Topography-Induced Local Climatic Variations as the Decisive Factor in the Shaping of Epiphyte Distributions in Chilan, Northeastern Taiwan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.2.1. Canopy Microclimate Measurement
2.2.2. Epiphyte Inventory and Host-Tree Allometry
2.3. Data Analysis
2.3.1. Climatic Factor Calculations
2.3.2. Epiphyte Diversity and Composition
3. Results
3.1. Climatic Variations between Sites
3.2. Characteristics of Phorophytes (Host Trees) at the Four Sites
3.3. Epiphyte Diversity and Composition of the Four Sites
4. Discussion
4.1. Local Climatic Factors That Affect Epiphyte Abundance and Composition
4.2. Bryophyte Cover as an Indicator for Epiphyte Distribution
4.3. Phorophyte Characteristics and In-Crown Microclimates
4.4. Site Variations in Epiphyte Composition and Indicator Species
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Checklist of Epiphytic Plants in This Study
- Pleurozia acinosa (Mitt.) Trevis. [1][3][4]
- 2.
- Asplenium wilfordii Mett. ex Kuhn [2]
- 3.
- Araiostegia parvipinnula (Hayata) Copel. [1][2][4]
- 4.
- Ctenitis kawakamii (Hayata) Ching *
- 5.
- Elaphoglossum conforme (Sw.) Schott [1]
- 6.
- Mecodium polyanthos (Sw.) Copel. [1][2][3][4]
- 7.
- Arthromeris lehmannii (Mett.) Ching [1][2]
- 8.
- Crypsinus echinosporus (Tagawa) Tagawa [1][2][3][4]
- 9.
- Lepisorus monilisorus (Hayata) Tagawa [2]
- 10.
- Lepisorus obscurevenulosus (Hayata) Ching [1][2]
- 11.
- Polypodium amoenum Wall. ex Mett. [2]
- 12.
- Polypodium argutum Wall. ex Hook. [1][2]
- 13.
- Pyrrosia lingua (Thunb.) Farw. [1][2]
- 14.
- Xiphopteris okuboi (Yatabe) Copel. [1][3]
- 15.
- Vittaria anguste-elongata Hayata [2]
- 16.
- Vittaria flexuosa Fée [1][2][3]
- 17.
- Chamaecyparis obtusa var. formosana (Hayata) Hayata * # (NT)
- 18.
- Tsuga chinensis var. formosana (Hayata) H.L. Li and H. Keng * # (LC)
- 19.
- Viburnum plicatum var. formosanum Y.C. Liu and C.H. Ou * # (NT)
- 20.
- Viburnum taitoense Hayata *
- 21.
- Viburnum urceolatum Siebold and Zucc. *
- 22.
- Rhus ambigua Lav. ex Dippel +
- 23.
- Ilex hayatana Loes. * #
- 24.
- Aralia bipinnata Blanco *
- 25.
- Dendropanax dentiger (Harms) Merr. *
- 26.
- Hedera rhombea var. formosana (Nakai) H.L. Li #[1]
- 27.
- Schefflera taiwaniana (Nakai) Kaneh. #[1]
- 28.
- Ainsliaea latifolia subsp. henryi (Diels) H. Koyama *
- 29.
- Elaeocarpus japonicus Siebold *
- 30.
- Rhododendron kawakamii Hayata # (NT) [1][2][3]
- 31.
- Vaccinium dunalianum var. caudatifolium (Hayata) H.L. Li [1][2][3][4]
- 32.
- Vaccinium emarginatum Hayata #[1][2][3][4]
- 33.
- Vaccinium merrillianum Hayata * #
- 34.
- Lysionotus pauciflorus Maxim. [2]
- 35.
- Hydrangea integrifolia Hayata [1][2][3]
- 36.
- Litsea acuminata (Blume) Kurata *
- 37.
- Neolitsea aciculata var. variabillima J.C. Liao * #
- 38.
