Landscape Design Intensity and Its Associated Complexity of Forest Landscapes in Relation to Preference and Eye Movements
Abstract
:1. Introduction
1.1. The Association between Landscape Design, Complexity, and Preference
1.2. The Objective and Subjective Measurement of Landscape Complexity
1.3. Using Eye-Tracking Technology in Landscape Perception Research
1.4. The Study Objective
- (1)
- How do landscape design intensities affect objective and subjective landscape complexity and eye movements?
- (2)
- How dose objective and subjective landscape complexity affect visual preference and eye movements?
- (3)
- What are the relationships between eye movement metrics, landscape complexity, and landscape preference?
2. Methods
2.1. Study Area
2.2. Eye-Tracking Apparatus and Measurements
2.3. Study Participants
2.4. Research Procedure
2.5. The Measurement of Fractal Dimension
2.6. Statistical Analysis
3. Results
3.1. Objective and Subjective Landscape Complexity
3.2. Comparison of Preference for Each Setting
3.3. Marginal Effect of Landscape Design Intensity on Preference Ratings
3.4. Comparisons of Eye Movement Metrics among Different Levels of Design Intensities within Each Type of Setting
3.5. Identifying the Correlations between Landscape Eye Movements, Complexity, and Preference
4. Discussion
4.1. Landscape Design Intensity, Complexity, and Preference Ratings
4.2. Design Intensities, Complexity, and Eye Movement
4.3. Preference and Eye Movements
4.4. Limitations and Further Research
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- De Groot, R. Function-analysis and valuation as a tool to assess land use conflicts in planning for sustainable, multi-functional landscapes. Landsc. Urban Plan. 2006, 75, 175–186. [Google Scholar] [CrossRef]
- Junker, B.; Buchecker, M. Aesthetic preferences versus ecological objectives in river restorations. Landsc. Urban Plan. 2008, 85, 141–154. [Google Scholar] [CrossRef]
- Suppakittpaisarn, P.; Jiang, B.; Slavenas, M.; Sullivan, W.C. Does density of green infrastructure predict preference? Urban For. Urban Green. 2019, 40, 236–244. [Google Scholar] [CrossRef]
- Han, K.T. An exploration of relationships among the responses to natural scenes: Scenic beauty, preference, and restoration. Environ. Behav. 2010, 42, 243–270. [Google Scholar] [CrossRef]
- Korpela, K.M.; Hartig, T.; Kaiser, F.G.; Fuhrer, U. Restorative experience and self-regulation in favorite places. Environ. Behav. 2001, 33, 572–589. [Google Scholar] [CrossRef]
- Van den Berg, A.E.; Koole, S.L.; van der Wulp, N.Y. Environment preference and restoration: (How) are they related? J. Environ. Psychol. 2003, 23, 135–146. [Google Scholar] [CrossRef]
- Korpela, K.; Hartig, T. Restorative qualities of favorite places. J. Environ. Psychol. 1996, 16, 221–233. [Google Scholar] [CrossRef][Green Version]
- Lee, S.; Lei, T.C.; Wu, S.C.; Hou, J.S.; Tzeng, G.H. Applying eye tracking technology to examine landscape preference using prospect refuge theory. Outdoor Recreat. Res. 2015, 28, 1–18. [Google Scholar]
- De Groot, W.T.; van den Born, R.J. Visions of nature and landscape type preferences: An exploration in The Netherlands. Landsc. Urban Plan. 2003, 63, 127–138. [Google Scholar] [CrossRef]
- Wang, R.; Zhao, J.; Liu, Z. Consensus in visual preferences: The effects of aesthetic quality and landscape types. Urban For. Urban Green. 2016, 20, 210–217. [Google Scholar] [CrossRef]
- White, E.V.; Gatersleben, B. Greenery on residential buildings: Does it affect preferences and perceptions of beauty? J. Environ. Psychol. 2011, 31, 89–98. [Google Scholar] [CrossRef][Green Version]
