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Abstract: Estimation of forest aboveground biomass (AGB) is crucial for various technical and
scientific applications, ranging from regional carbon and bioenergy policies to sustainable forest
management. However, passive optical remote sensing, which is the most widely used remote sensing
data for retrieving vegetation parameters, is constrained by spectral saturation problems and cloud
cover. On the other hand, LiDAR data, which have been extensively used to estimate forest structure
attributes, cannot provide sufficient spectral information of vegetation canopies. Thus, this study
aimed to develop a novel synergistic approach to estimating biomass by integrating LiDAR data
with Landsat 8 imagery through a deep learning-based workflow. First the relationships between
biomass and spectral vegetation indices (SVIs) and LiDAR metrics were separately investigated.
Next, two groups of combined optical and LiDAR indices (i.e., COLI1 and COLI2) were designed
and explored to identify their performances in biomass estimation. Finally, five prediction models,
including K-nearest Neighbor, Random Forest, Support Vector Regression, the deep learning model,
i.e., Stacked Sparse Autoencoder network (SSAE), and multiple stepwise linear regressions, were
individually used to estimate biomass with input variables of different scenarios, i.e., (i) all the COLI1
(ACOLI1), (ii) all the COLI2 (ACOLI2), (iii) ACOLI1 and all the optical (AO) and LiDAR variables
(AL), and (iv) ACOLI2, AO and AL. Results showed that univariate models with the combined
optical and LiDAR indices as explanatory variables presented better modeling performance than
those with either optical or LiDAR data alone, regardless of the combination mode. The SSAE model
obtained the best performance compared to the other tested prediction algorithms for the forest
biomass estimation. The best predictive accuracy was achieved by the SSAE model with inputs of
combined optical and LiDAR variables (i.e., ACOLI1, AO and AL) that yielded an R2 of 0.935, root
mean squared error (RMSE) of 15.67 Mg/ha, and relative root mean squared error (RMSEr) of 11.407%.
It was concluded that the presented combined indices were simple and effective by integrating
LiDAR-derived structure information with Landsat 8 spectral data for estimating forest biomass.
Overall, the SSAE model with inputs of Landsat 8 and LiDAR integrated information resulted in
accurate estimation of forest biomass. The presented modeling workflow will greatly facilitate future
forest biomass estimation and carbon stock assessments.
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1. Introduction

Reliable, up-to-date forest aboveground biomass (AGB) mapping is a prerequisite for
understanding the relationship between AGB and climate change. Plot-based estimations of forest
AGB, while typically of high accuracy, are costly and can only provide quality information for a limited
number of stands at the landscape scale [1]. Consequently, numerous remote sensing techniques have
been increasingly utilized to assist forest AGB estimation during the last few decades [2]. It is possible
to provide updated, consistent, and spatially explicit assessment of forest biomass and its dynamics by
using remote sensing images, particularly in large areas with limited accessibility [3,4].

Numerous statistical models have been explored in relating field-measured AGB to remotely
sensed variables [5,6]. Multispectral vegetation indices (SVIs), defined with various combinations
of visible, near-infrared (NIR) and shortwave reflectance, are the most widely used for retrieving
biophysical and biochemical parameters. It is proved that SVIs have strong correlations with vegetation
structure characteristics, such as AGB and leaf area index (LAI) [7–9]. However, vegetation indices tend
to saturate for forests at high biomass levels [10–12]. The saturation point varies greatly depending
on the source data and the vegetation type and ranges from 15 to 100 Mg/ha for different visible/NIR
vegetation indices [13,14]. Additionally, optical remote sensing provides limited information on the
vertical distribution of forest structure [15], and it is not always possible to compile a temporally
and radiometrically consistent cloud-free datasets over large areas [3]. The past two decades have
witnessed a large number of studies using Synthetic Aperture Radar (SAR), which could penetrate
clouds and forest canopies with appropriate wavelength and polarization modes, for mapping forest
AGB [16–19]. However, it remains problematic to estimate AGB using SAR backscattering signals
due not only to the saturation at high biomass levels but also to the high sensitivity to soil conditions,
including surface roughness and soil moisture [19,20].