- Neolitsea acuminatissima (Hayata) Kaneh. and Sasaki * #
- 39.
- Ligustrum sinense Lour. *
- 40.
- Eurya glaberrima Hayata * #
- 41.
- Eurya loquaiana Dunn *
- 42.
- Ardisia pusilla A. DC. *
- 43.
- Prunus matuurae Sasaki * #
- 44.
- Rubus corchorifolius L. f. *
- 45.
- Damnacanthus angustifolius Hayata * #
- 46.
- Mitchella undulata Siebold and Zucc. (VU)[1]
- 47.
- Acer morrisonense Hayata *#
- 48.
- Illicium anisatum L. *
- 49.
- Symplocos arisanensis Hayata *
- 50.
- Schima superba Gardner and Champ. *
- 51.
- Arisaema formosanum (Hayata) Hayata * #
- 52.
- Heteropolygonatum altelobatum # (VU) [2]
- 53.
- Maianthemum formosanum (Hayata) La Frankie [1]
- 54.
- Ophiopogon intermedius D. Don *
- 55.
- Bulbophyllum pectinatum Finet (NT) [3][4]
- 56.
- Bulbophyllum setaceum T.P. Lin # (NT) [4]
- 57.
- Calanthe puberula Lindl. *
- 58.
- Dendrobium moniliforme (L.) Sw. [2][4]
- 59.
- Epigeneium fargesii (Finet) Gagnep. [1][2][4]
- 60.
- Goodyera bilamellata Hayata [2]
- 61.
- Platanthera brevicalcarata Hayata * #
- 62.
- Pleione bulbocodioides (Franch.) Rolfe (VU) [1]
- 63.
- Yushania niitakayamensis (Hayata) Keng f. *
Appendix B
References
- Petter, G.; Wagner, K.; Wanek, W.; Sánchez Delgado, E.J.; Zotz, G.; Cabral, J.S.; Kreft, H. Functional leaf traits of vascular epiphytes: Vertical trends within the forest, intra-and interspecific trait variability, and taxonomic signals. Funct. Ecol. 2016, 30, 188–198. [Google Scholar] [CrossRef]
- Benzing, D.H. Vulnerabilities of tropical forests to climate change: The significance of resident epiphytes. Clim. Chang. 1998, 39, 519–540. [Google Scholar] [CrossRef]
- Zotz, G. Plants on Plants—The Biology of Vascular Epiphytes; Springer: Berlin, Germany, 2016; p. 282. [Google Scholar]
- Chiou, C.-R.; Song, G.-Z.M.; Chien, J.-H.; Hsieh, C.-F.; Wang, J.-C.; Chen, M.-Y.; Liu, H.-Y.; Yeh, C.-L.; Hsia, Y.-J.; Chen, T.-Y. Altitudinal distribution patterns of plant species in Taiwan are mainly determined by the northeast monsoon rather than the heat retention mechanism of Massenerhebung. Bot. Stud. 2010, 51, 89–97. [Google Scholar]
- Hsu, R.C.C.; Wolf, J.H.D.; Tamis, W.L.M. Regional and Elevational Patterns in Vascular Epiphyte Richness on an East Asian Island. Biotropica 2014, 46, 549–555. [Google Scholar] [CrossRef]
- Werner, F.; Homeier, J.; Oesker, M.; Boy, J. Epiphytic biomass of a tropical montane forest varies with topography. J. Trop. Ecol. 2012, 28, 23–31. [Google Scholar] [CrossRef]
- Nakamura, A.; Kitching, R.L.; Cao, M.; Creedy, T.J.; Fayle, T.M.; Freiberg, M.; Hewitt, C.; Itioka, T.; Koh, L.P.; Ma, K. Forests and their canopies: Achievements and horizons in canopy science. Trends Ecol. Evol. 2017, 32, 438–451. [Google Scholar] [CrossRef]
- De Frenne, P.; Lenoir, J.; Luoto, M.; Scheffers, B.R.; Zellweger, F.; Aalto, J.; Ashcroft, M.B.; Christiansen, D.M.; Decocq, G.; De Pauw, K. Forest microclimates and climate change: Importance, drivers and future research agenda. Glob. Chang. Biol. 2021, 27, 2279–2297. [Google Scholar] [CrossRef]
- Campbell, J.; Coxson, D.S. Canopy microclimate and arboreal lichen loading in subalpine spruce-fir forest. Can. J. Bot. 2001, 79, 537–555. [Google Scholar]
- Stanton, D.E.; Chávez, J.H.; Villegas, L.; Villasante, F.; Armesto, J.; Hedin, L.O.; Horn, H. Epiphytes improve host plant water use by microenvironment modification. Funct. Ecol. 2014, 28, 1274–1283. [Google Scholar] [CrossRef]
- Sillett, S.C.; Pelt, R.V. Trunk reiteration promotes epiphytes and water storage in an old-growth redwood forest canopy. Ecol. Monogr. 2007, 77, 335–359. [Google Scholar] [CrossRef]
- Wu, Y.; Song, L.; Liu, W.; Liu, W.; Li, S.; Fu, P.; Shen, Y.; Wu, J.; Wang, P.; Chen, Q. Fog water is important in maintaining the water budgets of vascular epiphytes in an Asian tropical karst forests during the dry season. Forests 2018, 9, 260. [Google Scholar] [CrossRef]
- Richards, J.H. Assessing the strength of climate and land-use influences on montane epiphyte communities. Conserv. Biol. 2021, 35, 1496–1506. [Google Scholar] [CrossRef]
- Wagner, K.; Mendieta-Leiva, G.; Zotz, G. Host specificity in vascular epiphytes: A review of methodology, empirical evidence and potential mechanisms. AoB Plants 2015, 7, plu092. [Google Scholar] [CrossRef]
- Woods, C.L.; Cardelús, C.L.; DeWalt, S.J. Microhabitat associations of vascular epiphytes in a wet tropical forest canopy. J. Ecol. 2015, 103, 421–430. [Google Scholar] [CrossRef]
- Woods, C.L. Primary ecological succession in vascular epiphytes: The species accumulation model. Biotropica 2017, 49, 452–460. [Google Scholar] [CrossRef]
- Richards, J.H.; Luna, I.M.T.; Waller, D.M. Tree longevity drives conservation value of shade coffee farms for vascular epiphytes. Agric. Ecosyst. Environ. 2020, 301, 107025. [Google Scholar] [CrossRef]
- Flores-Palacios, A.; García-Franco, J.G. The relationship between tree size and epiphyte species richness: Testing four different hypotheses. J. Biogeogr. 2006, 33, 323–330. [Google Scholar] [CrossRef]
- Oswaldo, J.; Hugo, C.; Wilmer, T.; Ismael, P.; Wilson, Q.; Omar, C. Successional forests stages influence the composition and diversity of vascular epiphytes communities from Andean Montane Forests. Ecol. Indic. 2022, 143, 109366. [Google Scholar] [CrossRef]
- Jucker, T.; Hardwick, S.R.; Both, S.; Elias, D.M.; Ewers, R.M.; Milodowski, D.T.; Swinfield, T.; Coomes, D.A. Canopy structure and topography jointly constrain the microclimate of human-modified tropical landscapes. Glob. Chang. Biol. 2018, 24, 5243–5258. [Google Scholar] [CrossRef]
- Wolf, J.H.; Gradstein, S.R.; Nadkarni, N.M. A protocol for sampling vascular epiphyte richness and abundance. J. Trop. Ecol. 2009, 25, 107–121. [Google Scholar] [CrossRef]
- Chiu, C.-A.; Lin, P.-H.; Tsai, C.-Y. Spatio-Temporal Variation and Monsoon Effect on the Temperature Lapse Rate of a Subtropical Island. Terr. Atmos. Ocean. Sci. 2014, 25, 203–217. [Google Scholar] [CrossRef] [PubMed]
- Chu, H.S.; Chang, S.C.; Klemm, O.; Lai, C.W.; Lin, Y.Z.; Wu, C.C.; Lin, J.Y.; Jiang, J.Y.; Chen, J.; Gottgens, J.F. Does canopy wetness matter? Evapotranspiration from a subtropical montane cloud forest in Taiwan. Hydrol. Process. 2014, 28, 1190–1214. [Google Scholar] [CrossRef]
- Chang, S.-C.; Yeh, C.-F.; Wu, M.-J.; Hsia, Y.-J.; Wu, J.-T. Quantifying fog water deposition by in situ exposure experiments in a mountainous coniferous forest in Taiwan. For. Ecol. Manag. 2006, 224, 11–18. [Google Scholar] [CrossRef]
- Huang, J. A simple accurate formula for calculating saturation vapor pressure of water and ice. J. Appl. Meteorol. Climatol. 2018, 57, 1265–1272. [Google Scholar] [CrossRef]
- Turc, L. Estimation of irrigation water requirements, potential evapotranspiration: A simple climatic formula evolved up to date. Ann. Agron. 1961, 12, 13–49. [Google Scholar]
- Wang, S.-M. Using Limited Weather to Estimate the Evaportranspiration; National Cheng Kung University: Tainan, Taiwan, 2014. [Google Scholar]
- Michael, P.R.; Johnston, D.E.; Moreno, W. A conversion guide: Solar irradiance and lux illuminance. J. Meas. Eng. 2020, 8, 153–166. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019; Available online: https://www.R-project.org/ (accessed on 20 May 2022).
- Legendre, P.; Gallagher, E.D. Ecologically meaningful transformations for ordination of species data. Oecologia 2001, 129, 271–280. [Google Scholar] [CrossRef]
- Murtagh, F.; Legendre, P. Ward’s hierarchical agglomerative clustering method: Which algorithms implement Ward’s criterion? J. Classif. 2014, 31, 274–295. [Google Scholar] [CrossRef]
- Ter Braak, C.J. The analysis of vegetation-environment relationships by canonical correspondence analysis. Vegetatio 1987, 69, 69–77. [Google Scholar] [CrossRef]
- Gotsch, S.G.; Davidson, K.; Murray, J.G.; Duarte, V.J.; Draguljić, D. Vapor pressure deficit predicts epiphyte abundance across an elevational gradient in a tropical montane region. Am. J. Bot. 2017, 104, 1790–1801. [Google Scholar] [CrossRef]
- Campany, C.E.; Pittermann, J.; Baer, A.; Holmlund, H.; Schuettpelz, E.; Mehltreter, K.; Watkins, J.E., Jr. Leaf water relations in epiphytic ferns are driven by drought avoidance rather than tolerance mechanisms. Plant Cell Environ. 2021, 44, 1741–1755. [Google Scholar] [CrossRef] [PubMed]
- Cach-Pérez, M.J.; Andrade, J.L.; Cetzal-Ix, W.; Reyes-García, C. Environmental influence on the inter-and intraspecific variation in the density and morphology of stomata and trichomes of epiphytic bromeliads of the Yucatan Peninsula. Bot. J. Linn. Soc. 2016, 181, 441–458. [Google Scholar] [CrossRef]
- Darby, A.; Draguljić, D.; Glunk, A.; Gotsch, S.G. Habitat moisture is an important driver of patterns of sap flow and water balance in tropical montane cloud forest epiphytes. Oecologia 2016, 182, 357–371. [Google Scholar] [CrossRef] [PubMed]
- Williams, C.B.; Murray, J.G.; Glunk, A.; Dawson, T.E.; Nadkarni, N.M.; Gotsch, S.G. Vascular epiphytes show low physiological resistance and high recovery capacity to episodic, short-term drought in Monteverde, Costa Rica. Funct. Ecol. 2020, 34, 1537–1550. [Google Scholar] [CrossRef]