- Buijs, A.E.; Elands, B.H.; Langers, F. No wilderness for immigrants: Cultural differences in images of nature and landscape preferences. Landsc. Urban Plan. 2009, 91, 113–123. [Google Scholar] [CrossRef]
- Yang, B.E.; Brown, T.J. A cross-cultural comparison of preferences for landscape styles and landscape elements. Environ. Behav. 1992, 24, 471–507. [Google Scholar] [CrossRef]
- Gao, T.; Zhu, L.; Zhang, T.; Song, R.; Zhang, Y.; Qiu, L. Is an environment with high biodiversity the most attractive for human recreation? A case study in Baoji, China. Sustainability 2019, 11, 4086. [Google Scholar] [CrossRef][Green Version]
- Kothencz, G.; Kolcsár, R.; Cabrera-Barona, P.; Szilassi, P. Urban green space perception and its contribution to well-being. Int. J. Environ. Res. Public Health 2017, 14, 766. [Google Scholar] [CrossRef][Green Version]
- Paul, S.; Nagendra, H. Factors influencing perceptions and use of urban nature: Surveys of park visitors in Delhi. Land 2017, 6, 27. [Google Scholar] [CrossRef][Green Version]
- Sayadi, S.; González-Roa, M.C.; Calatrava-Requena, J. Public preferences for landscape features: The case of agricultural landscape in mountainous Mediterranean areas. Land Use Policy 2009, 26, 334–344. [Google Scholar] [CrossRef]
- Svobodova, K.; Sklenicka, P.; Vojar, J. How does the representation rate of features in a landscape affect visual preferences? A case study from a post-mining landscape. Int. J. Min. Reclam. Environ. 2015, 29, 266–276. [Google Scholar] [CrossRef]
- Xu, W.; Zhao, J.; Huang, Y.; Hu, B. Design intensities in relation to visual aesthetic preference. Urban For. Urban Green. 2018, 34, 305–310. [Google Scholar] [CrossRef]
- Birmingham, E.; Bischof, W.F.; Kingstone, A. Saliency does not account for fixations to eyes within social scenes. Vis. Res. 2009, 49, 2992–3000. [Google Scholar] [CrossRef][Green Version]
- Peschardt, K.K.; Stigsdotter, U.K. Associations between park characteristics and perceived restorativeness of small public urban green spaces. Landsc. Urban Plan. 2013, 112, 26–39. [Google Scholar] [CrossRef]
- Hartig, T.; Staats, H. The need for psychological restoration as a determinant of environmental preferences. J. Environ. Psychol. 2006, 26, 215–226. [Google Scholar] [CrossRef]
- Purcell, T.; Peron, E.; Berto, R. Why do preferences differ between scene types? Environ. Behav. 2001, 33, 93–106. [Google Scholar] [CrossRef]
- Sullivan, W.C.; Lovell, S.T. Improving the visual quality of commercial development at the rural–urban fringe. Landsc. Urban Plan. 2006, 77, 152–166. [Google Scholar] [CrossRef]
- Yang, J.; Zhao, L.; Mcbride, J.; Gong, P. Can you see green? Assessing the visibility of urban forests in cities. Landsc. Urban Plan. 2009, 91, 97–104. [Google Scholar] [CrossRef]
- Mundher, R.; Abu Bakar, S.; Maulan, S.; Mohd Yusof, M.J.; Al-Sharaa, A.; Aziz, A.; Gao, H. Aesthetic quality assessment of landscapes as a model for urban forest areas: A systematic literature review. Forests 2022, 13, 991. [Google Scholar] [CrossRef]
- Strumse, E. Environmental attributes and the prediction of visual preferences for agrarian landscapes in Western Norway. J. Environ. Psychol. 1994, 14, 293–303. [Google Scholar] [CrossRef]
- Svobodova, K.; Sklenicka, P.; Molnarova, K.; Salek, M. Visual preferences for physical attributes of mining and post-mining landscapes with respect to the sociodemographic characteristics of respondents. Ecol. Eng. 2012, 43, 34–44. [Google Scholar] [CrossRef]
