Forest Land Resource Information Acquisition with Sentinel-2 Image Utilizing Support Vector Machine, K-Nearest Neighbor, Random Forest, Decision Trees and Multi-Layer Perceptron
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Used
2.3. Feature Setting
2.4. Training Sample Datasets
2.5. Machine Learning Image Classification
2.5.1. Support Vector Machine (SVM)
2.5.2. K-Nearest Neighbor (KNN)
2.5.3. Random Forest (RF)
2.5.4. Decision Trees (DT)
2.5.5. Multi-Layer Perceptron (MLP)
2.6. Accuracy Assessment and Comparisons
3. Results and Analysis
3.1. Forest Land Resource Information Acquisition Results Based on Four Algorithms
- The spatial distribution of forest land resource information based on five classifiers based on Mul:
- The spatial distribution of forest land resource information based on five classifiers based on Mul-vegetation:
- The spatial distribution of forest land resource information based on five classifiers based on Mul-GLCM:
3.2. Forest Land Resource Information Acquisition Confusion Matrix Results Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dotzler, S.; Hill, J.; Buddenbaum, H.; Stoffels, J. The Potential of EnMAP and Sentinel-2 Data for Detecting Drought Stress Phenomena in Deciduous Forest Communities. Remote Sens. 2015, 7, 14227–14258. [Google Scholar] [CrossRef]
- Tian, X.; Yan, M.; van der Tol, C.; Li, Z.; Su, Z.; Chen, E.; Li, X.; Li, L.; Wang, X.; Pan, X.; et al. Modeling Forest Above-Ground Biomass Dynamics Using Multi-Source Data and Incorporated Models: A Case Study over the Qilian Mountains. Agric. For. Meteorol. 2017, 246, 1–14. [Google Scholar] [CrossRef]
- Liu, C.; Tao, R.; Li, W.; Zhang, M.; Sun, M.; Du, Q. Joint Classification of Hyperspectral and Multispectral Images for Mapping Coastal Wetlands. IEEE J. Mag. 2021, 14, 982–996. Available online: https://ieeexplore.ieee.org/abstract/document/9268458 (accessed on 13 November 2022). [CrossRef]
- Szostak, M.; Hawrylo, P.; Piela, D. Using of Sentinel-2 Images for Automation of the Forest Succession Detection. Eur. J. Remote Sens. 2018, 51, 142–149. [Google Scholar] [CrossRef]
- Malinowski, R.; Lewiński, S.; Rybicki, M.; Gromny, E.; Jenerowicz, M.; Krupiński, M.; Nowakowski, A.; Wojtkowski, C.; Krupiński, M.; Krätzschmar, E. Automated Production of a Land Cover/Use Map of Europe Based on Sentinel-2 Imagery. Remote Sens. 2020, 12, 3523. [Google Scholar] [CrossRef]
- Mohammadpour, P.; Viegas, D.X.; Viegas, C. Vegetation Mapping with Random Forest Using Sentinel 2 and GLCM Texture Feature—A Case Study for Lousã Region, Portugal. Remote Sens. 2022, 14, 4585. [Google Scholar] [CrossRef]
- Nelson, M. Evaluating Multitemporal Sentinel-2 Data for Forest Mapping Using Random Forest. Master’s Thesis, Stockholm University, Stockholm, Sweden, 2017. [Google Scholar]
- Hawryło, P.; Bednarz, B.; Wężyk, P.; Szostak, M. Estimating Defoliation of Scots Pine Stands Using Machine Learning Methods and Vegetation Indices of Sentinel-2. Eur. J. Remote Sens. 2018, 51, 194–204. [Google Scholar] [CrossRef]
- Fassnacht, F.E.; Latifi, H.; Stereńczak, K.; Modzelewska, A.; Lefsky, M.; Waser, L.T.; Straub, C.; Ghosh, A. Review of Studies on Tree Species Classification from Remotely Sensed Data. Remote Sens. Environ. 2016, 186, 64–87. [Google Scholar] [CrossRef]
- Wessel, M.; Brandmeier, M.; Tiede, D. Evaluation of Different Machine Learning Algorithms for Scalable Classification of Tree Types and Tree Species Based on Sentinel-2 Data. Remote Sens. 2018, 10, 1419. [Google Scholar] [CrossRef]
- Persson, M.; Lindberg, E.; Reese, H. Tree Species Classification with Multi-Temporal Sentinel-2 Data. Remote Sens. 2018, 10, 1794. [Google Scholar] [CrossRef]
- Guo, Y.; Li, Z.; Chen, E.; Zhang, X.; Zhao, L.; Xu, E.; Hou, Y.; Liu, L. A Deep Fusion UNet for Mapping Forests at Tree Species Levels with Multi-Temporal High Spatial Resolution Satellite Imagery. Remote Sens. 2021, 13, 3613. [Google Scholar] [CrossRef]
- Costa, H.; Benevides, P.; Moreira, F.D.; Moraes, D.; Caetano, M. Spatially Stratified and Multi-Stage Approach for National Land Cover Mapping Based on Sentinel-2 Data and Expert Knowledge. Remote Sens. 2022, 14, 1865. [Google Scholar] [CrossRef]
- Kaplan, G. Broad-Leaved and Coniferous Forest Classification in Google Earth Engine Using Sentinel Imagery. Environ. Sci. Proc. 2020, 3, 64. [Google Scholar] [CrossRef]
- Hernandez, I.; Benevides, P.; Costa, H.; Caetano, M. Exploring Sentinel-2 for Land Cover and Crop Mapping in Portugal. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, XLIII-B3-2020, 83–89. [Google Scholar] [CrossRef]
- Da Pacheco, A.P.; da Junior, J.A.S.; Ruiz-Armenteros, A.M.; Henriques, R.F.F. Assessment of K-Nearest Neighbor and Random Forest Classifiers for Mapping Forest Fire Areas in Central Portugal Using Landsat-8, Sentinel-2, and Terra Imagery. Remote Sens. 2021, 13, 1345. [Google Scholar] [CrossRef]
- Liu, L.; Guo, Y.; Li, Y.; Zhang, Q.; Li, Z.; Chen, E.; Yang, L.; Mu, X. Comparison of Machine Learning Methods Applied on Multi-Source Medium-Resolution Satellite Images for Chinese Pine (Pinus Tabulaeformis) Extraction on Google Earth Engine. Forests 2022, 13, 677. [Google Scholar] [CrossRef]
- Lu, D.; Weng, Q. A Survey of Image Classification Methods and Techniques for Improving Classification Performance. Int. J. Remote Sens. 2007, 28, 823–870. Available online: https://www.tandfonline.com/doi/full/10.1080/01431160600746456 (accessed on 13 November 2022). [CrossRef]
- Friedl, M.A.; Brodley, C.E. Decision Tree Classification of Land Cover from Remotely Sensed Data. