Nucleation Process of the 2017 Nuugaatsiaq, Greenland Landslide
Abstract
:1. Introduction
2. Methods
3. Results
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ellsworth, W.L.; Bulut, F. Nucleation of the 1999 Izmit earthquake by a triggered cascade of foreshocks. Nat. Geosci. 2018, 11, 531–535. [Google Scholar] [CrossRef]
- Tape, C.; Holtkamp, S.; Silwal, V.; Hawthorne, J.; Kaneko, Y.; Ampuero, J.P.; Ji, C.; Ruppert, N.; Smith, K.; West, M.E. Earthquake nucleation and fault slip complexity in the lower crust of central Alaska. Nat. Geosci. 2018, 11, 536–541. [Google Scholar] [CrossRef] [Green Version]
- Gomberg, J. Unsettled earthquake nucleation. Nat. Geosci. 2018, 11, 463–464. [Google Scholar] [CrossRef]
- Zhu, G.; Yang, H.; Tan, Y.J.; Jin, M.; Li, X.; Yang, W. The cascading foreshock sequence of the Ms 6.4 Yangbi Earthquake in Yunnan, China. Earth Planet. Sci. Lett. 2022, 591, 117594. [Google Scholar] [CrossRef]
- Wang, K.; Chen, Q.-F.; Sun, S.; Wang, A. Predicting the 1975 Haicheng earthquake. Bull. Seismol. Soc. Am. 2006, 96, 757–795. [Google Scholar] [CrossRef]
- Yoon, C.E.; Yoshimitsu, N.; Ellsworth, W.L.; Beroza, G.C. Foreshocks and mainshock nucleation of the 1999 M w 7.1 Hector Mine, California, Earthquake. J. Geophys. Res. Solid Earth 2019, 124, 1569–1582. [Google Scholar] [CrossRef]
- Meng, H.; Fan, W. Immediate foreshocks indicating cascading rupture developments for 527 M 0.9 to 5.4 Ridgecrest earthquakes. Geophys. Res. Lett. 2021, 48, e2021GL095704. [Google Scholar] [CrossRef]
- Bell, A.F. Predictability of landslide timing from quasi-periodic precursory earthquakes. Geophys. Res. Lett. 2018, 45, 1860–1869. [Google Scholar] [CrossRef] [Green Version]
- Poli, P. Creep and slip: Seismic precursors to the Nuugaatsiaq landslide (Greenland). Geophys. Res. Lett. 2017, 44, 8832–8836. [Google Scholar] [CrossRef]
- Strzelecki, M.C.; Jaskólski, M.W. Arctic tsunamis threaten coastal landscapes and communities–survey of Karrat Isfjord 2017 tsunami effects in Nuugaatsiaq, western Greenland. Nat. Hazards Earth Syst. Sci. 2020, 20, 2521–2534. [Google Scholar] [CrossRef]
- Seydoux, L.; Balestriero, R.; Poli, P.; de Hoop, M.; Campillo, M.; Baraniuk, R. Clustering earthquake signals and background noises in continuous seismic data with unsupervised deep learning. Nat. Commun. 2020, 11, 3972. [Google Scholar] [CrossRef] [PubMed]
- Gao, D.; Kao, H.; Wang, B. Misconception of waveform similarity in the identification of repeating earthquakes. Geophys. Res. Lett. 2021, 48, e2021GL092815. [Google Scholar] [CrossRef]
- Gao, D. Comprehensive Study of Seismic Waveform Similarity: Applications to Reliable Identification of Repeating Earthquakes and Investigations of Detailed Source Process of Induced Seismicity. Ph.D. Dissertation, University of Victoria, Victoria, BC, Canada, 2021. [Google Scholar]
- Cheng, X.; Niu, F.; Silver, P.G.; Horiuchi, S.; Takai, K.; Iio, Y.; Ito, H. Similar microearthquakes observed in western Nagano, Japan, and implications for rupture mechanics. J. Geophys. Res. Solid Earth 2007, 112, B04306. [Google Scholar] [CrossRef] [Green Version]
- Kilb, D.; Rubin, A. Implications of diverse fault orientations imaged in relocated aftershocks of the Mount Lewis, ML 5.7, California, earthquake. J. Geophys. Res. Solid Earth 2002, 107, ESE 5-1–ESE 5-17. [Google Scholar] [CrossRef]
- Gao, D.; Kao, H. Optimization of the match-filtering method for robust repeating earthquake detection: The multisegment cross-correlation approach. J. Geophys. Res. Solid Earth 2020, 125, e2020JB019714. [Google Scholar] [CrossRef]
- Kraft, T.; Deichmann, N. High-precision relocation and focal mechanism of the injection-induced seismicity at the Basel EGS. Geothermics 2014, 52, 59–73. [Google Scholar] [CrossRef]
- Myhill, R.; McKenzie, D.; Priestley, K. The distribution of earthquake multiplets beneath the southwest Pacific. Earth Planet. Sci. Lett. 2011, 301, 87–97. [Google Scholar] [CrossRef]
- Li, L.; Niu, F.; Chen, Q.-F.; Su, J.; He, J. Post-seismic velocity changes along the 2008 M 7.9 Wenchuan earthquake rupture zone revealed by S coda of repeating events. Geophys. Suppl. Mon. Not. R. Astron. Soc. 2016, 208, 1237–1249. [Google Scholar] [CrossRef] [Green Version]
