Regeneration and Growth following Silvicultural Treatments in a Productive Central Hardwood Forest
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Area
2.2. Data Collection and Analysis
2.3. Radial Growth Analysis
3. Results
3.1. Overstory
3.2. Understory Regeneration
3.3. Woody Vines
3.4. Canopy Openness
3.5. Radial Growth Release and Climate Correlations
4. Discussion
4.1. Increasing Light through Canopy Disturbance
4.2. Controlling Non-Oak Regeneration
4.3. Deer Herbivory
4.4. Silvicultural Release of Midstory Oaks
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fralish, J.S. The central hardwood forest: Its boundaries and physiographic provinces. In Proceedings of the 13th Central Hardwood Forest Conference, Urbana, IL, USA, 1–3 April 2002; Van Sambeek, J.W., Dawson, J.O., Ponder, F., Jr., Loewenstein, E.F., Fralish, S., Eds.; General Technical Report NC-234. US Department of Agriculture, Forest Service, North Central Research Station: St. Paul, MN, USA, 2003; Volume 234, pp. 1–20. [Google Scholar]
- Hicks, R.R., Jr. A resource at the crossroads: A history of the central hardwoods. In Proceedings of the 11th Central Hardwood Forest Conference, Columbia, MO, USA, 23–26 March 1997; Pallardy, S.G., Cecich, R.A., Garrett, H.G., Johnson, P.S., Eds.; Gen. Tech. Rep. NC-188. U.S. Department of Agriculture, Forest Service, North Central Forest Experiment Station: St. Paul, MN, USA, 1997; Volume 188, pp. 1–22. [Google Scholar]
- Parker, G.R.; Ruffner, C.M. Current and historical forest conditions and disturbance regimes in the Hoosier-Shawnee ecological assessment area. In The Hoosier-Shawnee Ecological Assessment; General Technical Report NC-244; US Department of Agriculture Forest Service, North Central Research Station: St. Paul, MN, USA, 2004; Volume 244, pp. 23–59. [Google Scholar]
- Dey, D.C.; Schweitzer, C.J. A review on the dynamics of prescribed fire, tree mortality, and injury in managing oak natural communities to minimize economic loss in North America. Forests 2018, 9, 461. [Google Scholar] [CrossRef] [Green Version]
- van de Gevel, S.L.; Ruffner, C.M. Land-use history and resulting forest succession in the Illinois Ozark Hills. In Proceedings of the 15th Central Hardwood Forest Conference, Knoxville, TN, USA, 27 February–1 March 2006; e-General Technical Report SRS-101. US Department of Agriculture, Forest Service, Southern Research Station: Asheville, NC, USA, 2006; Volume 101, pp. 719–726. [Google Scholar]
- Schweitzer, C.J.; Dey, D.C.; Wang, Y. White oak (Quercus alba) response to thinning and prescribed fire in northcentral Alabama mixed pine–hardwood forests. For. Sci. 2019, 65, 758–766. [Google Scholar] [CrossRef] [Green Version]
- Abrams, M.D. Fire and the development of oaks. BioScience 1992, 42, 346–353. [Google Scholar] [CrossRef]
- Arthur, M.A.; Alexander, H.D.; Dey, D.C.; Schweitzer, C.J.; Loftis, D.L. Refining the oak-fire hypothesis for management of oak-dominated forests of the eastern United States. J. For. 2012, 110, 257–266. [Google Scholar] [CrossRef]