- Ode, Å.; Miller, D. Analysing the relationship between indicators of landscape complexity and preference. Environ. Plan. B Plan. Des. 2011, 38, 24–40. [Google Scholar] [CrossRef]
- Ode, Å.; Hagerhall, C.M.; Sang, N. Analysing visual landscape complexity: Theory and application. Landsc. Res. 2010, 35, 111–131. [Google Scholar] [CrossRef]
- Kaplan, R.; Kaplan, S. The Experience of Nature: A Psychological Perspective; Cambridge University Press: Cambridge, UK, 1989; pp. 50–53. [Google Scholar]
- Ode, Å.; Tveit, M.S.; Fry, G. Capturing landscape visual character using indicators: Touching base with landscape aesthetic theory. Landsc. Res. 2008, 33, 89–117. [Google Scholar] [CrossRef]
- Tveit, M.; Ode, Å.; Fry, G. Key concepts in a framework for analysing visual landscape character. Landsc. Res. 2006, 31, 229–255. [Google Scholar] [CrossRef]
- Dramstad, W.E.; Fry, G.; Fjellstad, W.J.; Skar, B.; Helliksen, W.; Sollund, M.L.; Tveit, M.S.; Geelmuyden, A.K.; Framstad, E. Integrating landscape-based values-Norwegian monitoring of agricultural landscapes. Landsc. Urban Plan. 2001, 57, 257–268. [Google Scholar] [CrossRef]
- Fry, G.; Tveit, M.S.; Ode, Å.; Velarde, M.D. The ecology of visual landscapes: Exploring the conceptual common ground of visual and ecological landscape indicators. Ecol. Indic. 2009, 9, 933–947. [Google Scholar] [CrossRef]
- Kuper, R. Evaluations of landscape preference, complexity, and coherence for designed digital landscape models. Landsc. Urban Plan. 2017, 157, 407–421. [Google Scholar] [CrossRef]
- Velarde, M.D.; Fry, G.; Tveit, M. Health effects of viewing landscapes–Landscape types in environmental psychology. Urban For. Urban Green. 2007, 6, 199–212. [Google Scholar] [CrossRef]
- Hagerhall, C.M.; Purcell, T.; Taylor, R. Fractal dimension of landscape silhouette outlines as a predictor of landscape preference. J. Environ. Psychol. 2004, 24, 247–255. [Google Scholar] [CrossRef]
- Hsieh, M.; Lin, Y. The effect of landscape complexity on natural landscape preference. City Plan. 2011, 45, 427–447. (In Chinese) [Google Scholar]
- Stamps, A.E. Fractals, skylines, nature and beauty. Landsc. Urban Plan. 2002, 60, 163–184. [Google Scholar] [CrossRef]
- Cooper, J. Assessing urban character: The use of fractal analysis of street edges. Urban Morphol. 2005, 9, 96–107. [Google Scholar] [CrossRef]
- Robertson, L. A new theory for urban design. Urban Des. Q. 1995, 56, 11–13. [Google Scholar]
- Spehar, B.; Clifford, C.W.G. Chaos and graphics: Universal aesthetic of fractals. Comput. Graph. 2003, 27, 813–820. [Google Scholar] [CrossRef]
- Taylor, R. Architect reaches for the clouds: How fractals may figure in our appreciation of a proposed new building. Nature 2001, 410, 18. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; He, S.; Lu, M. A measurement of visual complexity for heterogeneity in the built environment based on fractal dimension and its application in two gardens. Fractal Fract. 2021, 5, 278. [Google Scholar] [CrossRef]
- Cooper, J.; Oskrochi, R. Fractal analysis of street vistas: A potential tool for assessing levels of visual variety in everyday street scenes. Environ. Plan. B: Plan. Des. 2008, 35, 349–363. [Google Scholar] [CrossRef][Green Version]
- Sandau, K.; Kurz, H. Measuring fractal dimension and complexity--an alternative approach with an application. J. Microsc. 1997, 186, 164–176. [Google Scholar] [CrossRef]
- Kang, Y.; Kim, E.J. Difference of restorative effects while viewing urban landscapes and green landscapes. Sustainability 2019, 11, 2129. [Google Scholar] [CrossRef][Green Version]
