Changes in Slope Stability over the Growth and Decay of Japanese Cedar Tree Roots
Abstract
1. Introduction
2. Materials and Methods
2.1. Root Pullout Experiments
2.2. Roots on the Sliding Surface
2.3. Slope-Stability Analysis
3. Results
3.1. Pullout Strength of Roots
3.2. Root Strength on the Sliding Surface at Different Depths
3.3. Changes in Slope Stability in the Three-Prism Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Depth (cm) | Stand Age (Years) | Root-Diameter Class Value (cm) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
0.25 | 0.75 | 1.25 | 1.75 | 2.25 | 2.75 | 3.25 | 3.75 | 4.25 | ||
35 | 10 | 20.0 | 2.6 | 1.0 | ||||||
15 | 47.0 | 6.1 | 2.4 | 1.3 | 0.8 | |||||
20 | 85.5 | 11.1 | 4.3 | 2.3 | 1.4 | 1.0 | ||||
25 | 116.1 | 15.0 | 5.8 | 3.1 | 2.0 | 1.3 | 1.0 | |||
30 | 135.7 | 17.6 | 6.8 | 3.6 | 2.3 | 1.6 | 1.2 | 0.9 | ||
35 | 173.2 | 22.4 | 8.7 | 4.6 | 2.9 | 2.0 | 1.5 | 1.1 | ||
40 | 179.9 | 23.3 | 9.0 | 4.8 | 3.0 | 2.1 | 1.5 | 1.2 | 0.9 | |
45 | 205.6 | 26.6 | 10.3 | 5.5 | 3.5 | 2.4 | 1.7 | 1.3 | 1.1 | |
50 | 225.5 | 29.2 | 11.3 | 6.0 | 3.8 | 2.6 | 1.9 | 1.5 | 1.2 | |
45 | 10 | 13.5 | 1.7 | 0.7 | ||||||
15 | 42.0 | 5.4 | 2.1 | 1.1 | ||||||
20 | 72.6 | 9.4 | 3.6 | 1.9 | 1.2 | |||||
25 | 95.3 | 12.3 | 4.8 | 2.6 | 1.6 | 1.1 | ||||
30 | 108.5 | 14.1 | 5.4 | 2.9 | 1.8 | 1.3 | 0.9 | |||
35 | 138.4 | 17.9 | 6.9 | 3.7 | 2.3 | 1.6 | 1.2 | |||
40 | 140.9 | 18.3 | 7.1 | 3.8 | 2.4 | 1.6 | 1.2 | 0.9 | ||
45 | 161.1 | 20.9 | 8.1 | 4.3 | 2.7 | 1.9 | 1.4 | 1.0 | ||
50 | 176.7 | 22.9 | 8.9 | 4.7 | 3.0 | 2.0 | 1.5 | 1.1 | ||
55 | 10 | 9.6 | 1.2 | 0.5 | ||||||
15 | 30.0 | 3.9 | 1.5 | 0.8 | ||||||
20 | 50.5 | 6.5 | 2.5 | 1.4 | 0.8 | |||||
25 | 68.0 | 8.8 | 3.4 | 1.8 | 1.1 | 0.8 | ||||
30 | 94.3 | 12.2 | 4.7 | 2.5 | 1.6 | 1.1 | ||||
35 | 98.9 | 12.8 | 5.0 | 2.6 | 1.7 | 1.1 | 0.8 | |||
40 | 119.3 | 15.5 | 6.0 | 3.2 | 2.0 | 1.4 | 1.0 | |||
45 | 136.4 | 17.7 | 6.8 | 3.7 | 2.3 | 1.6 | 1.2 | |||
50 | 126.2 | 16.4 | 6.3 | 3.4 | 2.1 | 1.5 | 1.1 | 0.8 | ||
65 | 10 | 11.6 | 1.6 | |||||||
15 | 21.0 | 2.9 | 1.1 | 0.6 | ||||||
20 | 35.9 | 4.9 | 1.9 | 1.1 | 0.7 | |||||
25 | 59.3 | 8.1 | 3.2 | 1.8 | 1.1 | |||||
30 | 64.6 | 8.8 | 3.5 | 1.9 | 1.2 | 0.8 | ||||
35 | 82.4 | 11.3 | 4.5 | 2.4 | 1.5 | 1.1 | ||||
40 | 81.1 | 11.1 | 4.4 | 2.4 | 1.5 | 1.1 | 0.8 | |||
45 | 92.8 | 12.7 | 5.0 | 2.7 | 1.7 | 1.2 | 0.9 | |||
50 | 101.7 | 13.9 | 5.5 | 3.0 | 1.9 | 1.3 | 1.0 | |||
75 | 10 | 9.0 | 1.2 | |||||||
15 | 23.7 | 3.2 | 1.3 | |||||||
20 | 37.3 | 5.1 | 2.0 | 1.1 | ||||||
25 | 45.9 | 6.3 | 2.5 | 1.4 | 0.9 | |||||
30 | 63.6 | 8.7 | 3.5 | 1.9 | 1.2 | |||||
35 | 63.8 | 8.7 | 3.5 | 1.9 | 1.2 | 0.8 | ||||
40 | 77.0 | 10.5 | 4.2 | 2.3 | 1.4 | 1.0 | ||||
45 | 88.0 | 12.0 | 4.8 | 2.6 | 1.6 | 1.1 | ||||
50 | 78.7 | 10.8 | 4.3 | 2.3 | 1.5 | 1.0 | 0.8 | |||
85 | 10 | 7.1 | 1.0 | |||||||
15 | 18.9 | 2.6 | 1.0 | |||||||
20 | 29.7 | 4.1 | 1.6 | 0.9 | ||||||
25 | 35.6 | 5.0 | 2.0 | 1.1 | 0.7 | |||||
30 | 50.7 | 6.9 | 2.8 | 1.5 | 0.9 | |||||
35 | 64.6 | 8.9 | 3.5 | 1.9 | 1.2 | |||||
40 | 61.3 | 8.4 | 3.3 | 1.8 | 1.1 | 0.8 | ||||
45 | 70.1 | 9.6 | 3.8 | 2.1 | 1.3 | 0.9 | ||||