- Brose, P.H.; Dey, D.C.; Phillips, R.J.; Waldrop, T.A. A meta-analysis of the fire-oak hypothesis: Does prescribed burning promote oak reproduction in eastern North America? For. Sci. 2013, 59, 322–334. [Google Scholar] [CrossRef] [Green Version]
- Holzmueller, E.J.; Jose, S.; Jenkins, M.A. The response of understory species composition, diversity, and seedling regeneration to repeated burning in southern Appalachian oak-hickory forests. Nat. Areas J. 2009, 29, 255–262. [Google Scholar] [CrossRef] [Green Version]
- Abrams, M.D. Distribution, historical development and ecophysiological attributes of oak species in the eastern United States. Ann. Des Sci. For. 1996, 53, 487–512. [Google Scholar] [CrossRef] [Green Version]
- Albrecht, M.A.; McCarthy, B.C. Effects of prescribed fire and thinning on tree recruitment patterns in central hardwood forests. For. Ecol. Manag. 2006, 226, 88–103. [Google Scholar] [CrossRef]
- McEwan, R.W.; Dyer, J.M.; Pederson, N. Multiple interacting ecosystem drivers: Toward an encompassing hypothesis of oak forest dynamics across eastern North America. Ecography 2011, 34, 244–256. [Google Scholar] [CrossRef]
- Xin, Y.; Williams, R.A. Effects of burn season on large seedlings of oak and other hardwood regeneration three years after shelterwood harvest. For. Stud. 2019, 71, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Schweitzer, C.J.; Dey, D.C.; Wang, Y. Hardwood-pine mixedwoods stand dynamics following thinning and prescribed burning. Fire Ecol. 2016, 12, 85–104. [Google Scholar] [CrossRef]
- Dey, D.C. Sustaining oak forests in eastern North America: Regeneration and recruitment, the pillars of sustainability. For. Sci. 2014, 60, 926–942. [Google Scholar] [CrossRef]
- Greenler, S.M.; Saunders, M.R. Short-term, spatial regeneration patterns following expanding group shelterwood harvests and prescribed fire in the Central Hardwood Region. For. Ecol. Manag. 2019, 432, 1053–1063. [Google Scholar] [CrossRef]
- Holzmueller, E.; Groninger, J.W.; Ruffner, C.M. Facilitating oak and hickory regeneration in mature central hardwood forests. Forests 2014, 5, 3344–3351. [Google Scholar] [CrossRef] [Green Version]
- Mann, D.P.; Wiedenbeck, J.K.; Dey, D.C.; Saunders, M.R. Evaluating economic impacts of prescribed fire in the Central Hardwood Region. J. For. 2020, 118, 275–288. [Google Scholar] [CrossRef] [Green Version]
- United State Geological Survey. USGS 7.5-Minute Image Map for Jonesboro; United States Geological Survey: Illinois, IL, USA, 2015. [Google Scholar]
- National Cooperative Soil Survey. Soil Survey of Union County; United States Department of Natural Resources Conservation Service: Illinois, IL, USA, 2001; pp. 1–440. [Google Scholar]
- Holzmueller, E.J.; Groninger, J.W.; Ruffner, C.M.; Ozier, T.B. Composition of oak stands in the Illinois Ozark Hills 2 decades following light harvesting and no cutting. North. J. Appl. For. 2011, 28, 50–53. [Google Scholar] [CrossRef] [Green Version]