Recently, light detection and ranging (LiDAR) has proven to be very powerful in estimating
forest structure attributes, such as canopy height, leaf area index (LAI), and AGB [21–24]. The most
commonly used LiDAR metrics are height metrics which can be directly measured by LiDAR and
provide information related to the vertical structure of individual trees and forest stands. The prevalence
of LiDAR data in forest studies is attributed to its penetration by which layered structural echoes through
a certain canopy depth can be detected. However, LiDAR data cannot provide sufficient spectral
characteristics of vegetation canopies since most LiDAR systems only work at a single wavelength [25].
Although hyperspectral LiDAR systems have emerged to capture spectral and structural information
simultaneously [26–28], they are mainly tested inside the laboratory. It is, thus, not feasible to apply
these new systems to normal data collection in large areas [26]. Therefore, the integration of LiDAR
data with optical remote sensing imagery has been identified as the most promising approach to acquire
structural and spectral information from forests simultaneously for biomass estimation. Combining
both airborne LiDAR and hyperspectral data has shown great capability to map tree species in different
forest areas [29,30]. In addition, Graham [31] found that retrieval of canopy LAI in a coniferous and
broadleaf mixed forest can be improved by integrating LiDAR with WorldView-2 data.

The parametric models, such as multiple regression, are commonly used to develop relationships
between forest attributes and remote sensing predictors [32,33]. In recent years, non-parametric machine
learning models have become prevalent. Contrary to the linear regression model, many machine learning
techniques (e.g., Random Forest (RF), Support Vector Regression (SVR), K-nearest Neighbor (KNN),
and Deep learning (DL)) are able to reveal complicated non-linear patterns [9,34,35]. Additionally,
machine learning models are able to address issues associated with data dimensionality [36,37] in
fitting models with a large number of predictors. Few studies have integrated LiDAR data with
optical remote sensing metrics to estimate forest structure parameters using non-parametric machine
learning algorithms, especially the deep learning models. The deep learning algorithms have shown
their effectiveness in object detection and image classification [38–43]. The deep learning models
can automatically extracted invariant and abstract features which have better discrimination than
artificial features. As one of the deep learning algorithms, the Stacked Sparse Autoencoder network
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(SSAE) has been widely used in some fields, especially image classification [43]. Besides, few studies
paid attention to the comparisons between deep learning and other machine learning algorithms in
predicting forest parameters.

Therefore, in this study, airborne LiDAR data were integrated with Landsat 8 imagery for mapping
forest aboveground biomass. The objectives of the study were (i) to evaluate the potentials of optical
spectral vegetation indices (SVIs) and LiDAR metrics, respectively, for estimating forest AGB; (ii) to
determine if the combined LiDAR and Landsat 8 indices can enhance the AGB estimation; and (iii) to
provide a comparison of five predictive models, i.e., K-nearest Neighbor (KNN), Random Forest (RF),
Support Vector Regression (SVR), Stacked Sparse Autoencoder network (SSAE), and multiple stepwise
linear regressions (MSLR) models, for estimating biomass.

2. Materials

2.1. Study Area

The study site is located in the northeast part of Conghua (23◦52′35.65′′N, 113◦54′46.17′′E,
Figure 1), Guangdong province, China. The study site has an area of 100 km2. The elevation ranges
from about 196 m in the northeast of the area to approximately 620 m in the southwest. This area
has a subtropical monsoon climate. The mean annual temperature and rainfall are about 22.1 ◦C and
1952.5 mm, respectively. The area is characterized by the coniferous and broadleaf mixed forest, and
Schima superba, Castanopsis fissa, Cinnamomum porrectum, and Pinus massoniana are the main tree species.
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2.2. Field Data

Aboveground biomass values of 236 inventory plots distributed across the study area were
collected in 2013. The locations of plots were selected according to the subjective sampling evaluations,
and the size of each plot was 30 m × 30 m. The tree height (H) was measured using a laser hypsometer,
and the tree diameter at breast height (DBH) was measured using a tape. The center of each plot was
correctly determined using a GPS (Garmin MAP 60CS, accuracy ±3 m). Additionally, the species and
type (i.e., evergreen or deciduous) of each tree were recorded. Trees with DBH more than or equal to
3 cm were measured in the survey. Subsequently, a plot would be classified into a coniferous (deciduous)
plot, when it consisted of over 75% coniferous (deciduous) trees [44]. Otherwise, we identified the plot
as the mixed forest [45]. The observed plots (n = 236) were randomly split into training (n = 177) and
validation (n = 59) datasets at a ratio of 3:1.

