Biomass Estimation of Urban Forests Using LiDAR and High-Resolution Aerial Imagery in Athens–Clarke County, GA
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location
2.2. Field Data Collection
2.3. LiDAR and Image Processing
2.4. Treetop Detection and Crown Delineation
2.5. Biomass Calculations and Modeling for 2013 and 2019
2.6. Mapping 2019 Biomass across Athens–Clarke County
3. Results
3.1. Inventory
3.2. Crown Segmentation
3.3. Biomass Lasso Regression
3.3.1. Results of 2013
3.3.2. Results of 2019
3.4. Total Biomass and Carbon Storage Prediction Results across Athens–Clarke County
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Name | 2013 | 2019 |
---|---|---|
Ratio 1 | X | |
NIR * DSM sd | X | X |
Ratio 6 | X | X |
Height mode above 1 m | X | X |
Height median above 1 m | X | |
Height standard deviation above 1 m | X | |
Height variance above 1 m | X | |
5th percentile height above 1 m | X | |
10th percentile height above 1 m | X | |
15th percentile height above 1 m | X | |
45th percentile height above 1 m | X | |
95th percentile height above 1 m | X | |
% 1st returns above 1 m | X | |
% all returns above 1 m | X | |
% 1st returns above mean (from points 1 m and above) | X | X |
% all returns above mode (from points 1 m and above) | X | |
Height mode above 1.8288 m | X | |
Height variance above 1.8288 m | X | |
Height kurtosis above 1.8288 m | X | |
5th percentile height above 1.8288 m | X | X |
10th percentile height above 1.8288 m | X | |
15th percentile height above 1.8288 m | X | |
45th percentile height above 1.8288 m | X | |
95th percentile height above 1.8288 m | X | |
% 1st returns above 1.8288 m | X | |
% all returns above 1.8288 m | X | |
% all returns above mean (from points 1.8288 m and above) | X | X |
Height mode above 14.6304 m | X | |
Height variance above 14.6304 m | X | |
Height kurtosis above 14.6304 m | X | |
5th percentile height above 14.6304 m | X | |
10th percentile height above 14.6304 m | X | |
45th percentile height above 14.6304 m | X | |
95th percentile height above 14.6304 m | X | |
% all returns above 14.6304 m | X | |
% 1st returns above mean (from points 14.6304 m and above) | X | |
% all returns above mean (from points 14.6304 m and above) | X | |
% 1st returns above mode (from points 14.6304 m and above) | X | X |
% all returns above mode (from points 14.6304 m and above) | X | |
Laser Interception Index (LII) | X | |
Crown radius (m) | X | X |
Top of tree height (LiDAR) | X | X |
References
- Roy, S.; Byrne, J.; Pickering, C. A systematic quantitative review of urban tree benefits, costs, and assessment methods across cities in different climatic zones. Urban For. Urban Green. 2012, 11, 351–363. [Google Scholar] [CrossRef]
- Domke, G.M.; Walters, B.F.; Nowak, D.J.; Smith, J.; Nichols, M.C.; Ogle, S.M.; Coulston, J.; Wirth, T. Greenhouse Gas Emissions and Removals from Forest Land, Woodlands, and Urban Trees in the United States, 1990–2019; Resource Update FS–307; U.S. Department of Agriculture, Forest Service, Northern Research Station: Madison, WI, USA, 2021; Volume 307, 5p. [Google Scholar]