- Hoover, N.M. Succession of an Upland Oak/Hickory Forest in the Central Hardwood Region. Master’s Thesis, Southern Illinois University at Carbondale, Carbondale, IL, USA, 2018. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022. [Google Scholar]
- Hothorn, T.; Bretz, F.; Westfall, P. Simultaneous inference in general parametric models. Biom. J. J. Math. Methods Biosci. 2008, 50, 346–363. [Google Scholar] [CrossRef] [Green Version]
- Copenheaver, C.A.; Black, B.A.; Stine, M.B.; McManamay, R.H.; Bartens, J. Identifying dendroecological growth releases in American beech, jack pine, and white oak: Within-tree sampling strategy. For. Ecol. Manag. 2009, 257, 2235–2240. [Google Scholar] [CrossRef]
- Stokes, M.; Smiley, T. An Introduction to Tree-Ring Dating; University of Chicago Press: Chicago, IL, USA, 1968. [Google Scholar]
- Regent Instruments Inc. WinDENDRO: An Image Analysis System for Tree-Rings Analysis; Regent Instruments Inc.: Sainte Foy, QC, Canada, 2021. [Google Scholar]
- Bunn, A.G. A dendrochronology program library in R (dplR). Dendrochronologia 2008, 26, 115–124. [Google Scholar] [CrossRef]
- Bunn, A.G. Statistical and visual crossdating in R using the dplR library. Dendrochronologia 2010, 28, 251–258. [Google Scholar] [CrossRef]
- Zang, C.; Biondi, F. treeclim: An R package for the numerical calibration of proxy-climate relationships. Ecography 2015, 38, 431–436. [Google Scholar] [CrossRef]
- Inglis, E.N. Hardwood Regeneration and Growth following Multiple Silvicultural Treatments in a Central Hardwood Forest. Master’s Thesis, Southern Illinois University at Carbondale, Carbondale, IL, USA, 2022. [Google Scholar]
- Altman, J.; Fibich, P.; Dolezal, J.; Aakala, T. TRADER: A package for tree ring analysis of disturbance events in R. Dendrochronologia 2014, 32, 107–112. [Google Scholar] [CrossRef]
- Lorimer, C.G.; Frelich, L.E. A methodology for estimating canopy disturbance frequency and intensity in dense temperate forests. Can. J. For. Res. 1989, 19, 651–663. [Google Scholar] [CrossRef]
- Nowacki, G.J.; Abrams, M.D. Radial-growth averaging criteria for reconstructing disturbance histories from presettlement-origin oaks. Ecol. Monogr. 1997, 67, 225–249. [Google Scholar] [CrossRef]
- Rubino, D.L.; McCarthy, B. Comparative analysis of dendroecological methods used to assess disturbance events. Dendrochronologia 2004, 21, 97–115. [Google Scholar] [CrossRef]
- Trotsiuk, V.; Pederson, N.; Druckenbrod, D.L.; Orwig, D.A.; Bishop, D.A.; Barker-Plotkin, A.; Fraver, S.; Martin-Benito, D. Testing the efficacy of tree-ring methods for detecting past disturbances. For. Ecol. Manag. 2018, 425, 59–67. [Google Scholar] [CrossRef]
- Izbicki, B.J.; Alexander, H.D.; Paulson, A.K.; Frey, B.R.; McEwan, R.W.; Berry, A.I. Prescribed fire and natural canopy gap disturbances: Impacts on upland oak regeneration. For. Ecol. Manag. 2020, 465, 118107. [Google Scholar] [CrossRef]