In general, AGB of each individual tree in the plot can be derived by using species-specific
allometric equations with inputs of the DBH and H [20,46,47]. However, no allometric equations
are available for the study area. Accordingly, the methodology put forward by Fang et al. [48] was
employed to calculate the biomass at the plot level. In this method, the relationship between total
volumes and total AGB of each plot is shown in Equation (1). The total volumes could be obtained by
adding up the volumes of all individual trees in the plot. The single tree volume was estimated based
on a volume table with inputs of H and DBH.

TAGB = a× TV + b (1)

where TAGB and TV are separately the total AGB and total volumes in a plot, and the plot AGB needs
to be finally computed using TAGB at a megagrams per hectare conversion unit. a and b are coefficients
from [48] and they are different for diverse forest types. The biomass values were in the range from
17.464 to 313.918 Mg/ha with a mean value of 125.745 Mg/ha and a standard deviation of 71.13 Mg/ha.

2.3. Landsat 8 Acquisition and Preprocessing

The Landsat 8 image used in the study was acquired on the 3rd of August 2014. The image was
acquired during an almost clear and sunny sky condition with 5% cloud cover, sun azimuth angle of
102.15 and sun elevation angle of 65.12. The Landsat 8 satellite contains two pushbroom instruments,
i.e., the Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS) including two thermal
infrared bands at a 100 m spatial resolution. The Landsat 8-OLI is composed of 30 m multispectral
bands corresponding to band 1—coastal/aerosol (0.433–0.453 µm), band 2—blue (0.450–0.515 µm),
band 3—green (0.525–0.600 µm), band 4—red (0.630–0.680 µm), band 5—NIR (0.845–0.885 µm), band
6—SWIR1 (1.560–1.660 µm), band 7—SWIR2 (2.100–2.300 µm), and band 9—Cirrus (1.360–1.390 µm),
in addition to a 15 m panchromatic image (band 8, 0.500–0.680 µm). Preprocessing was performed
using the ENVI 5.1 software. The Landsat-8 OLI image bands were converted from digital number
format (DN) to Top-Of-Atmosphere (TOA) spectral radiance, following steps summarized on the USGS
website. Subsequently, the Landsat 8 OLI image was atmospherically corrected to surface reflectance
using the Fast Line-of-sight Atmospheric Analysis of Spectral Hypercube (FLAASH). The final step
was to orthorectify the Landsat 8 image using the high-resolution DEM.

2.4. LiDAR Data Acquisition and Preprocessing

Airborne observations for the study area were conducted in June 2013 using a Leica ALS50-II
laser scanning system. The system recorded both first and last return data for each laser pulse.
The pulse frequency was 52.9 kHz and the flying speed was 80 knots, producing an average density
of 0.8 pulses/m2. The LiDAR data was preprocessed using the Terrascan software (v4.006-Terrasolid,
Helsinki, Finland). Firstly, the points were removed if they had only few neighbors and/or their
elevations were higher than the median elevation of surrounding points. The points were then
classified as ground and non-ground returns. The ground returns were interpolated to produce a
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digital elevation model (DEM), and the first returns were interpolated to derive a digital surface model
(DSM) with a resolution of 1 m. Finally, a Canopy Height Model (CHM) was generated by subtracting
the DEM from the DSM. According to the minimum and maximum height of field-measured trees
within the area, the CHM pixels with values ranging from 2 m to 35 m were extracted to ensure the
understory vegetation and objects exceeding the tree height were excluded [21,49,50].

3. Methodology

Figure 2 shows the workflow of the biomass estimation processes, including the variables
calculation, model calibrations using different data scenarios, accuracy assessment, and wall-to-wall
biomass mapping using the calibrated model.
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3.1. Variables Calculation

3.1.1. Landsat 8 OLI and LiDAR Variables

According to previous studies [7,9,51], seven SVIs were selected, including the Normalized
Difference Vegetation Index (NDVI), Simple Ratio Vegetation Index (SR), Enhanced Vegetation Index
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(EVI), Atmospherically Resistant Vegetation Index (ARVI), Soil Adjusted Vegetation Index (SAVI),
Modified Soil Adjusted Vegetation Index (MSAVI), and Optimized Soil Adjusted Vegetation Index
(OSAVI) (Table 1). A total of 16 LiDAR variables were computed at the plot level. The canopy cover
(Cov) variable was derived using the proportion of the number of pulses returned from the canopy
to all the returns. Six classes of canopy height metrics calculating the height distribution and height
summary statistics of the canopy were extracted, including the mean (Hmean), maximum (Hmax),
standard deviation (Hstd), variance (Hvar), coefficient of variation (Hcv), and percentiles with interval
of 10% (Hp: p10, p20, . . . , p90). In addition, canopy relief ratio (CRR) which is a quantitative index of
the canopy relative shape, describing the ratio of all returns above the mean heights was extimated
(Equation (2)) [52].