- Pörtner, H.-O.; Roberts, D.C.; Adams, H.; Adler, C.; Aldunce, P.; Ali, E.; Begum, R.A.; Betts, R.; Kerr, R.B.; Biesbroek, R. Climate Change 2022: Impacts, Adaptation and Vulnerability; IPCC: Geneva, Switzerland, 2022. [Google Scholar]
- Kelsey, K.C.; Neff, J.C. Estimates of Aboveground Biomass from Texture Analysis of Landsat Imagery. Remote Sens. 2014, 6, 6407–6422. [Google Scholar] [CrossRef]
- Wulder, M.A.; White, J.C.; Fournier, R.A.; Luther, J.E.; Magnussen, S. Spatially Explicit Large Area Biomass Estimation: Three Approaches Using Forest Inventory and Remotely Sensed Imagery in a GIS. Sensors 2008, 8, 529–560. [Google Scholar] [CrossRef] [PubMed]
- Walton, J.T.; Nowak, D.J.; Greenfield, E.J. Assessing urban forest canopy cover using airborne or satellite imagery. Arboric. Urban For. 2008, 34, 334–340. [Google Scholar] [CrossRef]
- Tomppo, E.; Gschwantner, T.; Lawrence, M.; McRoberts, R.E.; Gabler, K.; Schadauer, K.; Vidal, C.; Lanz, A.; Ståhl, G.; Cienciala, E. National forest inventories. Pathw. Common Report. Eur. Sci. Found. 2010, 1, 541–553. [Google Scholar]
- McRoberts, R.E.; Tomppo, E.O. Remote sensing support for national forest inventories. Remote Sens. Environ. 2007, 110, 412–419. [Google Scholar] [CrossRef]
- Nowak, D.J.; Crane, D.E.; Stevens, J.C.; Hoehn, R.E.; Walton, J.T.; Bond, J. A ground-based method of assessing urban forest structure and ecosystem services. Arboric. Urban For. 2008, 34, 347–358. [Google Scholar] [CrossRef]
- González-Alonso, F.; Merino-De-Miguel, S.; Roldán-Zamarrón, A.; García-Gigorro, S.; Cuevas, J.M. Forest biomass estimation through NDVI composites. The role of remotely sensed data to assess Spanish forests as carbon sinks. Int. J. Remote Sens. 2006, 27, 5409–5415. [Google Scholar] [CrossRef]
- Zhu, X.; Liu, D. Improving forest aboveground biomass estimation using seasonal Landsat NDVI time-series. ISPRS J. Photogramm. Remote Sens. 2015, 102, 222–231. [Google Scholar] [CrossRef]
- Zhang, L.; Shao, Z.; Liu, J.; Cheng, Q. Deep Learning Based Retrieval of Forest Aboveground Biomass from Combined LiDAR and Landsat 8 Data. Remote Sens. 2019, 11, 1459. [Google Scholar] [CrossRef]
- Alonzo, M.; Bookhagen, B.; Roberts, D.A. Urban tree species mapping using hyperspectral and lidar data fusion. Remote Sens. Environ. 2014, 148, 70–83. [Google Scholar] [CrossRef]
- Yang, M.; Zhou, X.; Liu, Z.; Li, P.; Tang, J.; Xie, B.; Peng, C. A Review of General Methods for Quantifying and Estimating Urban Trees and Biomass. Forests 2022, 13, 616. [Google Scholar] [CrossRef]
- Brown, S.; Narine, L.L.; Gilbert, J. Using Airborne Lidar, Multispectral Imagery, and Field Inventory Data to Estimate Basal Area, Volume, and Aboveground Biomass in Heterogeneous Mixed Species Forests: A Case Study in Southern Alabama. Remote Sens. 2022, 14, 2708. [Google Scholar] [CrossRef]
- Holmgren, J.; Persson, Å.; Söderman, U. Species identification of individual trees by combining high resolution LiDAR data with multi-spectral images. Int. J. Remote Sens. 2008, 29, 1537–1552. [Google Scholar] [CrossRef]
- Klingberg, J.; Konarska, J.; Lindberg, F.; Johansson, L.; Thorsson, S. Mapping leaf area of urban greenery using aerial LiDAR and ground-based measurements in Gothenburg, Sweden. Urban For. Urban Green. 2017, 26, 31–40. [Google Scholar] [CrossRef]
