaluation of Gall Development
2.5. Statistical Analysis
3. Results
3.1. Differential Growth of Eucalyptus after Inoculation with B. bassiana
3.2. Gas Exchange Is Affected after Inoculation with B. bassiana in Eucalyptus
3.3. Chlorophyll Content in Eucalyptus in Response to Inoculation with B. bassiana
3.4. Assessment of Gall Development
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAOSTAT. Statistics Database: FAO. Available online: https://www.fao.org/3/cb4477en/cb4477en.pdf (accessed on 28 April 2022).
- Rosado, A.M.; Rosado, T.B.; Alves, A.A.; Laviola, B.G.; Bhering, L.L. Simultaneous selection of eucalyptus clones according to productivity, stability, and adaptability. Pesqui. Agropecuária Bras. 2012, 47, 964–971. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, L.G.M.; Marques, A.; Lopes, E.D.; Gonçalves, J.; Martins, N.S.; Pena, C.A.A.; Arbex, D.C.; Laia, M.L. Productivity, adaptability and genotypic stability of Eucalyptus spp. and Corymbia spp. clones at different planting spacings. Sci. For. 2021, 49, e3664. [Google Scholar] [CrossRef]
- Wu, W.; Verburg, P.H.; Tang, H. Climate change and the food production system: Impacts and adaptation in China. Reg. Environ. Chang. 2014, 14, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Allen, C.D.; Macalady, A.K.; Chenchouni, H.; Bachelet, D.; McDowell, N.; Vennetier, M.; Kitzberger, T.; Rigling, A.; Breshears, D.D.; Hogg, E.H.; et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manag. 2010, 259, 660–684. [Google Scholar] [CrossRef] [Green Version]
- Gonçalves, J.L.M.; Alvares, C.A.; Higa, A.R.; Silva, L.D.; Alfenas, A.C.; Stahl, J.; Ferraz, S.F.B.; Lima, W.P.; Brancalion, P.H.S.; Hubner, A.; et al. Integrating genetic and silvicultural strategies to minimize abiotic and biotic constraints in eucalyptus plantations in Brazil. For. Ecol. Manag. 2013, 301, 6–27. [Google Scholar] [CrossRef]
- Wingfield, M.J.; Slippers, B.; Hurley, B.P.; Coutinho, T.A.; Wingfield, B.D.; Roux, J. Eucalyptus pests and diseases: Growing threats to plantation productivity. South. For. 2009, 70, 139–144. [Google Scholar] [CrossRef]
- Mendel, Z.; Protasov, A.; Fisher, N.; La Salle, J. Taxonomy and biology of Leptocybe invasa gen. & sp. n. (Hymenoptera: Eulophidae), an invasive gall inducer on Eucalyptus. Aust. J. Entomol. 2004, 43, 101–113. [Google Scholar]
- Sarmento, M.I.; Pinto, G.; Araújo, W.L.; Silva, R.C.; Lima, C.H.O.; Soares, A.M.; Sarmento, R.A. Differential development times of galls induced by Leptocybe invasa (Hymenoptera: Eulophidae) reveal differences in susceptibility between two Eucalyptus clones. Pest Manag. Sci. 2020, 77, 1042–1051. [Google Scholar] [CrossRef]
- Isaias, R.M.D.S.; Ferreira, B.G.; Alvarenga, D.R.D.; Barbosa, L.R.; Salminen, J.P.; Steinbauer, M.J. Functional compartmentalisation of nutrients and phenolics in the tissues of galls induced by Leptocybe invasa (Hymenoptera: Eulophidae) on Eucalyptus camaldulensis (Myrtaceae). Austral Entomol. 2018, 57, 238–246. [Google Scholar] [CrossRef]