CRR =
Hmean −Hmin

Hmax −Hmin
(2)

Table 1. The prediction variables derived from the Landsat 8 OLI image.

Vegetation Indices Formula

NDVI NIR−R
NIR+R

SR NIR
R

EVI
2.5×(NIR−R)

1+NIR+6×R−7.5×B

ARVI
NIR−(2×R−B)
NIR+(2×R−B)

SAVI (1 + 0.5) NIR−R
NIR+R+0.5

MSAVI NIR + 0.5−
√
(NIR + 0.5)2

− 2× (NIR−R)

OSAVI (1 + 0.16) NIR−R
NIR+R+0.16

3.1.2. Combined Optical and LiDAR Index (COLI)

As described in the Section 1, optical data can provide spectral information about vegetation
canopy, while LiDAR data measures the vertical structure of the forest. Thus, the synergistic utilization
of airborne LiDAR and optical remote sensing data is highly valuable for estimating forest biomass.
Inspired by the SVIs of optical remote sensing, two types of new indices incorporating optical and
LiDAR information (COLI1 and COLI2) were established by integrating the best-performing LiDAR
variable (i.e., the LiDAR variable achieving the best AGB estimation accuracy) with each SVI. COLI1
and COLI2 can be written as:

COLI1 = SVIi × BLV (3)

COLI2 = SVIi_BLV = (BLV − SVIi)/(BLV + SVIi) (4)

where BLV is the best-performing LiDAR variable and SVIi is the optical spectral vegetation index.
Prior to calculating COLI, the BLV and SVIi were normalized to allow direct comparisons between
optical and LiDAR variables, e.g., with different scales and dynamic ranges.

3.2. Regression Algorithms

In the study, five prediction techniques including KNN, RF, SVR, SSAE, and MSLR were used to
estimate biomass. The RF technique is based on an ensemble of binary regression trees that are fitted
to randomly selected subsets of the training data. In addition to resampling the observations to obtain
multiple trees, the RF algorithm also selects a random subset of predictors in tree construction, which
is particularly useful when a great number of possibly redundant predictors are available. It has been
reported to be an efficient prediction approach for estimating vegetation attributes, especially when
the number of predictors is very large [35,53,54]. In [35], the RF was compared with other prediction
methods in regard to their predictive power of forest AGB, and RF showed a better estimation accuracy
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than other algorithms. SVR identifies optimum hyperplanes using kernel functions to separate
groups of input data with similar responses to predict a target variable. The SVR model has been
successfully applied in biomass mapping and other remote sensing applications [55,56]. In KNN
method, the distance from an unknown pixel of the target dataset to each of the known pixels in
the reference dataset is computed. The unknown target pixel is assigned a weighted mean of the k
most similar neighbours, which is computed based on their distance to the target pixel in the feature
space [57]. Tian et al. [34] found the performance of KNN outperformed those of other algorithms
for estimating forest biomass using Landsat Thematic Mapper (TM) data. SSAE is a kind of deep
learning method that can automatically learn useful features layer by layer. The SSAE deep learning
algorithm has been successfully used in several fields, such as image classification [39,43]. Nonetheless,
as far as we know, this model was rarely applied to estimate forest parameters. Therefore, the SSAE
algorithm was introduced in detail in the following. When SSAE model builds a deep neural network
to extract deep features, it utilizes a hierarchical training strategy. The model comprises some sparse
autoencoder networks (SAEs), and each SAE consists of two parts: an encoder and a decoder. After
each SAE is trained, its decoded layer is removed and then an SSAE is established using the encoder
parameters of all SAEs in a layer-by-layer manner. Afterwards, this network is linked to a regression
model to implement the prediction work. That is to say, an SSAE model is comprised of the trained
SAEs and the regression model. The MSLR was taken into consideration in order to compare the
prediction performances of the more prevalent and complex machine learning models with that of the
frequently-used parametric model.

We employed the R statistical package [58] to implement RF, SVR, KNN, and MSLR
models. The Deep Learning toolbox, an open source library (https://github.com/rasmusbergpalm/

DeepLearnToolbox#deeplearntoolbox), was modified to perform SSAE algorithm.