- Li, X.; Chen, W.Y.; Sanesi, G.; Lafortezza, R. Remote Sensing in Urban Forestry: Recent Applications and Future Directions. Remote Sens. 2019, 11, 1144. [Google Scholar] [CrossRef]
- Singh, K.K.; Davis, A.J.; Meentemeyer, R.K. Detecting understory plant invasion in urban forests using LiDAR. Int. J. Appl. Earth Obs. Geoinf. 2015, 38, 267–279. [Google Scholar] [CrossRef]
- Ucar, Z.; Bettinger, P.; Merry, K.; Akbulut, R.; Siry, J. Estimation of urban woody vegetation cover using multispectral imagery and LiDAR. Urban For. Urban Green. 2018, 29, 248–260. [Google Scholar] [CrossRef]
- Wolcott, R.W.; Eustice, R.M. Visual localization within lidar maps for automated urban driving. In Proceedings of the 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago, IL, USA, 14–18 September 2014; pp. 176–183. [Google Scholar]
- Wang, R.; Peethambaran, J.; Chen, D. LiDAR Point Clouds to 3-D Urban Models: A Review. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 606–627. [Google Scholar] [CrossRef]
- Yan, W.Y.; Shaker, A.; El-Ashmawy, N. Urban land cover classification using airborne LiDAR data: A review. Remote Sens. Environ. 2015, 158, 295–310. [Google Scholar] [CrossRef]
- Heynen, N.; Perkins, H.A.; Roy, P. The Political Ecology of Uneven Urban Green Space:The Impact of Political Economy on Race and Ethnicity in Producing Environmental Inequality in Milwaukee. Urban Aff. Rev. 2006, 42, 3–25. [Google Scholar] [CrossRef]
- Landry, S.M.; Chakraborty, J. Street Trees and Equity: Evaluating the Spatial Distribution of an Urban Amenity. Environ. Plan. A Econ. Space 2009, 41, 2651–2670. [Google Scholar] [CrossRef]
- Schwarz, K.; Fragkias, M.; Boone, C.G.; Zhou, W.; McHale, M.; Grove, J.M.; O’Neil-Dunne, J.; McFadden, J.P.; Buckley, G.L.; Childers, D.; et al. Trees Grow on Money: Urban Tree Canopy Cover and Environmental Justice. PLoS ONE 2015, 10, e0122051. [Google Scholar] [CrossRef]
- Parker, G.G. Tamm review: Leaf Area Index (LAI) is both a determinant and a consequence of important processes in vegetation canopies. For. Ecol. Manag. 2020, 477, 118496. [Google Scholar] [CrossRef]
- Fang, H.; Baret, F.; Plummer, S.; Schaepman-Strub, G. An Overview of Global Leaf Area Index (LAI): Methods, Products, Validation, and Applications. Rev. Geophys. 2019, 57, 739–799. [Google Scholar] [CrossRef]
- Yan, G.; Hu, R.; Luo, J.; Weiss, M.; Jiang, H.; Mu, X.; Xie, D.; Zhang, W. Review of indirect optical measurements of leaf area index: Recent advances, challenges, and perspectives. Agric. For. Meteorol. 2019, 265, 390–411. [Google Scholar] [CrossRef]
- Government, A.-C.C.U. Location and Geography. Available online: https://www.accgov.com/118/Location-Geography (accessed on 15 June 2021).
- Kriegler, F.; Malila, W.; Nalepka, R.; Richardson, W. Preprocessing transformations and their effects on multispectral recognition. Remote Sens. Environ. VI 1969, 97. [Google Scholar]
- Machala, M.; Zejdová, L. Forest mapping through object-based image analysis of multispectral and LiDAR aerial data. Eur. J. Remote Sens. 2014, 47, 117–131. [Google Scholar] [CrossRef]
- Government, A.-C.C.U. Athens-Clarke County Open Data. Available online: https://data-athensclarke.opendata.arcgis.com/ (accessed on 15 June 2021).