50 | 76.9 | 10.5 | 4.2 | 2.3 | 1.4 | 1.0 | ||||
95 | 10 | 5.8 | 0.8 | |||||||
15 | 15.4 | 2.1 | 0.8 | |||||||
20 | 24.2 | 3.3 | 1.3 | 0.7 | ||||||
25 | 40.0 | 5.5 | 2.2 | 1.2 | ||||||
30 | 41.3 | 5.7 | 2.2 | 1.2 | 0.8 | |||||
35 | 52.7 | 7.2 | 2.9 | 1.6 | 1.0 | |||||
40 | 63.6 | 8.7 | 3.5 | 1.9 | 1.2 | |||||
45 | 57.2 | 7.8 | 3.1 | 1.7 | 1.1 | 0.7 | ||||
50 | 62.7 | 8.6 | 3.4 | 1.9 | 1.2 | 0.8 |
References
- Miyasaka, T.; Kawase, H.; Nakaegawa, T.; Imada, Y.; Takayabu, I. Future projections of heavy precipitation in Kanto and associated weather patterns using large ensemble high-resolution simulations. SOLA 2020, 16, 125–131. [Google Scholar] [CrossRef]
- Cruden, D.M.; Varnes, D.J. Landslide types and processes. In Landslides, Investigation and Mitigation: Special Report 247; Turner, A.K., Schuster, R.L., Eds.; Transportation Research Board, National Research Council: Washington, DC, USA, 1996; pp. 501–516. [Google Scholar]
- Okada, Y.; Ochiai, H.; Okamoto, T.; Sassa, K.; Fukuoka, H.; Igwe, O. A complex earth slide–earth flow induction by the heavy rainfall in July 2006, Okaya City, Nagano Prefecture, Japan. Landslides 2007, 4, 197–203. [Google Scholar] [CrossRef]
- Duan, W.; He, B.; Takara, K.; Luo, P.; Nover, D.; Yamashiki, Y.; Huang, W. Anomalous atmospheric events leading to Kyushu’s flash floods, July 11–14, 2012. Nat. Hazards 2014, 73, 1255–1267. [Google Scholar] [CrossRef]
- Yang, H.; Wang, F.; Miyajima, M. Investigation of shallow landslides triggered by heavy rainfall during Typhoon Wipha (2013), Izu Oshima Island, Japan. Geoenviron. Disasters. 2015, 2, 15. [Google Scholar] [CrossRef]
- Wang, G.; Sassa, K.; Fukuoka, H. Downslope volume enlargement of a debris slide–debris flow in the 1999 Hiroshima, Japan, rainstorm. Eng. Geol. 2003, 69, 309–330. [Google Scholar] [CrossRef]
- Wang, F.; Wu, Y.H.; Yang, H.; Tanida, Y.; Kamei, A. Preliminary investigation of the 20 August 2014 debris flows triggered by a severe rainstorm in Hiroshima City, Japan. Geoenviron. Disasters. 2015, 2, 17. [Google Scholar] [CrossRef]
- Chigira, M.; Ling, S.; Matsushi, Y. Landslide disaster induced by the 2017 northern Kyushu rainstorm. Disaster Prev. Res. Inst. Ann. A 2018, 61a, 28–35. [Google Scholar]
- Moriya, H.; Nihei, H.; Hasebe, Y.; Mine, K.; Sushimoto, K.; Yano, S.; Watanabe, Y.; Fukuda, N. Study on driftwood disaster in Kita River, Fukuoka Prefecture, due to 2017 northern Kyushu flood. Annu. J. Hydraul. Eng. 2018, 74, I1195–I1200. [Google Scholar] [CrossRef]
- Mori, S.; Ono, K. Landslide disasters in Ehime Prefecture resulting from the July 2018 heavy rain event in Japan. Soils Found 2019, 59, 2396–2409. [Google Scholar] [CrossRef]
- Akiya, K. Shallow landslides and forests. Landslide prevention and slope stability. In Landslide Prevention and Slope Stability; Sougou Doboku Kenkyusho. Co., Ltd.: Tokyo, Japan, 1979; Volume 3, pp. 43–52. [Google Scholar]
- Zhang, Y.; Shen, C.; Zhou, S.; Luo, X. Analysis of the influence of forests on landslides in the Bijie area of Guizhou. Forests 2022, 13, 1136. [Google Scholar] [CrossRef]