- Souza, A.R.; Barbosa, L.R.; Passos, J.R.S.; Castro, B.M.D.C.; Zanuncio, J.C.; Wilcken, C.F. Longevity and survival of Leptocybe invasa (Hymenoptera: Eulophidae), an invasive gall inducer on Eucalyptus, with different diets and temperatures. PeerJ 2018, 6, e5265. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, C.; Brennan, R.M.; Graham, J.; Karley, A.J. Plant defense against herbivorous pests: Exploiting resistance and tolerance traits for sustainable crop protection. Front. Plant Sci. 2016, 7, 1132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oates, C.N.; Denby, K.J.; Myburg, A.A.; Slippers, B.; Naidoo, S. Insect gallers and their plant hosts: From omics data to systems biology. Int. J. Mol. Sci. 2016, 17, 1891. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tooker, J.F.; Giron, D. The evolution of endophagy in herbivorous insects. Front. Plant Sci. 2020, 11, 581816. [Google Scholar] [CrossRef]
- Boas, D.F.V.; Luiz, J.H.H.; Malpass, G.R.P.; Okura, M.H.; De Souza, C.P.; Granato, A.C. Endophytic microorganisms as a source of compounds of medicinal interest—A brief review. Braz. J. Sci. Technol. Innov. 2020, 5, 70–86. [Google Scholar]
- Qayyum, M.A.; Saeed, S.; Wakil, W.; Nawaz, A.; Iqbal, N.; Yasin, M.; Chaurdhry, M.A.; Bashir, M.A.; Ahmed, N.; Riaz, H.; et al. Diversity and correlation of entomopathogenic and associated fungi with soil factors. J. King Saud Univ. Sci. 2021, 33, 101520. [Google Scholar] [CrossRef]
- Bamisile, B.S.; Dash, C.K.; Akutse, K.S.; Keppanan, R.; Afolabi, O.G.; Hussain, M.; Qasim, M.; Wang, L. Prospects of endophytic fungal entomopathogens as biocontrol and plant growth promoting agents: An insight on how artificial inoculation methods affect endophytic colonization of host plants. Microbiol. Res. 2018, 217, 34–50. [Google Scholar] [CrossRef]
- Erler, F.; Ates, A.O. Potential of two entomopathogenic fungi, Beauveria bassiana and Metarhizium anisopliae (Coleoptera: Scarabaeidae), as biological control agents against the June beetle. J. Insect Sci. 2015, 15, 44. [Google Scholar] [CrossRef]
- Vidal, S.; Jaber, L.R. Entomopathogenic fungi as endophytes: Plant-endophyte-herbivore interactions and prospects for use in biological control. Curr. Sci. 2015, 109, 46–54. [Google Scholar]
- Amobonye, A.; Bhagwat, P.; Pandey, A.; Singh, S.; Pillai, S. Biotechnological potential of Beauveria bassiana as a source of novel biocatalysts and metabolites. Crit. Rev. Biotechnol. 2020, 40, 1019–1034. [Google Scholar] [CrossRef]
- Raman, A.; Suryanarayanan, T.S. Fungus–plant interaction influences plant-feeding insects. Fungal Ecol. 2017, 29, 123–132. [Google Scholar] [CrossRef]
- Sinno, M.; Ranesi, M.; Di Lelio, I.; Iacomino, G.; Becchimanzi, A.; Barra, E.; Molisso, D.; Pennacchio, F.; Digilio, M.C.; Vitale, S.; et al. Selection of endophytic Beauveria bassiana as a dual biocontrol agent of tomato pathogens and pests. Pathogens 2021, 10, 1242. [Google Scholar] [CrossRef]
- Lohse, R.; Jakobs-Schönwandt, D.; Vidal, S.; Patel, A.V. Evaluation of new fermentation and formulation strategies for a high endophytic establishment of Beauveria bassiana in oilseed rape plants. Biol. Control 2015, 88, 26–36. [Google Scholar] [CrossRef]
- Ferreira, D.F. Sisvar: A computer statistical analysis system. Cienc. Agrotecnologia 2011, 6, 1039–1042. [Google Scholar] [CrossRef] [Green Version]
- Mantzoukas, S.; Lagogiannis, I.; Mpousia, D.; Ntoukas, A.; Karmakolia, K.; Eliopoulos, P.A.; Poulas, K. Endophytic strain Beauveria bassiana as a plant growth promoter: The case of the Vitis vinifera vine. J. Fungi 2021, 7, 142. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Yang, Y.; Wang, B. The entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae play a role as growth promoters of corn (Zea mays). Sci. Rep. 2022, 12, 15706. [Google Scholar] [CrossRef] [PubMed]