3.3. AGB Modeling and Validation

Table 2 showed the three experiments (Experiments 1–3) designed with different data scenarios.
Experiment 1: univariate linear or nonlinear regression models were developed based on a single
SVI or LiDAR variable; Experiment 2: each COLI was used to establish the univariate linear or
nonlinear regression model; Experiment 3: four data combinations were individually fitted to all
the five prediction models described in Section 3.2. The four data combinations included (i) all the
COLI1 (ACOLI1), (ii) all the COLI2 (ACOLI2), (iii) ACOLI1 and all the optical (AO) and LiDAR
variables (AL), and (iv) ACOLI2, AO and AL. Individual model predictions were validated against
the same independent dataset (n = 59). Three indicators were calculated, including coefficient of
determination (R2), root mean squared error (RMSE), and relative root mean squared error (RMSEr),
for accuracy assessment.

Table 2. Predictor variables used in each data scenario for modeling AGB.

Data Scenarios Data Source Details Experiment

a single SVI or LiDAR
variable

Landsat 8 OLI/
LiDAR

each optical or LiDAR
variable 1

a single COLI Landsat 8 OLI,
LiDAR each COLI (Table 5) 2

ACOLI1

Landsat 8 OLI,
LiDAR

All the COLI1 i

3

ACOLI2 All the COLI2 ii

ACOLI1+AO+AL All the COLI1, optical and
LiDAR variables iii

ACOLI2+AO+AL All the COLI2, optical and
LiDAR variables iv

https://github.com/rasmusbergpalm/DeepLearnToolbox#deeplearntoolbox
https://github.com/rasmusbergpalm/DeepLearnToolbox#deeplearntoolbox


Remote Sens. 2019, 11, 1459 8 of 17

4. Results

4.1. Univariate Model Performance

4.1.1. Relationships between SVIs or LiDAR Metrics and AGB (Experiment 1)

The statistical regression analysis was used to model relationships between SVIs and biomass.
Accuracy assessment of each modeling case is shown in Table 3. The best statistical model was found
by using the OSAVI as the input variable (R2 = 0.594, RMSE = 37.097 Mg/ha, RMSEr = 27.004%),
followed by using the NDVI (R2 = 0.563, RMSE = 37.702 Mg/ha, RMSEr = 27.445%). The EVI fitted
model yielded the lowest R2 and highest RMSE and RMSEr values (0.209, 52.012 Mg/ha and 37.861%,
respectively). Overall, in the experiment 1, statistical models with the single SVI did not show
satisfactory performance with the R2 < 0.6 and RMSE > 37 Mg/ha. Table 4 shows moderate to good
modeling performances for AGB estimation by using LiDAR metrics. The variables of p60 and Cov had
the highest (R2 = 0.696, RMSE = 31.326 Mg/ha, RMSEr = 22.803%) and lowest correlations (R2 = 0.463,
RMSE = 47.298 Mg/ha, RMSEr = 34.43%) with biomass, respectively. The model with the input variable
of Hmean yielded the next best performance with an R2 of 0.684 and RMSE of 32.127 Mg/ha. It was
noted that statistical models fitted by LiDAR metrics generally resulted in higher R2 and smaller RMSE
values than those fitted by the optical variables. The differences in R2 and RMSE between the best
LiDAR variable based model and the best optical variable based model were approximately 0.1 and
5.77 Mg/ha, respectively.

Table 3. Accuracy assessment of the models with input variables of SVIs.

Vegetation Indices R2 RMSE (Mg/ha) RMSEr (%)

ARVI 0.505 41.216 30.002
SR 0.496 41.536 30.236

NDVI 0.563 37.702 27.445
EVI 0.209 52.012 37.861

SAVI 0.426 44.994 32.752
MSAVI 0.473 42.497 30.935
OSAVI 0.594 37.097 27.004

Table 4. Accuracy assessment of the models with input variables of LiDAR metrics.