- Nowacki, G.J.; Abrams, M.D. The demise of fire and “mesophication” of forests in the eastern United States. BioScience 2008, 58, 123–138. [Google Scholar] [CrossRef]
- Brose, P.H.; Rebbeck, J. A comparison of the survival and development of the seedlings of four upland oak species grown in four different understory light environments. J. For. 2017, 115, 159–166. [Google Scholar] [CrossRef]
- Iverson, L.R.; Hutchinson, T.F.; Peters, M.P.; Yaussy, D.A. Long-term response of oak-hickory regeneration to partial harvest and repeated fires: Influence of light and moisture. Ecosphere 2017, 8, e01642. [Google Scholar] [CrossRef]
- Hutchinson, T.F.; Sutherland, E.K.; Yaussy, D.A. Effects of repeated prescribed fires on the structure, composition, and regeneration of mixed-oak forests in Ohio. For. Ecol. Manag. 2005, 218, 210–228. [Google Scholar] [CrossRef]
- Stan, A.B.; Rigg, L.S.; Jones, L.S. Dynamics of a managed oak woodland in northeastern Illinois. Nat. Areas J. 2006, 26, 187–197. [Google Scholar] [CrossRef]
- Groninger, J.W.; Long, M.A. Oak ecosystem management considerations for central hardwoods stands arising from silvicultural clearcutting. North. J. Appl. For. 2008, 25, 173–179. [Google Scholar] [CrossRef] [Green Version]
- Rebbeck, J.; Gottschalk, K.; Scherzer, A. Do chestnut, northern red, and white oak germinant seedlings respond similarly to light treatments? Growth and biomass. Can. J. For. Res. 2011, 41, 2219–2230. [Google Scholar] [CrossRef] [Green Version]
- Schweitzer, C.J.; Dey, D.C. Midstory shelterwood to promote natural Quercus reproduction on the mid-Cumberland Plateau, Alabama: Status four years after final harvest. In Proceedings of the 20th Central Hardwood Forest Conference, Columbia, MO, USA, 28 March–1 April 2016; Kabrick, J.M., Dey, D.C., Knapp, B.O., Larsen, D.R., Shifley, S.R., Stelzer, H.E., Eds.; General Technical Report NRS-P-167. US Department of Agriculture, Forest Service, Northern Research Station: Newtown Square, PA, USA, 2017; Volume 167, pp. 87–98. [Google Scholar]
- Rebbeck, J. Fire management and woody invasive plants in oak ecosystems. In Proceedings of the 4th Fire in Eastern Oak Forests Conference, Springfield, MO, USA, 17–19 May 2011; Dey, D.C., Stambaugh, M.C., Clark, S.L., Schweitzer, C.J., Eds.; Gen. Tech. Rep. NRS-P-102. US Department of Agriculture, Forest Service, Northern Research Station: Newtown Square, PA, USA, 2012; Volume 102, pp. 142–155. [Google Scholar]
- Leeson, R.E.N.; Clayton, K.; Oliver, D.C.; Holzmueller, E.J.; Winkel, B.M. Short-term effects of silviculture treatments and white-tailed deer exclusion on oak and hickory regeneration in southern Illinois. Ill. State Acad. Sci. 2020, 113, 31–40. [Google Scholar]
- Miller, G.W.; Brose, P.H.; Gottschalk, K.W. Advanced oak seedling development as influenced by shelterwood treatments, competition control, deer fencing, and prescribed fire. J. For. 2017, 115, 179–189. [Google Scholar] [CrossRef] [Green Version]