- Annual Report on Forest and Forestry in Japan 2022. Available online: http://www.rinya.maff.go.jp/j/kikaku/hakusyo/r3hakusyo/attach/pdf/zenbun-26.pdf (accessed on 28 October 2022).
- Okada, Y.; Konishi, C. Geophysical features of shallow landslides induced by the 2015 Kanto-Tohoku heavy rain in Kanuma city, Tochigi Prefecture, Japan. Landslides 2019, 16, 2469–2483. [Google Scholar] [CrossRef]
- Okada, Y. Measuring critical turning moment of the Japanese cedar (Cryptomeria japonica) in situ. J. For. Res. 2019, 24, 162–167. [Google Scholar] [CrossRef]
- Outline of Public Opinion Survey on Forests and Lives 2019. Available online: https://survey.gov-online.go.jp/r01/r01-shinrin/gairyaku.pdf (accessed on 28 October 2022).
- The Type and Area of Forest Reserve. Available online: https://www.rinya.maff.go.jp/j/tisan/tisan/con_2_2_1.html (accessed on 28 October 2022).
- Waldron, L.J. The shear resistance of root-permeated homogeneous and stratified soil. Soil Sci. Soc. Am. J. 1977, 41, 843–849. [Google Scholar] [CrossRef]
- Waldron, L.J.; Dakessian, S. Soil reinforcement by roots: Calculation of increased soil shear resistance from root properties. Soil Sci. 1981, 132, 427–435. [Google Scholar] [CrossRef]
- Waldron, L.J.; Dakessian, S.; Nemson, J.A. Shear resistance enhancement of 1.22-meter diameter soil cross sections by pine and alfalfa roots. Soil Sci. Soc. Am. J. 1983, 47, 9–14. [Google Scholar] [CrossRef]
- Abe, K.; Ziemer, R.R. Effect of tree roots on a shear zone: Modeling reinforced shear stress. Can. J. Forest. Res. 1991, 21, 1012–1019. [Google Scholar] [CrossRef]
- Abe, K. A method for evaluating the effect of tree roots on preventing shallow-seated landslides. Bull. For. Forest. Prod. Res. Inst. 1997, 373, 105–181. [Google Scholar]
- Wu, T.H.; McKinnell, W.P.; Swanston, D.N. Strength of tree roots and landslides on Prince of Wales Island, Alaska. Can. Geotech. J. 1979, 16, 19–33. [Google Scholar] [CrossRef]
- Kitahara, H. Effect of tree root systems on slope stability. Water Sci. 2010, 53, 11–37. [Google Scholar]
- Schwarz, M.; Giadrossich, F.; Cohen, D. Modeling root reinforcement using a root-failure Weibull survival function. Hydrol. Earth Syst. Sci. 2013, 17, 4367–4377. [Google Scholar] [CrossRef]
- Li, P.; Xiao, X.; Wu, L.; Li, X.; Zhang, H.; Zhou, J. Study on the shear strength of root-soil composite and root reinforcement mechanism. Forests 2022, 13, 898. [Google Scholar] [CrossRef]
- Wu, T.H.; Beal, P.E.; Lan, C. In-situ shear test of soil-root systems. J. Geotech. Eng. 1988, 114, 1376–1394. [Google Scholar] [CrossRef]
- Abe, K.; Kurokawa, U.; Takeuchi, Y. Method for evaluating thinning influence on a forest’s stability to prevent shallow landslides. J. Jpn. Landslide Soc. 2004, 41, 9–19. [Google Scholar] [CrossRef]
- Sato, H.; Otani, K.; Kanbara, T.; Torita, H. The comparison between the resistance of tree roots to shallow landslide by in-situ direct shear test and the pullout resistance of tree roots. J. Soil Erosion Control Eng. 2013, 66, 15–20. [Google Scholar] [CrossRef]