Lidar Metrics R2 RMSE (Mg/ha) RMSEr (%)

Hmax 0.634 37.015 26.944
Hmean 0.684 32.127 23.386

p10 0.553 40.76 29.671
p20 0.614 38.92 28.331
p30 0.631 37.351 27.189
p40 0.660 34.812 25.341
p50 0.679 33.037 24.049
p60 0.696 31.326 22.803
p70 0.669 34.059 24.792
p80 0.658 35.673 25.968
p90 0.679 33.351 24.277

Hstd 0.479 46.581 33.908
Hcv 0.503 44.785 32.6
Hvar 0.628 38.028 27.682
Cov 0.463 47.298 34.43
CRR 0.573 39.23 28.557

Note: The best (p60) and the next best (Hmean) Lidar metrics were put in bold.
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4.1.2. Relationships between COLIs and AGB (Experiment 2)

As shown in Table 4, the variable of Hmean had a relatively good correlation with biomass,
following the variable of p60. Previous studies have used the LiDAR height metrics Hmean as effective
prior knowledge in the sampling design [59,60] because Hmean can be treated as a direct indicator of
the forest structure and growth status. Therefore, two types of the combined optical and LiDAR indices
(i.e., COLI1 and COLI2) were generated by integrating Hmean with each of the seven SVIs according to
Equations (3) and (4), respectively. More details on COLI1 and COLI2 were provided in Section 3.1.2.

Table 5 shows AGB predictions could be improved by statistical models that have both Hmean

and one of the SVIs as input variables, compared to those using either optical or LiDAR data alone.
Among all the models in COLI1, the statistical model with input variable of OSAVI×Hmean had the best
modeling performance with an R2 of 0.788 and RMSE of 24.787 Mg/ha. In COLI2, the best statistical
model (R2 = 0.763, RMSE = 26.568 Mg/ha) was achieved by using OSAVI_Hmean as well. Additionally,
it was observed that statistical models in COLI1 generally had slightly better perfomance than those in
COLI2. The differences in R2 and RMSE between the model using the best COLI1 (OSAVI×Hmean)
and the model using the best COLI2 (OSAVI_Hmean) reached about 0.03 and 1.78 Mg/ha, respectively.
Figure 3 shows AGB comparisons between field observations and model predictions using different
data scenarions: (a) OSAVI, (b) Hmean, (c) OSAVI×Hmean, and (d) OSAVI_Hmean. Obviously, the models
with combined indices showed fewer deviations in the slopes of the fitted trend-lines (the red lines)
away from the 1:1 line (the black lines) than those using either the optical-only or LiDAR-only data.

Table 5. Accuracy assessment of the models with input variables of COLIs.

Combined Indices R2 RMSE (Mg/ha) RMSEr (%)

COLI1

ARVI×Hmean 0.772 25.693 18.703
SR×Hmean 0.76 27.084 19.715

NDVI×Hmean 0.767 26.278 19.129
EVI×Hmean 0.743 27.92 20.324

SAVI×Hmean 0.76 26.933 19.605
MSAVI×Hmean 0.763 26.688 19.427
OSAVI×Hmean 0.788 24.787 18.043

COLI2

ARVI_Hmean 0.759 27.056 19.695
SR_ Hmean 0.689 32.034 23.319

NDVI_Hmean 0.751 27.436 19.972
EVI_Hmean 0.761 26.898 19.58

SAVI_Hmean 0.744 28.961 21.082
MSAVI_Hmean 0.737 29.33 21.35
OSAVI_Hmean 0.763 26.568 19.339

Note: The best combined indices in COLI1 (OSAVI×Hmean) and COLI2 (OSAVI_Hmean) were put in bold.
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Figure 3. Comparisons between field observations and model predictions by using different data
scenarios: (a) OSAVI, (b) Hmean, (c) OSAVI×Hmean, and (d) OSAVI_Hmean. Note: The red and black
lines separately denoted the fitted trend-lines and the 1:1 line.

4.2. Multivariate Model Performance (Experiment 3)

The MSLR, KNN, SVR, RF and SSAE algorithms were individually adopted to estimate biomass
using ACOLI1, ACOLI2, the combination of ACOLI1, AO and AL, and the combination of ACOLI2,
AO and AL. Table 6 shows that the SSAE model has the best modeling performance, followed by
the RF model. The MSLR model, in most cases, produced the most error in AGB estimate with
the lowest R2 and highest RMSE values. Figure 4 shows comparisons between field surveys and
predicted AGB values derived from the five prediction models calibrated by variables of ACOLI1,
AO and AL. Obvious differences in modeling performances among the five prediction algorithms
could be identified. The SSAE model showed higher agreements between the model estimates and
field observations than other models. Additionally, results showed that the prediction accuracy was
improved with increased input variables, i.e., the models with input variables of ACOLI1 (ACOLI2),
AO and AL achieved better performances than those with ACOLI1 (ACOLI2). Furthermore, slightly
better prediction accuracies were observed for the models calibrated by ACOLI1, AO and AL integrated
variables compared to those by ACOLI2, AO and AL. The best performing model, SSAE with ACOLI1,
AO and AL integrated variables, reached a R2 of 0.935, a RMSE of 15.67 Mg/ha and a RMSEr of 11.407%.