- Pypker, T.G.; Unsworth, M.H.; Van Stan, J.T.; Bond, B.J. The absorption and evaporation of water vapor by epiphytes in an old-growth Douglas-fir forest during the seasonal summer dry season: Implications for the canopy energy budget. Ecohydrology 2017, 10, e1801. [Google Scholar] [CrossRef]
- Zuleta, D.; Benavides, A.M.; López-Rios, V.; Duque, A. Local and regional determinants of vascular epiphyte mortality in the Andean mountains of Colombia. J. Ecol. 2016, 104, 841–849. [Google Scholar] [CrossRef]
- Davis, R. Environmental factors influencing decomposition rates in two Antarctic moss communities. Polar Biol. 1986, 5, 95–103. [Google Scholar] [CrossRef]
- Karger, D.N.; Kluge, J.; Abrahamczyk, S.; Salazar, L.; Homeier, J.; Lehnert, M.; Amoroso, V.B.; Kessler, M. Bryophyte cover on trees as proxy for air humidity in the tropics. Ecol. Indic. 2012, 20, 277–281. [Google Scholar] [CrossRef]
- Ishii, H.R.; Minamino, T.; Azuma, W.; Hotta, K.; Nakanishi, A. Large, retained trees of Cryptomeria japonica functioned as refugia for canopy woody plants after logging 350 years ago in Yakushima, Japan. For. Ecol. Manag. 2018, 409, 457–467. [Google Scholar] [CrossRef]
- Ceballos, S.J.; Chacoff, N.P.; Malizia, A. Interaction network of vascular epiphytes and trees in a subtropical forest. Acta Oecol. 2016, 77, 152–159. [Google Scholar] [CrossRef]
- Wang, X.; Long, W.; Schamp, B.S.; Yang, X.; Kang, Y.; Xie, Z.; Xiong, M. Vascular epiphyte diversity differs with host crown zone and diameter, but not orientation in a tropical cloud forest. PLoS ONE 2016, 11, e0158548. [Google Scholar] [CrossRef]
- Sanger, J.C.; Kirkpatrick, J.B. Fine partitioning of epiphyte habitat within Johansson zones in tropical Australian rain forest trees. Biotropica 2017, 49, 27–34. [Google Scholar] [CrossRef]
- Eskov, A.K.; Zverev, A.O.; Abakumov, E.V. Microbiomes in suspended soils of vascular epiphytes differ from terrestrial soil microbiomes and from each other. Microorganisms 2021, 9, 1033. [Google Scholar] [CrossRef]
- Petrolli, R.; Vieira, C.A.; Jakalski, M.; Bocayuva, M.F.; Vallé, C.; Cruz, E.D.S.; Selosse, M.A.; Martos, F.; Kasuya, M.C.M. A fine-scale spatial analysis of fungal communities on tropical tree bark unveils the epiphytic rhizosphere in orchids. N. Phytol. 2021, 231, 2002–2014. [Google Scholar] [CrossRef]
- Cevallos, S.; Herrera, P.; Vélez, J.; Suárez, J.P. Root-Associated Endophytic and Mycorrhizal Fungi from the Epiphytic Orchid Maxillaria acuminata in a Tropical Montane Forest in Southern Ecuador. Diversity 2022, 14, 478. [Google Scholar] [CrossRef]
- Benner, J.W.; Vitousek, P.M. Development of a diverse epiphyte community in response to phosphorus fertilization. Ecol. Lett. 2007, 10, 628–636. [Google Scholar] [CrossRef]
- Kaur, J.; Phillips, C.; Sharma, J. Host population size is linked to orchid mycorrhizal fungal communities in roots and soil, which are shaped by microenvironment. Mycorrhiza 2021, 31, 17–30. [Google Scholar] [CrossRef]