- Okada, Y.; Kurokawa, U. An experimental examination on a reinforcement of shear resistance due to tree-roots of a Japanese cypress. Kanto J. Forest Res. 2012, 63, 141–144. [Google Scholar]
- Okimura, T.; Ichikawa, R. A prediction method for surface failures by movements of infiltrated water in a surface soil layer. J. Nat. Disaster Sci. 1985, 7, 41–51. [Google Scholar]
- Okada, Y.; Kurokawa, U. Examining tree roots on shearing resistance in shallow landslides triggered by heavy rainfall in Shobara in 2010. J. For. Res. 2015, 20, 230–235. [Google Scholar] [CrossRef]
- Torii, N.; Masumoto, S.; Nonami, S. Proposal of infinite stability analysis considering effects of additional cohesion from roots. Mem. Constr. Eng. Res. Inst. Found. 2021, 63, 75–85. [Google Scholar]
- Kagamihara, S.; Todo, C.; Okazaki, K.; Nishiwaki, H.; Kataoka, S.; Shibuya, S. Case study on evaluating the stability of natural slope by considering the effects of forest roots. Mem. Constr. Eng. Res. Inst. Found 2018, 60, 131–142. [Google Scholar]
- Ueno, S. Influence of geological factors on configuration and scale of landslides. J. Jpn. Landslide Soc. 2001, 38, 105–114. [Google Scholar] [CrossRef]
- Hovland, H.J. Three-dimensional slope stability analysis method. J. Geotech. Eng. Div. 1977, 103, 971–986. [Google Scholar] [CrossRef]
- Ugai, K. Three-dimensional slope stability analysis by simplified Janbu method. J. Jpn. Landslide Soc. 1987, 24, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Hungr, O. An extension of Bishop’s simplified method of slope stability analysis to three dimensions. Géotechnique 1987, 37, 113–117. [Google Scholar] [CrossRef]
- Hungr, O.; Salgado, F.M.; Byrne, P.M. Evaluation of a three-dimensional method of slope stability analysis. Can. Geotech. J. 1989, 26, 679–686. [Google Scholar] [CrossRef]
- Lam, L.; Fredlund, D.G. A general limit equilibrium model for three-dimensional slope stability analysis. Can. Geotech. J. 1993, 30, 905–919. [Google Scholar] [CrossRef]
- Zhou, X.P.; Cheng, H. Analysis of stability of three-dimensional slopes using the rigorous limit equilibrium method. Eng. Geol. 2013, 160, 21–33. [Google Scholar] [CrossRef]
- Kumar, S.; Choudhary, S.S.; Burman, A. Recent advances in 3D slope stability analysis: A detailed review. Model Earth Syst. Environ. 2022. [CrossRef]
- Roering, J.J.; Schmidt, K.M.; Stock, J.D.; Dietrich, W.E.; Montgomery, D.R. Shallow landsliding, root reinforcement, and the spatial distribution of trees in the Oregon Coast Range. Can. Geotech. J. 2003, 40, 237–253. [Google Scholar] [CrossRef]
- Tosi, M. Root tensile strength relationships and their slope stability implications of three shrub species in the Northern Apennines (Italy). Geomorphology 2007, 87, 268–283. [Google Scholar] [CrossRef]
- Ni, J.J.; Leung, A.K.; Ng, C.W.W.; Shao, W. Modelling hydro-mechanical reinforcements of plants to slope stability. Comput. Geotech. 2018, 95, 99–109. [Google Scholar] [CrossRef]
- Area Tables of Japanese Cedar Forests and Japanese Cypress Forests in Each Prefecture. Available online: https://www.rinya.maff.go.jp/j/sin_riyou/kafun/pdf/sugihinoki_menseki.pdf (accessed on 28 October 2022).