Table 6. Accuracy assessment for models in Experiment 3.

Algorithm Predictors R2 RMSE (Mg/ha) RMSEr (%)

MSLR

ACOLI1 0.812 22.752 16.562
ACOLI2 0.801 23.569 17.156

ACOLI1+AO+AL 0.846 21.062 15.332
ACOLI2+AO+AL 0.834 21.593 15.718

KNN

ACOLI1 0.832 21.861 15.914
ACOLI2 0.841 21.243 15.463

ACOLI1+AO+AL 0.866 19.965 14.533
ACOLI2+AO+AL 0.861 20.225 14.722

SVR

ACOLI1 0.848 20.895 15.21
ACOLI2 0.836 21.629 15.744

ACOLI1+AO+AL 0.884 18.751 13.65
ACOLI2+AO+AL 0.882 18.908 13.764

RF

ACOLI1 0.875 19.215 13.987
ACOLI2 0.871 19.433 14.146

ACOLI1+AO+AL 0.902 17.534 12.764
ACOLI2+AO+AL 0.898 17.93 13.052

SSAE

ACOLI1 0.908 17.058 12.417
ACOLI2 0.903 17.415 12.677

ACOLI1+AO+AL 0.935 15.67 11.407
ACOLI2+AO+AL 0.928 16.158 11.762

Note: The best performing model (i.e., SSAE with ACOLI1, AO and AL integrated variables) was put in bold.
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Figure 4. Comparisons between field observations and model predictions derived from the combination
of ACOLI1, AO and AL for the five models: (a) MSLR, (b) KNN, (c) SVR, (d) RF, (e) SSAE. Note:
The red and black lines separately denoted the fitted trend-lines and the 1:1 line.

4.3. Wall-to-Wall Predictions

The spatial distribution of AGB was mapped by applying the SSAE model (calibrated by ACOLI1,
AO and AL integrated variables) to the whole study area (Figure 5). The predicted values varied from
24.64 Mg/ha to 299.206 Mg/ha, with a mean value of 113.456 Mg/ha. We have masked out the cloud
and river areas. The non-forested regions were considered to have low biomass levels. In view of
the raw LiDAR information located in the black rectangle of Figure 5 was missing, this part did not
participate in the AGB retrieval.
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5. Discussion

5.1. Biomass Estimation Using COLI

In the study, the combined optical and LiDAR indices, i.e., COLI1 and COLI2, were developed by
integrating the best-performing LiDAR predictor (i.e., Hmean) with each of the SVIs derived from the
Landsat 8 OLI image. Both COLIs (i.e., COLI1 and COLI2) improved the biomass estimation accuracy
compared to either the optical-only or LiDAR-only variable. This was in accordance with earlier
studies [32,35,61,62]. Most of these studies used other approaches to combine optical and LiDAR
data for estimating vegetation parameters. Usually, the common approach is the loosely coupled
design [32,35,61–64]. For example, Kulawardhana et al. [32] found that the multiple regression models
with input variables from the fusion of LiDAR metrics and multispectral vegetation indices had better
performances than those calibrated by either the sole LiDAR or multispectral data for vegetation
biomass predictions. In Li et al. [62], the statistical model using combined LiDAR and GF-1 data
achieved a satisfactory performance for the maize AGB estimation. In this study, new indices were
designed, and this approach presented a novel synergistic way of effectively estimating forest biomass.
The satisfactory performances of COLIs can be attributed to the ability of multispectral images to
provide surface information about canopy density and cover and the ability of LiDAR data to measure
forests information about the branches and stems of the trees. Additionally, although COLI1 fitted
models generally achieved smaller RMSE and higher R2 values than COLI2 fitted models, differences
in model predictions between them were slight. It was revealed that OSAVI×Hmean and OSAVI_Hmean

could be used for accurate estimates of forest biomass, along with the fact that the other combined
indices were also valuable (Table 5). Overall, it was concluded that the proposed COLIs could improve
forest biomass predictions since weaknesses and limitations of one predictor might be compensated
through the other one. However, the COLIs should experience further investigations and validations
before the extensive application.