- Stamps, A.E. Mystery, complexity, legibility and coherence: A meta-analysis. J. Environ. Psychol. 2004, 24, 1–16. [Google Scholar] [CrossRef]
- Dupont, L.; Antrop, M.; Eetvelde, V.V. Eye-tracking analysis in landscape perception research: Influence of photograph properties and landscape characteristics. Landsc. Res. 2014, 39, 417–432. [Google Scholar] [CrossRef]
- Dupont, L.; Ooms, K.; Duchowski, A.T.; Antrop, M.; Van Eetvelde, V. Investigating the visual exploration of the rural-urban gradient using eye-tracking. Spat. Cogn. Comput. 2017, 17, 65–88. [Google Scholar] [CrossRef]
- Dupont, L.; Antrop, M.; Eetvelde, V.V. Does landscape related expertise influence the visual perception of landscape photographs? Implications for participatory landscape planning and management. Landsc. Urban Plan. 2015, 141, 68–77. [Google Scholar] [CrossRef][Green Version]
- Valtchanov, D.; Ellard, C.G. Cognitive and affective responses to natural scenes: Effects of low level visual properties on preference, cognitive load and eye-movements. J. Environ. Psychol. 2015, 43, 184–195. [Google Scholar] [CrossRef]
- Berto, R.; Massaccesi, S.; Pasini, M. Do eye movements measured across high and low fascination photographs differ? Addressing Kaplan’s fascination hypothesis. J. Environ. Psychol. 2008, 28, 185–191. [Google Scholar] [CrossRef]
- Waldheim, C.; Hansen, A.; Ackerman, J.S.; Corner, J.; Brunier, Y.; Kennard, P. Composite Landscapes: Photomontage and Landscape Architecture; Hatje Cantz Verlag: Ostfildern, Germany, 2014. [Google Scholar]
- Jacob, R.; Karn, K.S. Eye Tracking in human-computer interaction and usability research: Ready to deliver the promises. Mind 2003, 2, 573–605. [Google Scholar]
- Poole, L.A. Eye tracking in human-computer interaction and usability research: Current status and future. In Encyclopedia of Human Computer Interaction; Idea Group Reference: Quebec, QC, Canada, 2005; pp. 211–219. [Google Scholar]
- Inhoff, A.W.; Radach, R. Definition and Computation of Oculomotor Measures in the Study of Cognitive Processes. In Eye Guidance in Reading and Scene Perception; Elsevier Science Ltd.: Amsterdam, The Netherlands, 1998. [Google Scholar]
- Nordh, H.; Hagerhall, C.M.; Holmqvist, K. Tracking restorative components: Patterns in eye movements as a consequence of a restorative rating task. Landsc. Res. 2013, 38, 101–116. [Google Scholar] [CrossRef]
- Dupont, L.; Ooms, K.; Antrop, M.; Eetvelde, V.V. Comparing saliency maps and eye-tracking focus maps: The potential use in visual impact assessment based on landscape photographs. Landsc. Urban Plan. 2016, 148, 17–26. [Google Scholar] [CrossRef]
- Blehm, C.; Vishnu, S.; Khattak, A.; Mitra, S.; Yee, R.W. Computer vision syndrome: A review. Surv. Ophthalmol. 2005, 50, 253–262. [Google Scholar] [CrossRef]
- Van Orden, K.F.; Jung, T.P.; Makeig, S. Combined eye activity measures accurately estimate changes in sustained visual task performance. Biol. Psychol. 2000, 52, 221–240. [Google Scholar] [CrossRef]
- Mcgregor, D.; Stern, J. Time on task and blink effects on saccade duration. Ergonomics 1996, 39, 649–660. [Google Scholar] [CrossRef]
- Tara, A.; Belesky, P.; Ninsalam, Y. Towards managing visual impacts on public spaces: A quantitative approach to studying visual complexity and enclosure using visual bowl and fractal dimension. J. Digit. Landsc. Archit. 2019, 4, 21–32. [Google Scholar]
- Fractalyse-Fractal Analysis Software. 2006. Available online: https://sourcesup.renater.fr/www/fractalyse/ (accessed on 1 April 2022).