- Karizumi, N. Root biomass. In Primary Productivity of Japanese Forests—Productivity of Terrestrial Communities; Shidei, T., Kira, T., Eds.; University of Tokyo Press: Tokyo, Japan, 1977; Volume 16, pp. 45–52. [Google Scholar]
- Yazawa, K. Heterogeneity in specific gravity, tree rings, and water content. Mater. Trans. 1963, 12, 678–682. [Google Scholar] [CrossRef]
- Wu, T.H. Root reinforcement of soil: Review of analytical models, test results, and applications to design. Can. Geotech. J. 2013, 50, 259–274. [Google Scholar] [CrossRef]
- Danjon, F.; Barker, D.H.; Drexhage, M.; Stokes, A. Using three-dimensional plant root architecture in models of shallow-slope stability. Ann. Bot. 2008, 101, 1281–1293. [Google Scholar] [CrossRef]
- Genet, M.; Kokutse, N.; Stokes, A.; Fourcaud, T.; Cai, X.; Ji, J.; Mickovski, S. Root reinforcement in plantations of Cryptomeria japonica D. Don: Effect of tree age and stand structure on slope stability. Forest. Ecol. Manag. 2008, 256, 1517–1526. [Google Scholar] [CrossRef]
- Abdi, E.; Majnounian, B.; Genet, M.; Rahimi, H. Quantifying the effects of root reinforcement of Persian ironwood (Parrotia persica) on slope stability; a case study: Hillslope of Hyrcanian forests, northern Iran. Ecol. Eng. 2010, 36, 1409–1416. [Google Scholar] [CrossRef]
- Schwarz, M.; Preti, F.; Giadrossich, F.; Lehmann, P.; Or, D. Quantifying the role of vegetation in slope stability: A case study in Tuscany (Italy). Ecol. Eng. 2010, 36, 285–291. [Google Scholar] [CrossRef]
- Forestry Agency. Yield Tables of the Japanese Cedar Developed for Regions in and around Ibaraki Prefecture, 1st ed.; Tokyo Forestry Bureau: Tokyo, Japan, 1959; pp. 5–6. [Google Scholar]
- Osanai, N. Site prediction of shallow landslides by means of simplified cone penetration tests. Found Eng. Equip Mon. 2007, 35, 19–22. [Google Scholar]
- Pelletier, J.; Broxton, P.; Hazenberg, P.; Zeng, X.; Troch, P.; Niu, G.; Williams, Z.; Brunke, M.; Gochis, D. A gridded global data set of soil, intact regolith, and sedimentary deposit thicknesses for regional and global land surface modelling. J. Adv. Model Earth Syst. 2015, 8, 41–65. [Google Scholar] [CrossRef]
- Scarpone, C.; Schmidt, M.G.; Bulmer, C.E.; Knudby, A. Modelling soil thickness in the critical zone for Southern British Columbia. Geoderma 2016, 282, 59–69. [Google Scholar] [CrossRef]
- Chen, S.; Mulder, V.L.; Martin, M.P.; Walter, C.; Lacoste, M.; Richer-de-Forges, A.C.; Saby, N.P.A.; Loiseau, T.; Hu, B.; Arrouays, D. Probability mapping of soil thickness by random survival forest at a national scale. Geoderma 2019, 344, 184–194. [Google Scholar] [CrossRef]
- Malone, B.; Searle, R. Improvements to the Australian national soil thickness map using an integrated data mining approach. Geoderma 2020, 377, 114579. [Google Scholar] [CrossRef]
- Abe, K.; Kurokawa, U.; Watanabe, E.; Kubota, H.; Chang, H. A study on soil depth distribution in high elevation slopes (II). Kanto J. Forest. Res. 2004, 55, 267–270. [Google Scholar]
- Survey Guide for Investigations on Forests Disasters. Available online: https://www.rinya.maff.go.jp/j/saigai/saigai/attach/pdf/con_1-3.pdf (accessed on 13 November 2002).
