Golden Camellia as a Driver of Forest Regeneration and Conservation: A Case Study of Value-Chain Forestry with Camellia quephongensis in Que Phong, Nghe An, North-Central Vietnam
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Sites
2.2. Methods
2.2.1. Surveys
2.2.2. Growth Patterns
2.2.3. Tree Density
2.2.4. Stand Structure
2.2.5. Age Distribution
2.2.6. Statistical analysis
3. Results
3.1. Growth Patterns
3.2. Population size and morphological characteristics
3.3. Stand Structure
3.4. Age Distribution
4. Discussion
4.1. Growth Patterns of C. quephongensis
4.2. C. quephongensis as a Driver of Forest Regeneration and Conservation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Porter, M.E. Competitive Strategy: Techniques for Analyzing Industries and Competitors: With a New Introduction; Free Press: New York, NY, USA, 1980; p. 396. [Google Scholar]
- Hakoda, N. A newest report about genus Camellia in Vietnam. Bull. Inst. Hortic. Engeibunka 2005, 2, 46–62. [Google Scholar]
- Tran, M.D.; Nguyen, T.T.; Hoang, S.T.; Dang, T.V.; Phung, T.D.; Nguyen, T.V.; Dao, D.T.; Mai, L.T.; Vu, L.T.; Nguyen, T.H.; et al. Golden Camellias: A Review. Arch. Curr. Res. Int. 2019, 16, 1–8. [Google Scholar] [CrossRef]
- Le, N.N.H.; Luong, D.V.; Do, D.N. Additional conditions for effective publication of Camellia quephongensis and Camellia hamyenensis. Int. Camellia J. 2021, 53, 99–107. [Google Scholar]
- Japan International Cooperation Agency; NTC International Co., Ltd; Oriental Consultants Global Co., Ltd.; Technical Cooperation Project on Development Planning of Agriculture Sector in Nghe An in the Socialist Republic of Vietnam. 2019. Available online: www.jica.go.jp (accessed on 28 February 2023).
- Tanikawa, N.; Kashiwabara, T.; Hokura, A.; Abe, T.; Shibata, M.; Nakayama, M. A peculiar yellow flower coloration of camellia using aluminum-flavonoid interaction. J. Jpn. Soc. Hort. Sci. 2008, 77, 402–407. [Google Scholar] [CrossRef]
- Nguyen, V.T.H.; Pham, B.C.; Cam, I.T.; Doan, P.L.; Le, T.T.; Tran, T.Q.; Pham, L.Q. Flavonoid isolated from the flowers of Camellia chrysantha. Vietnam J. Sci. Technol. 2019, 57, 287–293. [Google Scholar] [CrossRef]
- Ohmiya, A. Review diversity of carotenoid composition in flower petals. JARQ 2011, 45, 163–171. [Google Scholar] [CrossRef]
- Do, D.N.; Luong, D.V.; Le, H.T.; Nguyen, H.D.; Nguyen, N.T.; Ly, S.N. Camellia ngheanensis (sect. Chrysantha: Theaceae) a new species from Central Vietnam. Phytotaxa 2020, 452, 209–216. [Google Scholar] [CrossRef]
- Nguyen, H.D.; Luong, D.V.; Le, H.T.; Tran, T.Q.; Do, D.N.; Ly, S.N. Camellia puhoatensis (Sect. Archecamellia–Theaceae), a new species from Vietnam. PhytoKeys 2020, 153, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Johnson, S.J.; Swanson, F.J.; Grant, G.E.; Wondzell, S.M. Riparian forest disturbances by a mountain—The influence of floated wood. Hydrol. Process. 2000, 14, 3031–3050. [Google Scholar] [CrossRef]