- Hsu, R.C.-C. Asymbiotic seed germination, seedling development and reintroduction of Pleione formosana Hayata., an endangered epiphytic orchid. In Proceedings of the 23rd World Orchid Conference, Taichung, Taiwan, 23–26 April 2021; pp. 431–433. [Google Scholar]
- Hsu, R.C.C.; Tamis, W.L.M.; Raes, N.; de Snoo, G.R.; Wolf, J.H.D.; Oostermeijer, G.; Lin, S.-H. Simulating climate change impacts on forests and associated vascular epiphytes in a subtropical island of East Asia. Divers. Distrib. 2012, 18, 334–347. [Google Scholar] [CrossRef]
- Marí, M.L.; Toledo, J.J.; Nascimento, H.E.; Zartman, C.E. Regional and Fine Scale Variation of Holoepiphyte Community Structure in Central Amazonian White-Sand Forests. Biotropica 2016, 48, 70–80. [Google Scholar] [CrossRef]
Site | Altitude (m) | Aspect | Host-Tree Species (Number of Individuals) |
---|---|---|---|
Wind | 1703 | NE | Red cypress (1), Yellow cypress (3), Luanta fir (1) |
WindN | 1680 | NE | Yellow cypress (5) |
Lee | 1883 | NW | Red cypress (5) |
Lake | 1692 | S | Yellow cypress (5) |
Site | DBH (cm) | Tree Height (m) | Branch Girth (cm) | Number of Branches | Number of Dead Branches | Branch Moss Cover (%) |
---|---|---|---|---|---|---|
Wind | 79.2 | 24.4 | 10.2 | 53.3 | 18.0 | 11.6 |
WindN | 121.4 | 29.5 | 15.9 | 40.0 | 9.0 | 2.9 |
Lee | 120 | 37.1 | 14.5 | 38.3 | 5.5 | 19.4 |
Lake | 80.6 | 24.3 | 9.2 | 66.3 | 25.0 | 82.9 |
Inner Crown | Middle Crown | Outer Crown | Sum | |
---|---|---|---|---|
Lake | 511 | 484 | 228 | 1223 |
Lee | 315 | 147 | 66 | 528 |
Wind | 98 | 59 | 13 | 170 |
WindN | 79 | 41 | 2 | 122 |
Lake | Lee | Wind | WindN | |
---|---|---|---|---|
Number of species | 51 | 24 | 14 | 11 |
Chao1 index | 73.7 | 29 | 15 | 11.3 |
Shannon index | 2.4 | 2.3 | 1.3 | 1.5 |
Pielou’s evenness | 0.6 | 0.7 | 0.5 | 0.6 |
Indicator species no. | 5, 26, 27, 46, 53, 62 | 2, 9, 11, 15, 34, 52, 60 | - | 56 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsu, R.C.-C.; Lin, C.; Chen, C. Topography-Induced Local Climatic Variations as the Decisive Factor in the Shaping of Epiphyte Distributions in Chilan, Northeastern Taiwan. Forests 2023, 14, 358. https://doi.org/10.3390/f14020358
Hsu RC-C, Lin C, Chen C. Topography-Induced Local Climatic Variations as the Decisive Factor in the Shaping of Epiphyte Distributions in Chilan, Northeastern Taiwan. Forests. 2023; 14(2):358. https://doi.org/10.3390/f14020358
Chicago/Turabian StyleHsu, Rebecca C.-C., Chienyu Lin, and Chienwen Chen. 2023. "Topography-Induced Local Climatic Variations as the Decisive Factor in the Shaping of Epiphyte Distributions in Chilan, Northeastern Taiwan" Forests 14, no. 2: 358. https://doi.org/10.3390/f14020358
APA StyleHsu, R. C.-C., Lin, C., & Chen, C. (2023). Topography-Induced Local Climatic Variations as the Decisive Factor in the Shaping of Epiphyte Distributions in Chilan, Northeastern Taiwan. Forests, 14(2), 358. https://doi.org/10.3390/f14020358