- Azzouz, A.S.; Baligh, M.M. Discussion of three-dimensional slope stability analysis method. J. Geotech. Eng. Div. 1978, 104, 1206–1208. [Google Scholar] [CrossRef]
- Ugai, K.; Wakai, A.; Cai, F. Examination of preciseness of 3D slope stability analysis methods using several idealized sliding masses: Comparisons of Hovland method and 3D simplified Janbu method. J. Jpn. Landslide Soc. 2005, 42, 63–68. [Google Scholar] [CrossRef]
- Jiang, J.-C.; Yamagami, T. Three-dimensional limit equilibrium slope stability analysis: Simplified methods vs rigorous methods. J. Jpn. Landslide Soc. 2005, 42, 129–135. [Google Scholar] [CrossRef]
- Stark, T.D.; Eid, H.T. Performance of three-dimensional slope stability methods in practice. J. Geotech. Geoenviron. Eng. 1998, 124, 1049–1060. [Google Scholar] [CrossRef]
- Kosugi, K. Evaluation of slope failure vulnerability based on antecedent precipitation index. Tech. Note Natl. Res. Inst. Earth Sci. Disaster Prev. 2016, 405, 75–82. [Google Scholar]
- Okimura, T.; Torii, N.; Nakagawa, W.; Haraguchi, K.; Kasahara, T.; Yamauchi, M.; Sagane, T.; Ito, M. Some problems and measures appeared during the construction of the real-time hazard system for slope disasters at a heavy rainfall (5). Mem. Constr. Eng. Res. Inst. Found. 2014, 56, 45–66. [Google Scholar]
- Kitamura, Y.; Namba, S. Tree roots upon landslide prevention presumed through the uprooting test. Bull. For. Forest. Prod. Res. Inst. 1981, 313, 175–208. [Google Scholar]
- Shuin, Y. Effects of vegetation on shallow landslide prevention. Erosion. Control. Eng. 2002, 55, 71–78. [Google Scholar]
- Tsukamoto, Y. Evaluation of the effect of tree roots on slope stability. Bull. Exp. For. Tokyo Univ. Agric. Technol. 1987, 23, 65–124. [Google Scholar]
- Awaya, Y.; Takahashi, T. Evaluating the differences in modelling biophysical attributes between deciduous broadleaved and evergreen conifer forests using low-density small-footprint LiDAR data. Remote Sens. 2017, 9, 572. [Google Scholar] [CrossRef]
- Kumazaki, R. Application of 3D tree modelling using point cloud data by terrestrial laser scanner. J. Jpn. Inst. Landsc. Archit. 2021, 84, 527–530. [Google Scholar] [CrossRef]
- Sheng, H.; Cai, T. Influence of rainfall on canopy interception in mixed broad-leaved—Korean pine forest in Xiaoxing’an Mountains, Northeastern China. Forests 2019, 10, 248. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okada, Y.; Cai, F.; Kurokawa, U. Changes in Slope Stability over the Growth and Decay of Japanese Cedar Tree Roots. Forests 2023, 14, 256. https://doi.org/10.3390/f14020256
Okada Y, Cai F, Kurokawa U. Changes in Slope Stability over the Growth and Decay of Japanese Cedar Tree Roots. Forests. 2023; 14(2):256. https://doi.org/10.3390/f14020256
Chicago/Turabian StyleOkada, Yasuhiko, Fei Cai, and Ushio Kurokawa. 2023. "Changes in Slope Stability over the Growth and Decay of Japanese Cedar Tree Roots" Forests 14, no. 2: 256. https://doi.org/10.3390/f14020256
APA StyleOkada, Y., Cai, F., & Kurokawa, U. (2023). Changes in Slope Stability over the Growth and Decay of Japanese Cedar Tree Roots. Forests, 14(2), 256. https://doi.org/10.3390/f14020256