- Dong, P.; Chen, Q. LiDAR Remote Sensing and Applications; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Roussel, J.-R.; Auty, D.; Coops, N.C.; Tompalski, P.; Goodbody, T.R.H.; Meador, A.S.; Bourdon, J.-F.; de Boissieu, F.; Achim, A. lidR: An R package for analysis of Airborne Laser Scanning (ALS) data. Remote Sens. Environ. 2020, 251, 112061. [Google Scholar] [CrossRef]
- Roussel, J.-R.; Auty, D. Airborne LiDAR Data Manipulation and Visualization for Forestry Applications, R package version 3.1.2; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Plowright, A.; Roussel, J.-R. ForestTools: Analyzing Remotely Sensed Forest Data, R package version 0.2.4; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Kwak, D.-A.; Lee, W.; Cho, H. Estimation of LAI using LiDAR remote sensing in forest. In Proceedings of the ISPRS Workshop on Laser Scanning and SilviLaser, Espoo, Finland, 12–14 September 2007. [Google Scholar]
- Sabol, J.; Patocka, Z.; Mikita, T. Usage of LiDAR data for leaf area index estimation. GeoSci. Eng. 2014, 60, 10. [Google Scholar] [CrossRef]
- Silva, C.A.; Hudak, A.T.; Vierling, L.A.; Loudermilk, E.L.; O’Brien, J.J.; Hiers, J.K.; Jack, S.B.; Gonzalez-Benecke, C.; Lee, H.; Falkowski, M.J. Imputation of individual longleaf pine (Pinus palustris Mill.) tree attributes from field and LiDAR data. Can. J. Remote Sens. 2016, 42, 554–573. [Google Scholar] [CrossRef]
- Dalponte, M.; Coomes, D.A. Tree-centric mapping of forest carbon density from airborne laser scanning and hyperspectral data. Methods Ecol. Evol. 2016, 7, 1236–1245. [Google Scholar] [CrossRef]
- McPherson, E.G.; van Doorn, N.S.; Peper, P.J. Urban Tree Database and Allometric Equations; General Technical Report; U.S. Department of Agriculture, Forest Service, Pacific Southwest Research Station: Albany, CA, USA, 2016; Volume 253, 86p. [Google Scholar]
- Cieszewski, C.J.; Zasada, M.; Lowe, R.C.; Liu, S. Estimating Biomass and Carbon Storage by Georgia Forest Types and Species Groups Using the FIA Data Diameters, Basal Areas, Site Indices, and Total Heights. Forests 2021, 12, 141. [Google Scholar] [CrossRef]
- Taras, M.A.; Phillips, D.R. Aboveground Biomass of Slash Pine in a Natural Sawtimber Stand in Southern Alabama; Department of Agriculture, Forest Service, Southeastern Forest Experiment: Asheville, NC, USA, 1978; Volume 188. [Google Scholar]
- Crow, T.R.; Schlaegel, B.E. A guide to using regression equations for estimating tree biomass. North. J. Appl. For. 1988, 5, 15–22. [Google Scholar] [CrossRef]
- Attiwill, P.; Ovington, J. Determination of forest biomass. For. Sci. 1968, 14, 13–15. [Google Scholar]
- Zanne, A.E.; Lopez-Gonzalez, G.; Coomes, D.A.; Ilic, J.; Jansen, S.; Lewis, S.L.; Miller, R.B.; Swenson, N.G.; Wiemann, M.C.; Chave, J. Global wood density database. Data from: Towards a worldwide wood economics spectrum. Dryad Digit. Repos. 2009. [Google Scholar] [CrossRef]
- Miles, P.D. Specific Gravity and Other Properties of Wood and Bark for 156 Tree Species Found in North America; U.S. Department of Agriculture, Forest Service, Northern Research Station: Madison, WI, USA, 2009; Volume 38. [Google Scholar]