- Sakio, H. Features of Riparian Forests in Japan. In Ecology of Riparian Forest in Japan; Sakio, H., Tamura, T., Eds.; Springer: Tokyo, Japan, 2008; pp. 3–14. [Google Scholar]
- Fischer, S.; Greet, J.; Walsh1, C.J.; Catford, J.A. Flood disturbance affects morphology and reproduction of woody riparian plants. Sci. Rep. 2021, 11, 16477. [Google Scholar] [CrossRef] [PubMed]
- Hung, T.C.; Ye, L.S. Camellia impressinervis. Acta Sci. Nat. Univ. Sunyatseni. 1979, 18, 72. [Google Scholar]
- Ninh., T. Camellia kirinoi: A new species and precious gene resource should be conserved. J. Genet. Appl. 1999, 2, 37–38. [Google Scholar]
- Le, N.N.H.; Uematsu, C.; Katayama, H.; Nguyen, L.T.; Tran, N.; Luong, D.V.; Hoang, T.S. Camellia tuyenquangensis (Theaceae), a new species from Vietnam. Korean J. Plants Taxon. 2017, 47, 95–99. [Google Scholar] [CrossRef]
- Tran, M.D.; Tran, D.V.; Nguyen, T.V.; Phung, T.D.; Nguyen, T.T.; Dang, T.V.; Dao, D.T.; Mai, L.T.; Ninh, K.V.; Vu, L.T.; et al. Mapping potential planting areas for golden camellias in North Vietnam. Walailak J. Sci. Technol. 2020, 17, 1095–1103. [Google Scholar]
- Que Phong District People’s Committee: Location, Natural Conditions. Available online: www.nghean.gov.vn (accessed on 20 February 2023).
- Wei, X.J.; Ma, J.; Li, K.X.; Liang, X.J. Flowering induction in Camellia chrysantha, a golden camellia species, with paclobutrazol and urea. Hortscience 2017, 52, 1537–1543. [Google Scholar] [CrossRef]
- Fumes, G.; Demétrio, C.G.B.D.; Villegas, C.; Corrente, J.E.; Bazzo, J.F. Growth curves for diameter and height using mixed models: An application in Eucalyptus seedling. Open J. For. 2017, 7, 403–415. [Google Scholar] [CrossRef]
- Devaranavadgi, S.B.; Bassappa, S.; Jolli, R.B.; Wali, S.Y.; Bagali, A.N. Height-age growth curve modelling for different tree species in Drylands of North Karnataka. Glob. J. Sci. Front. Res. Agric. Vet. Sci. 2013, 13, 11–21. [Google Scholar]
- Etemad, V.; Sefidi, K. Seed production and masting behavior in original beech (Fagus orientalis Lipsky) forests of northern IRAN. For. Ideas 2017, 23, 65–76. [Google Scholar]
- Schoene, D.; Killmann, W.; von Lüpke, H.; Wilkie, M.L. Definitional issues related to reducing emissions from deforestation in developing countries. In Forests and Climate Change Working Paper 5; FAO: Rome, Italy, 2007. [Google Scholar]
- Vlam, M.; van der Sleen, P.; Groenendijk, P.; Zuidema, P.A. Tree age distributions reveal large-scale disturbance-recovery cycles in three tropical forests. Front. Plant Sci. 2017, 7, 1984. [Google Scholar] [CrossRef] [PubMed]
- Kang, D.; Guo, Y.; Ren, C.; Zhao, F.; Feng, Y.; Han, X.; Yang, G. Population structure and spatial pattern of main tree species in secondary Betula platyphylla forest in Ziwuling Mountains, China. Sci. Rep. 2014, 4, 6873. [Google Scholar] [CrossRef] [PubMed]