- Redick, C.H.; Jacobs, D.F. Mitigation of deer herbivory in temperate hardwood forest regeneration: A meta-analysis of research literature. Forests 2020, 11, 1220. [Google Scholar] [CrossRef]
- Strole, T.A.; Anderson, R.C. White-tailed deer browsing: Species preferences and implications for central Illinois forests. Nat. Areas J. 1992, 12, 139–144. [Google Scholar]
- Ward, J.S.; Williams, S.C. Influence of deer hunting and residual stand structure on tree regeneration in deciduous forests. Wildl. Soc. Bull. 2020, 44, 519–530. [Google Scholar] [CrossRef]
- Adams, A.S.; Rieske, L.K. Herbivory and fire influence white oak (Quercus alba L.) seedling vigor. For. Sci. 2001, 47, 331–337. [Google Scholar]
- Kellner, K.F.; Swihart, R.K. Timber harvest and drought interact to impact oak seedling growth and survival in the Central Hardwood Forest. Ecosphere 2016, 7, e01473. [Google Scholar] [CrossRef]
- Gorchov, D.L.; Blossey, B.; Averill, K.M.; Dávalos, A.; Heberling, J.M.; Jenkins, M.A.; Kalisz, S.; McShea, W.J.; Morrison, J.A.; Nuzzo, V. Differential and interacting impacts of invasive plants and white-tailed deer in eastern US forests. Biol. Invasions 2021, 23, 2711–2727. [Google Scholar] [CrossRef]
- Rentch, J.S.; Desta, F.; Miller, G.W. Climate, canopy disturbance, and radial growth averaging in a second-growth mixed-oak forest in West Virginia, USA. Can. J. For. Res. 2002, 32, 915–927. [Google Scholar] [CrossRef] [Green Version]
- Miller, C.; Grayson, S.; Houser, A.; Clatterbuck, W.; Kuers, K. Thirty-year assessment of released, overtopped white oaks. In Proceedings of the 17th Central Hardwood Forest Conference, Lexington, KY, USA, 5–7 April 2010; Fei, S., Lhotka, J.M., Stringer, J.W., Gottschalk, K.W., Miller, G.W., Eds.; Gen. Tech. Rep. NRS-P-78. US Department of Agriculture, Forest Service, Northern Research Station: Newtown Square, PA, USA, 2011; Volume 78, pp. 514–520. [Google Scholar]
- Miller, G.W.; Stringer, J.W. Effect of crown release on tree grade and dbh growth of white oak sawtimber in eastern Kentucky. In Proceedings of the 14th Central Hardwood Forest Conference, Wooster, OH, USA, 16–19 March 2004; Yaussy, D.A., Hix, D.M., Long, R.P., Goebel, P.C., Eds.; Gen. Tech. Rep. NE-316. US Department of Agriculture, Forest Service, North Central Research Station: St. Paul, MN, USA, 2004; Volume 316, pp. 37–44. [Google Scholar]
Species | C | B | TB | HTB | ||||
---|---|---|---|---|---|---|---|---|
Acer saccharum | 3.0 | (0.6) | 2.1 | (0.6) | 1.5 | (0.5) | 0.9 | (0.4) |
Carpinus caroliniana | 0.0 | (0.0) | 0.1 | (0.1) | 0.0 | (0.0) | 0.0 | (0.0) |
Carya alba | 0.2 | (0.2) | 0.2 | (0.2) | 0.3 | (0.3) | 1.0 | (0.5) |
Carya cordiformis | 0.9 | (0.7) | 0.5 | (0.3) | 0.0 | (0.0) | 0.5 | (0.2) |
Carya glabra | 0.6 | (0.3) | 1.3 | (0.4) | 1.5 | (0.4) | 0.9 | (0.5) |
Carya ovata | 1.0 | (0.3) | 0.1 | (0.1) | 0.3 | (0.2) | 0.6 | (0.5) |
Cornus florida | 0.0 | (0.0) | 0.1 | (0.1) | 0.0 | (0.0) | 0.2 | (0.2) |
Fagus grandifolia | 0.8 | (0.3) | 1.6 | (0.4) | 0.5 | (0.3) | 0.6 | (0.2) |
Fraxinus americana | 0.1 | (0.1) | 0.3 | (0.2) | 0.3 | (0.3) | 0.0 | (0.0) |