- Ma, S.; Atkinson, G.M. Focal depths for small to moderate earthquakes (m N≥ 2.8) in Western Quebec, Southern Ontario, and Northern New York. Bull. Seismol. Soc. Am. 2006, 96, 609–623. [Google Scholar] [CrossRef]
- Ma, S. Focal depth determination for moderate and small earthquakes by modeling regional depth phases sPg, sPmP, and sPn. Bull. Seismol. Soc. Am. 2010, 100, 1073–1088. [Google Scholar] [CrossRef]
- Snieder, R.; Vrijlandt, M. Constraining the source separation with coda wave interferometry: Theory and application to earthquake doublets in the Hayward fault, California. J. Geophys. Res. Solid Earth 2005, 110, B04301. [Google Scholar] [CrossRef] [Green Version]
- Robinson, D.; Sambridge, M.; Snieder, R. A probabilistic approach for estimating the separation between a pair of earthquakes directly from their coda waves. J. Geophys. Res. Solid Earth 2011, 116, B04309. [Google Scholar] [CrossRef] [Green Version]
- Shelly, D.R.; Beroza, G.C.; Ide, S. Non-volcanic tremor and low-frequency earthquake swarms. Nature 2007, 446, 305–307. [Google Scholar] [CrossRef] [PubMed]
- Shelly, D.R.; Skoumal, R.J.; Hardebeck, J.L. S/P Amplitude Ratios Derived from Single-Component Seismograms and Their Potential Use in Constraining Focal Mechanisms for Microearthquake Sequences. Seism. Rec. 2022, 2, 118–126. [Google Scholar] [CrossRef]
- Thomas, A.M.; Bostock, M.G. Identifying low-frequency earthquakes in central Cascadia using cross-station correlation. Tectonophysics 2015, 658, 111–116. [Google Scholar] [CrossRef] [Green Version]
- Kurihara, R.; Obara, K.; Takeo, A.; Maeda, T. Migration of deep low-frequency tremor triggered by teleseismic earthquakes in the southwest Japan Subduction Zone. Geophys. Res. Lett. 2018, 45, 3413–3419. [Google Scholar] [CrossRef]
- Uchida, N.; Matsuzawa, T.; Ellsworth, W.L.; Imanishi, K.; Shimamura, K.; Hasegawa, A. Source parameters of microearthquakes on an interplate asperity off Kamaishi, NE Japan over two earthquake cycles. Geophys. J. Int. 2012, 189, 999–1014. [Google Scholar] [CrossRef] [Green Version]
- Abercrombie, R.E. Stress drops of repeating earthquakes on the San Andreas fault at Parkfield. Geophys. Res. Lett. 2014, 41, 8784–8791. [Google Scholar] [CrossRef]
- Bohnhoff, M.; Wollin, C.; Domigall, D.; Küperkoch, L.; Martínez-Garzón, P.; Kwiatek, G.; Dresen, G.; Malin, P.E. Repeating Marmara Sea earthquakes: Indication for fault creep. Geophys. J. Int. 2017, 210, 332–339. [Google Scholar] [CrossRef]
- Waldhauser, F.; Schaff, D.P. A comprehensive search for repeating earthquakes in northern California: Implications for fault creep, slip rates, slip partitioning, and transient stress. J. Geophys. Res. Solid Earth 2021, 126, e2021JB022495. [Google Scholar] [CrossRef]
- Li, L.; Chen, Q.f.; Niu, F.; Su, J. Deep slip rates along the Longmen Shan fault zone estimated from repeating microearthquakes. J. Geophys. Res. Solid Earth 2011, 116, B09310. [Google Scholar] [CrossRef] [Green Version]
- Beyreuther, M.; Barsch, R.; Krischer, L.; Megies, T.; Behr, Y.; Wassermann, J. ObsPy: A Python toolbox for seismology. Seismol. Res. Lett. 2010, 81, 530–533. [Google Scholar] [CrossRef] [Green Version]
- Ryan, W.B.; Carbotte, S.M.; Coplan, J.O.; O’Hara, S.; Melkonian, A.; Arko, R.; Weissel, R.A.; Ferrini, V.; Goodwillie, A.; Nitsche, F. Global multi-resolution topography synthesis. Geochem. Geophys. Geosyst. 2009, 10, Q03014. [Google Scholar] [CrossRef]
- Hunter, J.D. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 2007, 9, 90–95. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Z.; Hou, X.; Gao, D.; Liu, J. Nucleation Process of the 2017 Nuugaatsiaq, Greenland Landslide. Forests 2023, 14, 2. https://doi.org/10.3390/f14010002
Guo Z, Hou X, Gao D, Liu J. Nucleation Process of the 2017 Nuugaatsiaq, Greenland Landslide. Forests. 2023; 14(1):2. https://doi.org/10.3390/f14010002
Chicago/Turabian StyleGuo, Zhenwei, Xinrong Hou, Dawei Gao, and Jianxin Liu. 2023. "Nucleation Process of the 2017 Nuugaatsiaq, Greenland Landslide" Forests 14, no. 1: 2. https://doi.org/10.3390/f14010002
APA StyleGuo, Z., Hou, X., Gao, D., & Liu, J. (2023). Nucleation Process of the 2017 Nuugaatsiaq, Greenland Landslide. Forests, 14(1), 2. https://doi.org/10.3390/f14010002