Category | 1995 (ha) | 2022 (ha) | |
---|---|---|---|
Forests | Tall-seized trees | 364.3 | 33.8 |
Middle-sized trees | 419.7 | ||
Plantations | 17.9 | ||
Logged areas | Shrubs | 190.2 | 25.2 |
Grasslands, bare lands | 46.1 | ||
Others | Arable lands | 45.5 | 25.6 |
Water bodies | 6.6 | ||
Artifacts, such as houses | 25.0 | ||
Total | 600.0 | 600.0 | |
Ratio of logged lands (%) | 31.7 | 11.9 |
Population | Census Area | Quadrat Features | |||||
---|---|---|---|---|---|---|---|
Size | Altitude | Land | Gradient | Vegetation | Note | ||
(m × m) | (m × m) | (m) | (°) | (Dominant Tree) | |||
CMP | – | 20 × 20 | 200 | Slope | 15 | Plantation (Cinnamon) | – |
CM | 275 × 10 | 20 × 20 | 330 | Slope | 15 | Evergreen broadleaved forest (Vernicia) | – |
20 × 20 | 300 | 30 | – | ||||
PT1 | 220 × 10 | 15 × 20 | 140 | Slope | 43 | – | |
PT2 | 580 × 10 | 10 × 20 | 130 | Riparian | 35 | Riparian forest (Fraxinus) | 107 cm from the river bed. |
NS | 85 × 10 | 7.5 × 15 | 160 | Slope | 42 | Mixed bamboo | – |
7 × 15 | 160 | 43 | and Acacia |
TH | SD | CW | ||
---|---|---|---|---|
Age | correlation coefficient (r) | 0.9787 | 0.9806 | 0.9817 |
probability (p) | ** | ** | ** |
Variables | Density | Seedling | Sapling | Tree | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Upper: Total | |||||||||||||
(Middle: Tree) | Mean | ± | SE | n | Mean | ± | SE | n | Mean | ± | SE | n | |
(Lower: Sap + Seed) | |||||||||||||
(Indv./100 m2) | (cm) | (cm) | (cm) | ||||||||||
CM | |||||||||||||
TH | 1.1 | – | ± | – | 0 | 92.0 | ± | N/A | 1 | 351.0 | ± | 8.9 | 30 |
DB | (1.06) | – | ± | – | 1.5 | ± | N/A | 13.7 | ± | 1.4 | |||
Number of stems | (0.04) | – | ± | – | 1.0 | ± | N/A | 5.3 | ± | 0.5 | |||
CW | Area: 2750 m2 | – | ± | – | 59.0 | ± | N/A | 314.5 | ± | 14.6 | |||
TH/CW | – | ± | – | 1.6 | ± | N/A | 1.2 | ± | 0.1 | ||||
PT1 | |||||||||||||
TH | 1.4 | – | ± | – | 0 | 101.4 | ± | 13.1 | 14 | 244.0 | ± | 18.6 | 17 |
DB | (0.8) | – | ± | – | 1.3 | ± | 0.2 | 3.9 | ± | 0.8 | |||
Number of stems | (0.6) | – | ± | – | 1.1 | ± | 0.1 | 1.8 | ± | 0.3 | |||
CW | Area: 2200 m2 | – | ± | – | 65.1 | ± | 8.5 | 119.9 | ± | 15.7 | |||
TH/CW | – | ± | – | 1.7 | ± | 0.2 | 2.5 | ± | 0.3 | ||||
PT2 | |||||||||||||
TH | 0.3 | 25.0 | ± | N/A | 1 | 104.0 | ± | 20.7 | 5 | 205.2 | ± | 12.1 | 11 |
DB | (0.2) | 0.7 | ± | N/A | 3.0 | ± | 1.4 | 6.7 | ± | 1.8 | |||
Number of stems | (0.1) | 1.0 | ± | N/A | 1.4 | ± | 0.4 | 2.7 | ± | 0.6 | |||
CW | Area: 5800 m2 | N/A | ± | N/A | 64.0 | ± | 14.3 | 190.8 | ± | 32.1 | |||
TH/CW | N/A | ± | N/A | 1.8 | ± | 0.4 | 1.4 | ± | 0.3 | ||||
NS | |||||||||||||
TH | 1.4 | – | ± | – | 0 | 98.5 | ± | 21.1 | 4 | 248.9 | ± | 13.7 | 8 |
DB | (0.9) | – | ± | – | 1.8 | ± | 0.7 | 2.8 | ± | 0.6 | |||
Number of stems | (0.5) | – | ± | – | 1.5 | ± | 0.5 | 1.4 | ± | 0.2 | |||