Fraxinus pennsylvanica | 0.3 | (0.2) | 0.1 | (0.1) | 0.0 | (0.0) | 0.3 | (0.2) |
Juglans nigra | 0.0 | (0.0) | 0.0 | (0.0) | 0.0 | (0.0) | 0.1 | (0.1) |
Liquidambar styraciflua | 0.3 | (0.3) | 0.0 | (0.0) | 0.0 | (0.0) | 0.0 | (0.0) |
Liriodendron tulipifera | 0.9 | (0.4) | 1.3 | (0.5) | 2.5 | (1.1) | 0.5 | (0.3) |
Magnolia acuminata | 0.7 | (0.3) | 0.1 | (0.1) | 0.1 | (0.1) | 0.3 | (0.2) |
Ostrya virginiana | 0.1 | (0.1) | 0.2 | (0.2) | 0.0 | (0.0) | 0.0 | (0.0) |
Quercus alba | 7.2 | (1.0) | 9.4 | (1.0) | 7.8 | (1.2) | 6.3 | (1.1) |
Quercus coccinea | 0.8 | (0.6) | 0.2 | (0.2) | 0.0 | (0.0) | 0.0 | (0.0) |
Quercus rubra | 2.1 | (0.5) | 1.7 | (0.6) | 1.5 | (0.6) | 1.8 | (0.5) |
Quercus stellata | 0.1 | (0.1) | 0.0 | (0.0) | 0.1 | (0.1) | 0.0 | (0) |
Quercus velutina | 3.6 | (1.0) | 0.7 | (0.3) | 2.9 | (0.8) | 2.2 | (0.8) |
Sassafras albidum | 0.1 | (0.1) | 0.6 | (0.3) | 0.2 | (0.2) | 0.0 | (0.0) |
Ulmus americana | 0.1 | (0.1) | 0.0 | (0) | 0.0 | (0.0) | 0.1 | (0.1) |
Total | 23.1 | (1.5) b | 20.6 | (1.1) ab | 19.6 | (1.6) ab | 16.4 | (1.2) a |
Species | C | B | TB | HTB | ||||
---|---|---|---|---|---|---|---|---|
Acer saccharum | 119 | (32) b | 64 | (17) ab | 37 | (20) ab | 22 | (15) a |
Carpinus caroliniana | 0 | (0) | 8 | (8) | 0 | (0) | 0 | (0) |
Carya alba | 6 | (5) | 2 | (1) | 4 | (3) | 23 | (12) |
Carya cordiformis | 17 | (16) | 4 | (2) | 0 | (0) | 17 | (10) |
Carya glabra | 7 | (4) | 22 | (8) | 18 | (10) | 21 | (12) |
Carya ovata | 7 | (2) | 2 | (2) | 4 | (3) | 6 | (4) |
Cornus florida | 0 | (0) | 13 | (13) | 0 | (0) | 19 | (14) |
Fagus grandifolia | 47 | (21) | 83 | (31) | 18 | (12) | 12 | (6) |
Fraxinus americana | 1 | (1) | 4 | (3) | 2 | (1) | 0 | (0) |
Fraxinus pennsylvanica | 5 | (3) | 1 | (1) | 0 | (0) | 8 | (5) |
Liquidambar styraciflua | 4 | (4) | 0 | (0) | 0 | (0) | 0 | (0) |
Liriodendron tulipifera | 4 | (2) | 6 | (2) | 11 | (6) | 7 | (5) |
Magnolia acuminata | 6 | (4) | 1 | (1) | 1 | (1) | 13 | (8) |
Ostrya virginiana | 10 | (10) | 18 | (18) | 0 | (0) | 0 | (0) |
Quercus alba | 37 | (6) | 60 | (8) | 67 | (16) | 40 | (8) |
Quercus coccinea | 19 | (17) | 2 | (2) | 0 | (0) | 0 | (0) |
Quercus rubra | 10 | (3) | 9 | (4) | 7 | (3) | 8 | (2) |
Quercus stellata | 2 | (2) | 0 | (0) | 0 | (0) | 0 | (0) |
Quercus velutina | 14 | (4) | 3 | (1) | 11 | (4) | 14 | (6) |
Sassafras albidum | 1 | (1) ab | 20 | (10) b | 4 | (3) ab | 0 | (0) a |
Ulmus americana | 1 | (1) | 0 | (0) | 0 | (0) | 3 | (3) |
Total | 317 | (38) a | 321 | (49) a | 186 | (28) b | 213 | (26) c |
Species | C | B | TB | HTB | ||||
---|---|---|---|---|---|---|---|---|
Acer rubrum | 0 | (0) | 14 | (14) | 0 | (0) | 0 | (0) |
Acer saccharum | 198 | (62) b | 57 | (26) ab | 57 | (44) ab | 0 | (0) a |
Asimina triloba | 42 | (42) | 0 | (0) | 0 | (0) | 28 | (19) |
Carya alba | 0 | (0) | 14 | (14) | 0 | (0) | 14 | (14) |
Cercis canadensis | 0 | (0) | 0 | (0) | 0 | (0) | 14 | (14) |
Cornus florida | 14 | (14) | 28 | (19) | 14 | (14) | 28 | (19) |