5.2. Biomass Estimation Using Different Prediction Models

To the best of our knowledge, the applications of deep learning models in estimating vegetation
parameters are much less common, although they have been investigated by previous studies for many
other fields, such as object detection and image classification [38–43]. The estimation performance of
SSAE deep learning technique outperformed the other four models. This may be attributed to the fact
that SSAE can automatically learn deep spatial sparse features of data layer by layer. In SSAE model,
the input variables were mapped into another feature space, where the AGB can be accurately predicted.
The overcomplete sparse features were derived due to the sparsity in the hidden layer, and the deep
learning features were more representative because of stacked layers of neural networks. In future
research, the SSAE modeling should be applied separately for different forest types to improve AGB
estimation accuracy. Additionally, the RF algorithm achieved more outstanding predictive accuracy
than other models besides SSAE, and its satisfactory performance has been demonstrated in previous
studies [35,53,54]. The relatively outstanding performance of the RF model depends on its distinctive
regression technique and conceptual design which results in the robustness and flexibility with respect
to noise and outliers [65]. It should be noted that RF may not work effectively using a small amount
of samples on account of the employment of a soft linear boundaries combination [66]. In the study,
the prediction accuracy of SVR was worse than that of RF. This result may be attributed to the “noise”
variables which might bias the optimal hyperplane in the SVR and thus weaken the model performance.
In all the data scenarios, the results show that the SVR achieved a higher accuracy than the KNN. SVR
was more powerful at dealing with high-dimensional and nonlinear problems than KNN, which has
been suggested by previous studies [35,53]. Besides, the relatively poor performance of KNN might be
related to the lack of an effective procedure to weight the prediction strength of the variables in the
implementation process of KNN. In the majority of cases, MLSR performed slightly worse than the
other tested methods possibly due to its inherent limitations, e.g., the modeling accuracy no longer
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changes when additional variables are added [67] because not all variables are linearly correlated
with biomass.

5.3. Overall Performance of the Biomass Estimation

The biomass prediction result of the SSAE model with inputs of ACOLI1, AO and AL integrated
variables (R2 = 0.935, RMSE = 15.67 Mg/ha, RMSEr = 11.407%) in our study showed a high accuracy
comparable to or better than other similar studies. Li et al. [62] integrated airborne LiDAR with satellite
GF-1 data for estimating maize AGB during peak growing season with an R2 of 0.69 and RMSEr of
39%. Kulawardhana et al. [32] evaluated the performance of data fusion based on LiDAR metrics
and multispectral vegetation indices using multiple regression models for vegetation AGB estimation
with an RMSEr of 25.9%. Fassnacht et al. [35] investigated the potential of hyperspectral and airborne
LiDAR integrated dataset for forest biomass estimation with a mean R2 of 0.72 and RMSEr of 28.46%.
In Laurin et al. [61], the Partial Least Square Regression (PLSR) with inputs of the combined airborne
LiDAR metrics and hyperspectral bands achieved the best performance (R2 = 0.7, RMSEr = 35.83%) for
the forest biomass estimation.

There is the possibility of improving model accuracy in some effective ways. For example, the
methods to select the predictor variables should be introduced, and separate estimates for different forest
types should be implemented to further improve the AGB prediction performance in future studies.

6. Conclusions

In this research, univariate regression models using combined optical and LiDAR indices
(i.e., COLI1 and COLI2) significantly improved the biomass estimation accuracy compared to those
using either data type alone. Therefore, the proposed COLIs provide an avenue to synergistically use
optical and LiDAR data for mapping biomass and other vegetation parameters. However, these COLIs
should be expanded to other forest types for further validations and wide applications. In addition,
it should be noted that the presented results are the first step towards the integration of remotely sensed
spatial and spectral information for a precise and non-destructive estimation of forest biomass. Other
data fusion methods may further increase the prediction power. The deep learning model (i.e., SSAE),
which has previously been rarely explored in mapping forest attributes, was found to be superior over
other prediction models for estimating forest AGB. This conclusion may facilitate further applications
of deep learning models for mapping vegetation structure parameters. The SSAE prediction model
calibrated by variables of ACOLI1, AO and AL yielded the best biomass estimation accuracy. Overall,
the deep learning model with inputs of structural and spectral integrated information can become a
powerful tool for applications in precision forest biomass monitoring.
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