CW | Area: 850 m2 | – | ± | – | 46.8 | ± | 8.5 | 107.8 | ± | 13.6 | |||
TH/CW | – | ± | – | 2.1 | ± | 0.1 | 3.0 | ± | 0.9 |
Variables (Tree-Phase) | CM | PT1 | PT2 | NS | p |
---|---|---|---|---|---|
TH (cm) | 351.0 ± 8.9 a | 244.0 ± 18.6 b | 205.2 ± 12.1 b | 248.9 ± 13.7 b | <0.01 |
SD (cm) | 13.7 ± 1.4 a | 3.9 ± 0.8 b | 6.7 ± 1.8 b | 2.8 ± 0.6 b | <0.01 |
Number of stems | 5.3 ± 0.5 a | 1.8 ± 0.3 b | 2.7 ± 0.6 b | 1.4 ± 0.2 b | <0.01 |
CW (cm) | 314.5 ± 14.6 a | 119.9 ± 15.7 b | 190.8 ± 32.1 b | 107.8 ± 13.6 b | <0.01 |
TH/CW | 1.2 ± 0.1 c | 2.5 ± 0.3 ab | 1.4 ± 0.3 bc | 3.0 ± 0.9 a | a–c, <0.01 |
ab–c, <0.01 | |||||
a–bc, 0.0348 |
Land Morphology | Riparian | Slope | |||||
---|---|---|---|---|---|---|---|
Anthropogenic perspective | partially natural | planted after seven years | regenerated for one/two decade/s | regenerated for 25 years | |||
Disturbances | grazing flooding | trampling, grazing | Harvesting | saplings removed for transplanting | |||
C. quephongensis population | PT2 | NS | PT1 | CM | |||
(planted) | |||||||
Forest type in the quadrat (Dominant tree) | native forest (Fraxinus) | bamboo with half planted (Acacia) | secondary forest: evergreen broadleaved forest (Vernicia) | ||||
Canopy height | (m) | 16.0 | 12.0 | 14.0 | 22.0 | 20.0 | 21.0 |
Number of forest layer | (n) | 5 | 3 | 3 | 5 | 4 | 4 |
Tree density | (indiv./100 m2) | 3.0 | 7.1 | 7.6 | 2.7 | 3.3 | 2.3 |
Basal area | (cm2/100 m2) | 891 | 111,669 | 138,273 | 5733 | 1248 | 918 |
Canopy openness | (%) | 20.2 | 28.0 | 28.3 | 36.5 | 22.7 | 18.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takahashi, K.; Nishikawa, H.; Tanabe, R.; Tran, D.Q. Golden Camellia as a Driver of Forest Regeneration and Conservation: A Case Study of Value-Chain Forestry with Camellia quephongensis in Que Phong, Nghe An, North-Central Vietnam. Forests 2023, 14, 1087. https://doi.org/10.3390/f14061087
Takahashi K, Nishikawa H, Tanabe R, Tran DQ. Golden Camellia as a Driver of Forest Regeneration and Conservation: A Case Study of Value-Chain Forestry with Camellia quephongensis in Que Phong, Nghe An, North-Central Vietnam. Forests. 2023; 14(6):1087. https://doi.org/10.3390/f14061087
Chicago/Turabian StyleTakahashi, Kazuya, Hiroaki Nishikawa, Reiko Tanabe, and Dong Quang Tran. 2023. "Golden Camellia as a Driver of Forest Regeneration and Conservation: A Case Study of Value-Chain Forestry with Camellia quephongensis in Que Phong, Nghe An, North-Central Vietnam" Forests 14, no. 6: 1087. https://doi.org/10.3390/f14061087
APA StyleTakahashi, K., Nishikawa, H., Tanabe, R., & Tran, D. Q. (2023). Golden Camellia as a Driver of Forest Regeneration and Conservation: A Case Study of Value-Chain Forestry with Camellia quephongensis in Que Phong, Nghe An, North-Central Vietnam. Forests, 14(6), 1087. https://doi.org/10.3390/f14061087