Fagus grandifolia | 425 | (70) b | 255 | (41) ab | 170 | (60) a | 85 | (46) a |
Fraxinus spp. | 28 | (19) | 0 | (0) | 57 | (57) | 0 | (0) |
Lirodendron tulipifera | 0 | (0) | 0 | (0) | 142 | (113) | 0 | (0) |
Ostrya virginiana | 14 | (14) | 14 | (14) | 0 | (0) | 14 | (14) |
Prunus serotina | 0 | (0) | 0 | (0) | 14 | (14) | 0 | (0) |
Quercus stellata | 0 | (0) | 0 | (0) | 14 | (14) | 0 | (0) |
Ulmus spp. | 14 | (14) | 14 | (14) | 0 | (0) | 28 | (19) |
Total | 736 | (129) b | 396 | (56) ab | 467 | (184) ab | 212 | (65) a |
Species | C | B | TB | HTB | ||||
---|---|---|---|---|---|---|---|---|
Acer negundo | 0 | (0) | 0 | (0) | 0 | (0) | 14 | (14) |
Acer rubrum | 0 | (0) | 0 | (0) | 14 | (14) | 0 | (0) |
Acer saccharum | 99 | (51) | 28 | (19) | 14 | (14) | 0 | (0) |
Aralia spinosa | 14 | (14) a | 0 | (0) a | 42 | (31) a | 227 | (76) b |
Asimina triloba | 750 | (316) | 14 | (14) | 283 | (240) | 680 | (330) |
Betula nigra | 0 | (0) | 0 | (0) | 0 | (0) | 14 | (14) |
Carya glabra | 0 | (0) | 0 | (0) | 0 | (0) | 14 | (14) |
Carya ovata | 14 | (14) | 0 | (0) | 0 | (0) | 0 | (0) |
Carya spp. | 28 | (28) | 0 | (0) | 14 | (14) | 170 | (156) |
Cercis canadensis | 14 | (14) | 0 | (0) | 0 | (0) | 42 | (31) |
Cornus florida | 14 | (14) | 0 | (0) | 0 | (0) | 14 | (14) |
Diospyros virginiana | 0 | (0) | 0 | (0) | 0 | (0) | 28 | (28) |
Fagus grandifolia | 212 | (71) b | 28 | (19) a | 71 | (58) ab | 42 | (23) ab |
Fraxinus spp. | 142 | (56) | 0 | (0) | 113 | (60) | 85 | (36) |
Juglans nigra | 0 | (0) | 0 | (0) | 14 | (14) | 14 | (14) |
Lindera benzoin | 212 | (198) | 0 | (0) | 0 | (0) | 127 | (81) |
Liquidambar styraciflua | 0 | (0) | 0 | (0) | 14 | (14) | 0 | (0) |
Liriodendron tulipifera | 0 | (0) | 0 | (0) | 382 | (144) | 297 | (189) |
Magnolia acuminata | 0 | (0) | 0 | (0) | 0 | (0) | 57 | (57) |
Ostrya virginiana | 156 | (63) | 0 | (0) | 28 | (28) | 0 | (0) |
Platanus occidentalis | 0 | (0) | 0 | (0) | 14 | (14) | 0 | (0) |
Prunus serotina | 14 | (14) | 0 | (0) | 14 | (14) | 71 | (58) |
Quercus velutina | 0 | (0) | 0 | (0) | 14 | (14) | 14 | (14) |
Sassafras albidum | 57 | (33) a | 127 | (88) a | 637 | (201) ab | 1628 | (749) b |
Total | 1727 | (407) ab | 198 | (87) a | 1685 | (442) ab | 3540 | (831) b |
Species | C | B | TB | HTB | ||||
---|---|---|---|---|---|---|---|---|
Acer rubrum | 1827 | (759) | 2450 | (700) | 1062 | (463) | 1133 | (366) |
Acer saccharum | 212 | (65) | 340 | (134) | 57 | (39) | 113 | (63) |
Aralia spinosa | 28 | (28) a | 184 | (137) a | 496 | (173) a | 1402 | (306) b |
Asimina triloba | 4885 | (1575) | 1685 | (693) | 1742 | (1207) | 2634 | (865) |
Betula nigra | 85 | (42) a | 127 | (113) ab | 680 | (222) b | 609 | (179) ab |
Carpinus caroliniana | 0 | (0) | 28 | (28) | 0 | (0) | 0 | (0) |
Carya alba | 0 | (0) | 0 | (0) | 57 | (44) | 113 | (88) |
Carya cordiformis | 297 | (228) | 0 | (0) | 28 | (28) | 0 | (0) |
Carya glabra | 113 | (75) | 651 | (224) | 453 | (147) | 184 | (132) |
Carya laciniosa | 0 | (0) | 14 | (14) | 85 | (85) | 0 | (0) |