- Flexas, J.; Díaz-Espejo, A.; Conesa, M.; Coopman, R.; Douthe, C.; Gago, J.; Gallé, A.; Galmés, J.; Medrano, H.; Ribas-Carbo, M.; et al. Mesophyll conductance to CO2 and Rubisco as targets for improving intrinsic water use efficiency in C3 plants. Plant Cell Environ. 2016, 39, 965–982. [Google Scholar] [CrossRef]
- Rodriguez, R.J.; White, J.F., Jr.; Arnold, A.E.; Redman, A.R.A. Fungal endophytes: Diversity and functional roles. New Phytol. 2009, 182, 314–330. [Google Scholar] [CrossRef]
- Mantzoukas, S.; Chondrogiannis, C.; Grammatikopoulos, G. Effects of three endophytic entomopathogens on sweet sorghum and on the larvae of the stalk borer Sesamia nonagrioides. Entomol. Exp. Appl. 2015, 154, 78–87. [Google Scholar] [CrossRef]
- Taylor, S.H.; Long, S.P. Slow induction of photosynthesis in shade to sun transitions in wheat may cost at least 21% of yield. Philos. Trans. R. Soc. Lon. B Biol. Sci. 2017, 372, 20160543. [Google Scholar] [CrossRef] [Green Version]
- Sonnewald, U.; Fernie, A.R. Next-generation strategies for understanding and influencing source-sink relationships in crop plants. Curr. Opin. Plant Biol. 2018, 43, 63–70. [Google Scholar] [CrossRef]
- Elhindi, K.M.; El-Din, A.S.; Elgorban, A.M. The impact of arbuscular mycorrhizal fungi in mitigating salt-induced adverse effects in basil (Ocimum basilicum L.). Saudi J. Biol. Sci. 2017, 24, 170–179. [Google Scholar] [CrossRef] [Green Version]
- Aggangan, N.; Moon, H.-K. Characterization of ectomycorrhizal fungi in association with Eucalyptus pellita F. Muell seedlings. Philipp. J. Crop Sci. 2019, 44, 48–58. [Google Scholar]
- Tong, Y.G.; Ding, X.X.; Zhang, K.C.; Yang, X.; Huang, W. Effect of the gall wasp Leptocybe invasa on hydraulic architecture in Eucalyptus camaldulensis plants. Front. Plant Sci. 2016, 7, 130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rocha, J.P.L.; Nunes, T.V.; Rodrigues, J.N.; Lima, N.M.P.; Rocha, P.A.L.; Pinto, I.d.O.; Sarmento, M.I.; Araújo, W.L.; de Moraes, C.B.; Sarmento, R.A. Morphophysiological Responses in Eucalyptus Demonstrate the Potential of the Entomopathogenic Fungus Beauveria bassiana to Promote Resistance against the Galling Wasp Leptocybe invasa. Forests 2023, 14, 1349. https://doi.org/10.3390/f14071349
Rocha JPL, Nunes TV, Rodrigues JN, Lima NMP, Rocha PAL, Pinto IdO, Sarmento MI, Araújo WL, de Moraes CB, Sarmento RA. Morphophysiological Responses in Eucalyptus Demonstrate the Potential of the Entomopathogenic Fungus Beauveria bassiana to Promote Resistance against the Galling Wasp Leptocybe invasa. Forests. 2023; 14(7):1349. https://doi.org/10.3390/f14071349
Chicago/Turabian StyleRocha, João Pedro Laurindo, Thomas Vieira Nunes, Jovielly Neves Rodrigues, Nívea Maria Pereira Lima, Pedro Augusto Laurindo Rocha, Ismael de Oliveira Pinto, Maíra Ignacio Sarmento, Wagner L. Araújo, Cristiano Bueno de Moraes, and Renato Almeida Sarmento. 2023. "Morphophysiological Responses in Eucalyptus Demonstrate the Potential of the Entomopathogenic Fungus Beauveria bassiana to Promote Resistance against the Galling Wasp Leptocybe invasa" Forests 14, no. 7: 1349. https://doi.org/10.3390/f14071349
APA StyleRocha, J. P. L., Nunes, T. V., Rodrigues, J. N., Lima, N. M. P., Rocha, P. A. L., Pinto, I. d. O., Sarmento, M. I., Araújo, W. L., de Moraes, C. B., & Sarmento, R. A. (2023). Morphophysiological Responses in Eucalyptus Demonstrate the Potential of the Entomopathogenic Fungus Beauveria bassiana to Promote Resistance against the Galling Wasp Leptocybe invasa. Forests, 14(7), 1349. https://doi.org/10.3390/f14071349