- De Val, G.D.L.F.; Atauri, J.A.; De Lucio, J.V. Relationship between landscape visual attributes and spatial pattern indices: A test study in Mediterranean-climate landscapes. Landsc. Urban Plan. 2006, 77, 393–407. [Google Scholar] [CrossRef]
- Schirpke, U.; Tasser, E.; Lavdas, A.A. Potential of eye-tracking simulation software for analyzing landscape preferences. PLoS ONE 2022, 17, e0273519. [Google Scholar] [CrossRef] [PubMed]
- Van der Jagt, A.P.; Craig, T.; Anable, J.; Brewer, M.J.; Pearson, D.G. Unearthing the picturesque: The validity of the preference matrix as a measure of landscape aesthetics. Landsc. Urban Plan. 2014, 124, 1–13. [Google Scholar] [CrossRef]
- Whitburn, J.; Linklater, W.; Abrahamse, W. Meta-analysis of human connection to nature and pro-environmental behavior. Conserv. Biol. 2020, 34, 180–193. [Google Scholar] [CrossRef][Green Version]
- Day, H. Evaluations of subjective complexity, pleasingness and interestingness for a series of random polygons varying in complexity. Percept. Psychophys. 1967, 2, 281–286. [Google Scholar] [CrossRef]
- Wohlwill, J.F. Amount of stimulus exploration and preference as differential functions of stimulus complexity. Percept. Psychophys. 1968, 4, 307–312. [Google Scholar] [CrossRef][Green Version]
- Egaña, J.I.; Devia, C.; Mayol, R.; Parrini, J.; Orellana, G.; Ruiz, A.; Maldonado, P.E. Small saccades and image complexity during free viewing of natural images in schizophrenia. Front. Psychiatry 2013, 4, 37. [Google Scholar] [CrossRef][Green Version]
- Huang, A.S.; Lin, Y. The effect of landscape color, complexity and preference on viewing behavior. Landsc. Res. 2020, 45, 214–227. [Google Scholar] [CrossRef]
- Kim, M.; Kang, Y.; Abu Bakar, S. A nightscape preference study using eye movement analysis. ALAM CIPTA. Int. J. Sustain. Trop. Des. Res. Pract. 2013, 6, 85–99. [Google Scholar]
Complexity | Landscape Design Intensity | ||||||||
---|---|---|---|---|---|---|---|---|---|
Lawn A | Lawn B | Lawn | Path A | Path B | Path | Waterscape A | Waterscape B | Waterscape | |
OLC | 0.80 ** | 0.00 | 0.39 *** | 0.40 *** | −0.60 *** | 0.15 * | 0.20 * | −0.40 *** | −0.15 * |
SLC | 0.71 *** | 0.33 *** | 0.53 *** | 0.63 *** | 0.60 *** | 0.61 *** | 0.34 *** | 0.41 *** | 0.37 *** |
I | J | Mean Difference (I–J) | |||||||
---|---|---|---|---|---|---|---|---|---|
Lawn A | Lawn B | Lawn | Path B | Path | Waterscape A | Waterscape B | Waterscape | ||
S | L | −0.82 ** | 0.55 | −0.13 | −0.42 | −0.29 | −0.42 | −0.16 | −0.29 |
M | −1.34 *** | 0.03 | −0.66 ** | −1.45 *** | −1.05 *** | −0.97 *** | −0.29 | −0.63 ** | |
H | −1.82 *** | −0.29 | −1.05 *** | −1.50 *** | −0.99 *** | −1.47 *** | −0.82 * | −1.14 *** | |
L | M | −0.52 | −0.53 | −0.53* | −1.03 ** | −0.76 *** | −0.55 | −0.13 | −0.34 |
H | −1.00 ** | −0.84 ** | −0.92 *** | −1.08 *** | −0.70 ** | −1.05 *** | −0.66 | −0.86 *** | |
M | H | −0.47 | −0.32 | −0.39 | −0.05 | .07 | −0.50 | −0.53 | −0.51 |
Settings | Eye Movements | N | χ2 | df | Mean Rank | Real Mean Values | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sligh | Low | Medium | High | p | Sligh | Low | Medium | High | |||||