Carya ovata | 283 | (156) | 0 | (0) | 127 | (127) | 57 | (57) |
Carya spp. | 1317 | (350) | 637 | (184) | 595 | (195) | 807 | (172) |
Cercis canadensis | 57 | (44) | 297 | (156) | 113 | (63) | 227 | (73) |
Cornus florida | 269 | (137) | 99 | (85) | 28 | (19) | 14 | (14) |
Diospyros virginiana | 28 | (28) a | 297 | (112) ab | 212 | (79) ab | 595 | (201) b |
Euonymus alatus | 0 | (0) | 0 | (0) | 0 | (0) | 14 | (14) |
Fagus grandifolia | 156 | (52) | 312 | (92) | 212 | (112) | 71 | (35) |
Fraxinus spp. | 1713 | (371) | 1543 | (289) | 1019 | (228) | 1119 | (315) |
Hydrangea arborescens | 0 | (0) | 0 | (0) | 0 | (0) | 42 | (42) |
Juglans nigra | 0 | (0) | 0 | (0) | 28 | (28) | 0 | (0) |
Lindera benzoin | 382 | (238) | 14 | (14) | 113 | (113) | 99 | (63) |
Liquidambar styraciflua | 42 | (23) | 241 | (127) | 467 | (214) | 184 | (88) |
Liriodendron tulipifera | 835 | (162) a | 1855 | (647) a | 6952 | (2375) b | 1515 | (422) a |
Lonicera maackii | 0 | (0) | 0 | (0) | 14 | (14) | 0 | (0) |
Magnolia acuminata | 14 | (14) | 0 | (0) | 42 | (42) | 85 | (42) |
Ostrya virginiana | 1246 | (374) b | 425 | (162) a | 85 | (51) a | 71 | (50) a |
Platanus occidentalis | 0 | (0) | 0 | (0) | 14 | (14) | 0 | (0) |
Prunus serotina | 396 | (138) | 396 | (90) | 198 | (87) | 312 | (84) |
Quercus alba | 453 | (146) | 411 | (124) | 623 | (170) | 1175 | (374) |
Quercus rubra | 170 | (78) | 198 | (97) | 127 | (38) | 297 | (124) |
Quercus stellata | 0 | (0) | 0 | (0) | 14 | (14) | 0 | (0) |
Quercus velutina | 665 | (179) a | 595 | (125) a | 2025 | (471) b | 892 | (203) a |
Rhus copallinum | 0 | (0) | 0 | (0) | 71 | (35) | 453 | (330) |
Rhus glabra | 0 | (0) | 0 | (0) | 0 | (0) | 14 | (14) |
Rosa multiflora | 0 | (0) | 0 | (0) | 0 | (0) | 71 | (71) |
Sassafras albidum | 1458 | (437) | 3143 | (1021) | 3611 | (870) | 2591 | (772) |
Ulmus spp. | 340 | (129) a | 1161 | (321) b | 354 | (172) a | 142 | (44) a |
Total | 17,274 | (1456) | 17,118 | (1970) | 21,706 | (3225) | 17,048 | (1400) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Inglis, E.N.; Holzmueller, E.J.; Ruffner, C.M.; Groninger, J.W. Regeneration and Growth following Silvicultural Treatments in a Productive Central Hardwood Forest. Forests 2023, 14, 1222. https://doi.org/10.3390/f14061222
Inglis EN, Holzmueller EJ, Ruffner CM, Groninger JW. Regeneration and Growth following Silvicultural Treatments in a Productive Central Hardwood Forest. Forests. 2023; 14(6):1222. https://doi.org/10.3390/f14061222
Chicago/Turabian StyleInglis, Emily N., Eric J. Holzmueller, Charles M. Ruffner, and John W. Groninger. 2023. "Regeneration and Growth following Silvicultural Treatments in a Productive Central Hardwood Forest" Forests 14, no. 6: 1222. https://doi.org/10.3390/f14061222
APA StyleInglis, E. N., Holzmueller, E. J., Ruffner, C. M., & Groninger, J. W. (2023). Regeneration and Growth following Silvicultural Treatments in a Productive Central Hardwood Forest. Forests, 14(6), 1222. https://doi.org/10.3390/f14061222