- Ross, R.J. Wood Handbook: Wood as an Engineering Material; General Technical Report FPL-GTR-190; USDA Forest Service, Forest Products Laboratory: Madison, WI, USA, 2010; Volume 190. [Google Scholar]
- Meier, E.W. Identifying and Using Hundreds of Woods Worldwide; Wood Database: Whitethorn, CA, USA, 2015. [Google Scholar]
- McHale, M.R.; Burke, I.C.; Lefsky, M.A.; Peper, P.J.; McPherson, E.G. Urban forest biomass estimates: Is it important to use allometric relationships developed specifically for urban trees? Urban Ecosyst. 2009, 12, 95–113. [Google Scholar] [CrossRef]
- Adhikari, A.; Montes, C.R.; Peduzzi, A. A Comparison of Modeling Methods for Predicting Forest Attributes Using Lidar Metrics. Remote Sens. 2023, 15, 1284. [Google Scholar] [CrossRef]
- Team, R.C. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Kim, E.; Lee, W.-K.; Yoon, M.; Lee, J.-Y.; Son, Y.; Abu Salim, K. Estimation of Voxel-Based Above-Ground Biomass Using Airborne LiDAR Data in an Intact Tropical Rain Forest, Brunei. Forests 2016, 7, 259. [Google Scholar] [CrossRef]
- Whelan, A.W.; Cannon, J.B.; Bigelow, S.W.; Rutledge, B.T.; Sánchez Meador, A.J. Improving generalized models of forest structure in complex forest types using area- and voxel-based approaches from lidar. Remote Sens. Environ. 2023, 284, 113362. [Google Scholar] [CrossRef]
- Lee, T.; Bettinger, P.; Merry, K.; Bektas, V.; Cieszewski, C. Mission Impossible: Positions determined by basic mapping-grade and recreation-grade GNSS receivers cannot emulate the actual spatial pattern of trees. Math. Comput. For. Nat. Resour. Sci. (MCFNS) 2022, 14, 15–31. [Google Scholar]
- Zhang, J.; Wang, J.; Ma, W.; Deng, Y.; Pan, J.; Li, J. Vegetation Extraction from Airborne Laser Scanning Data of Urban Plots Based on Point Cloud Neighborhood Features. Forests 2023, 14, 691. [Google Scholar] [CrossRef]
- Xu, D.; Wang, H.; Xu, W.; Luan, Z.; Xu, X. LiDAR Applications to Estimate Forest Biomass at Individual Tree Scale: Opportunities, Challenges and Future Perspectives. Forests 2021, 12, 550. [Google Scholar] [CrossRef]
- Forrester, D.I.; Dumbrell, I.C.; Elms, S.R.; Paul, K.I.; Pinkard, E.A.; Roxburgh, S.H.; Baker, T.G. Can crown variables increase the generality of individual tree biomass equations? Trees 2020, 35, 15–26. [Google Scholar] [CrossRef]
Name | Formula |
---|---|
OSAVI | |
Four bands ratio | |
Ratio 1 | |
Ratio 2 | (red_sd * NIR_mean)/(blue_sd + green_sd) |
NIR to blue ratio | NIR_mean/blue_mean |
Three-band ratio | NIR_mean/red_mean/green_mean |
Ratio 3 | (NIR_sd * NIR_mean)/(blue_sd * blue_mean)—(green_sd * green_mean)/(red_sd * red_mean) |
CHM * DSM st dev. | CHM_mean * DSM_sd |
NDVI * NIR sd | NDVI_mean * NIR_sd |
NDVI * DSM sd | NDVI_mean * DSM_sd |
NIR to red sd | NIR_sd/red_sd |
NIR * DSM sd | NIR_sd * DSM_sd |
Three sd ratio | (NIR_sd * DSM_sd)/red_sd |
Ratio 4 | (NIR_sd * DSM_sd)/red_sd * NDVI_mean * CHM_mean |
Blue ratio | Blue_mean/(red_mean + green_mean + blue_mean) |
NIR-to-red ratio | (NIR_mean * NIR_sd)/(red_mean * red_sd) |
Green ratio | Green_mean/(red_mean + green_mean + blue_mean) |