Lawn | FC | 76 | 20.079 | 3 | 126.36 | 138.81 | 158.82 | 186.02 | 0.000 | 27.18 | 27.96 | 29.70 | 30.84 |
AFD | 76 | 12.310 | 3 | 173.01 | 161.29 | 150.59 | 125.11 | 0.006 | 332.17 | 331.88 | 292.84 | 285.66 | |
SC | 76 | 19.013 | 3 | 127.59 | 139.33 | 157.28 | 185.81 | 0.000 | 26.50 | 27.29 | 28.92 | 30.14 | |
ASA | 76 | 1.165 | 3 | 152.07 | 150.30 | 146.40 | 161.23 | 0.761 | 5.83 | 5.70 | 5.66 | 5.94 | |
Path | FC | 76 | 4.322 | 3 | 142.34 | 142.13 | 159.91 | 165.62 | 0.229 | 28.70 | 28.58 | 30.09 | 30.51 |
AFD | 76 | 3.202 | 3 | 159.43 | 163.30 | 144.95 | 142.31 | 0.361 | 358.25 | 324.29 | 288.40 | 283.41 | |
SC | 76 | 4.604 | 3 | 142.16 | 141.95 | 159.07 | 166.82 | 0.203 | 27.92 | 27.83 | 29.33 | 29.86 | |
ASA | 76 | 5.366 | 3 | 137.80 | 158.80 | 167.98 | 145.41 | 0.147 | 5.65 | 5.98 | 6.18 | 5.80 | |
Waterscape | FC | 76 | 14.179 | 3 | 124.84 | 148.18 | 160.12 | 176.86 | 0.003 | 27.30 | 28.84 | 30.17 | 31.07 |
AFD | 76 | 12.494 | 3 | 177.97 | 155.22 | 148.80 | 128.00 | 0.006 | 359.08 | 320.53 | 294.29 | 276.44 | |
SC | 76 | 13.876 | 3 | 124.83 | 148.74 | 160.09 | 176.34 | 0.003 | 26.54 | 28.11 | 29.41 | 30.30 | |
ASA | 76 | 6.121 | 3 | 160.94 | 167.16 | 135.06 | 146.84 | 0.106 | 5.71 | 5.90 | 5.45 | 5.51 |
Lawn | Path | Waterscape | |||||||
---|---|---|---|---|---|---|---|---|---|
P | OLC | SLC | P | OLC | SLC | P | OLC | SLC | |
Fixation Count | 0.19 ** | 0.14 * | 0.23 *** | 0.09 | 0.04 | 0.08 | 0.09 | −0.11 | 0.07 |
Average Fixation Duration | −0.13 * | −0.12 * | −0.16 ** | −0.08 | −0.03 | −0.08 | −0.06 | 0.08 | −0.07 |
Saccade Count | 0.18 ** | 0.14 * | 0.22 *** | 0.09 | 0.04 | 0.08 | 0.09 | −0.10 | 0.07 |
Average Saccade Amplitude | 0.01 | 0.04 | −0.05 | 0.02 | −0.03 | 0.11 * | −0.09 | 0.11 * | 0.00 |
OLC | 0.02 | - | 0.19 ** | −0.11 | - | 0.10 | −0.05 | - | −0.28 *** |
SLC | 0.53 *** | 0.19*** | - | 0.50 *** | 0.10 | - | 0.52 *** | −0.28 *** | - |
Lawn | Path | Waterscape | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
B | SE B | β | p | B | SE B | β | p | B | SE B | β | p | |
Constant | 2.17 | 0.20 | <0.001 | 1.83 | 0.23 | <0.001 | 1.86 | 0.28 | <0.001 | |||
SLC | 0.54 | 0.05 | 0.53 | <0.001 | 0.58 | 0.05 | 0.53 | <0.001 | 0.62 | 0.06 | 0.52 | <0.001 |
Adjusted R2 | 0.28 | <0.001 | 0.27 | <0.001 | 0.27 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, Y.; Wang, Q.; Liu, H.; Luo, J.; Liu, Q.; Lan, Y. Landscape Design Intensity and Its Associated Complexity of Forest Landscapes in Relation to Preference and Eye Movements. Forests 2023, 14, 761. https://doi.org/10.3390/f14040761
Shen Y, Wang Q, Liu H, Luo J, Liu Q, Lan Y. Landscape Design Intensity and Its Associated Complexity of Forest Landscapes in Relation to Preference and Eye Movements. Forests. 2023; 14(4):761. https://doi.org/10.3390/f14040761
Chicago/Turabian StyleShen, Yuanping, Qin Wang, Hongli Liu, Jianye Luo, Qunyue Liu, and Yuxiang Lan. 2023. "Landscape Design Intensity and Its Associated Complexity of Forest Landscapes in Relation to Preference and Eye Movements" Forests 14, no. 4: 761. https://doi.org/10.3390/f14040761