Ratio 5 | NIR_mean/NIR_sd * blue_ratio/red_mean |
Ratio 6 | (NIR_mean—red_mean + green_mean + blue_mean)/(NIR_mean + red_mean + green_mean + blue_mean) * CHM_mean |
Green-to-blue Ratio | Green_mean/blue_mean |
Reference (in Descending Order of Priority) | Species |
---|---|
Urban Tree Database and Allometric Equations | Acer negundo, Acer saccharinum, Betula spp., Carya illinoinensis, Cercis canadensis, Cornus florida, Fagus grandifolia, Ginkgo biloba, Ilex spp., Juniperus virginiana, Lagerstroemia indica, Liquidambar styraciflua, Liriodendron tulipifera, Magnolia grandiflora, Morus rubra, other, Platanus occidentalis, Prunus caroliniana, Prunus serotine, Prunus serrulate, Quercus macrocarpa, Quercus nigra, Quercus phellos, Ulmus alata, Ulmus Americana, Ulmus parvifolia |
Global Wood Density Database | Acer rubrum, Oxydendrum arboretum, Quercus falcata, Quercus michauxii, Quercus stellata |
Specific Gravity and Other Properties of Wood and Bark for 156 Tree Species Found in North America | Albizia julibrissin, Catalpa bignonioides, Diospyros virginiana, Halesia diptera, Magnolia lilliflora, Magnolia virginiana, Quercus texana |
Wood Handbook: Wood as an Engineering Material | Metasequoia glyptostroboides, Quercus acutissima, Quercus alba, Quercus rubra |
Wood! Identifying and Using Hundreds of Woods Worldwide | Cryptomeria japonica, Cupressus × leylandii |
Min, Max | Average | Standard Deviation | |
---|---|---|---|
Tree diameter (cm) | 3.8, 133.6 | 35.4 | 23.2 |
Tree height (m) | 2.7, 42.7 | 15.1 | 7.8 |
Tree biomass (kg) | 1.5, 21,678.4 | 1352.9 | 2484.5 |
Tree carbon (kg) | 0.8, 10,839.2 | 676.4 | 1242.3 |
2013 | 2019 | |
---|---|---|
Min, Max | 1.0, 9.9 | 1.1, 10.6 |
Average | 4.1 | 4.7 |
Standard deviation | 2.3 | 2.0 |
Best Model | Cross-Validation | |
---|---|---|
R2 | 0.89 | 0.80 |
Adjusted R2 | 0.85 | 0.73 |
RMSE (kg) | 1797 | 2009 |
Bias (kg) | 225 | 209 |
Best Model | Cross-Validation | |
---|---|---|
R2 | 0.90 | 0.81 |
Adjusted R2 | 0.87 | 0.77 |
RMSE (kg) | 1444 | 2189 |
Bias (kg) | 194 | 147 |
Land Cover | Canopy Coverage (%) (Over All County Land, Forested and Non-Forested) | Canopy Cover Contribution to All Forested Land (%) | Total Land Area (%) (Forested and Non-Forested) | Total Biomass (Metric Tons, ±1.4 Error) | Total Carbon (Metric Tons, ±1.4 Error) | Total Carbon Dioxide (Metric Tons, ±1.4 Error) | Total Biomass, Carbon, and Carbon Dioxide Contribution (%) |
---|---|---|---|---|---|---|---|
Barren Land | 0.04 | 0.29 | 0.07 | 25,830.04 | 12,915.02 | 47,398.12 | 0.08 |
Cultivated Crops | 0.01 | 0.25 | 0.01 | 3028.49 | 1514.25 | 5557.28 | 0.01 |
Deciduous Forest | 19.32 | 23.53 | 34.22 | 11,025,858.68 | 5,512,929.34 | 20,232,450.68 | 33.29 |
Developed, High Intensity | 0.25 | 2.81 | 0.44 | 135,592.04 | 67,796.02 | 248,811.39 | 0.41 |
Developed, Low Intensity | 4.38 | 12.56 | 7.76 | 2,417,912.66 | 1,208,956.33 | 4,436,869.73 | 7.30 |
Developed, Medium Intensity | 1.77 | 7.92 | 3.13 | 977,395.71 | 488,697.85 | 1,793,521.13 | 2.95 |
Developed, Open Space | 8.71 | 16.09 | 15.43 | 4,947,701.30 | 2,473,850.65 | 9,079,031.89 | 14.94 |
Emergent Herbaceous Wetlands | 0.07 | 0.17 | 0.12 | 49,316.13 | 24,658.06 | 90,495.10 | 0.15 |
Evergreen Forest | 6.72 | 7.68 | 11.91 | 3,722,016.53 | 1,861,008.27 | 6,829,900.33 | 11.24 |
Hay/Pasture | 2.53 | 11.56 | 4.49 | 1,444,816.29 | 722,408.15 | 2,651,237.89 | 4.36 |
Herbaceous | 0.37 | 1.21 | 0.65 | 223,670.08 | 111,835.04 | 410,434.60 | 0.68 |
Mixed Forest | 9.11 | 10.87 | 16.14 | 6,001,799.89 | 3,000,899.95 | 11,013,302.80 | 18.12 |
Open Water | 0.21 | 0.87 | 0.38 | 139,710.75 | 69,855.38 | 256,369.23 | 0.42 |
Shrub/Scrub | 0.37 | 1.02 | 0.66 | 252,277.22 | 126,138.61 | 462,928.71 | 0.76 |
Woody Wetlands | 2.53 | 3.15 | 4.48 | 1,755,163.36 | 877,581.68 | 3,220,724.77 | 5.30 |
Land Use | Canopy Coverage (%) (Over All County Land, Forested and Non-Forested) | Canopy Cover Contribution to All Forested Land (%) | Total Land Area (%) (Forested and Non-Forested) | Total Biomass (Metric Tons, ±1.4 Error) | Total Carbon (Metric Tons, ±1.4 Error) | Total Carbon Dioxide (Metric Tons, ±1.4 Error) | Total Biomass, Carbon, and Carbon Dioxide Contribution (%) |
---|---|---|---|---|---|---|---|
Agricultural | 4.65 | 8.24 | 9.73 | 2,611,232.31 | 1,305,616.15 | 4,791,611.28 | 8.35 |
Commercial | 0.41 | 0.73 | 2.20 | 250,423.52 | 125,211.76 | 459,527.16 | 0.80 |
Industrial | 1.03 | 1.83 | 2.79 | 580,650.04 | 290,325.02 | 1,065,492.82 | 1.86 |
Mixed Use | 1.03 | 1.83 | 1.62 | 456,252.77 | 228,126.38 | 837,223.83 | 1.46 |
Multifamily Residential | 1.83 | 3.24 | 3.87 | 1,061,655.79 | 530,827.90 | 1,948,138.38 | 3.39 |
Office | 0.13 | 0.22 | 0.42 | 75,824.50 | 37,912.25 | 139,137.96 | 0.24 |
Public | 1.70 | 3.01 | 3.89 | 874,054.56 | 437,027.28 | 1,603,890.11 | 2.79 |
Recreation | 2.39 | 4.23 | 4.23 | 1,321,073.42 | 660,536.71 | 2,424,169.73 | 4.22 |
Residential | 23.78 | 42.12 | 38.57 | 12,391,779.02 | 6,195,889.51 | 22,738,914.50 | 39.61 |
Transportation, Communication, Utilities | 1.19 | 2.12 | 3.15 | 693,069.34 | 346,534.67 | 1,271,782.24 | 2.22 |
Natural and Undeveloped | 15.83 | 28.04 | 20.54 | 9,258,574.03 | 4,629,287.02 | 16,989,483.35 | 29.59 |
University | 0.20 | 0.35 | 0.72 | 90,258.27 | 45,129.14 | 165,623.93 | 0.29 |
Roads | 2.28 | 4.04 | 8.45 | 1,623,346.89 | 811,673.44 | 2,978,841.54 | 5.19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Henn, K.A.; Peduzzi, A. Biomass Estimation of Urban Forests Using LiDAR and High-Resolution Aerial Imagery in Athens–Clarke County, GA. Forests 2023, 14, 1064. https://doi.org/10.3390/f14051064
Henn KA, Peduzzi A. Biomass Estimation of Urban Forests Using LiDAR and High-Resolution Aerial Imagery in Athens–Clarke County, GA. Forests. 2023; 14(5):1064. https://doi.org/10.3390/f14051064
Chicago/Turabian StyleHenn, Katrina Ariel, and Alicia Peduzzi. 2023. "Biomass Estimation of Urban Forests Using LiDAR and High-Resolution Aerial Imagery in Athens–Clarke County, GA" Forests 14, no. 5: 1064. https://doi.org/10.3390/f14051064
APA StyleHenn, K. A., & Peduzzi, A. (2023). Biomass Estimation of Urban Forests Using LiDAR and High-Resolution Aerial Imagery in Athens–Clarke County, GA. Forests, 14(5), 1064. https://doi.org/10.3390/f14051064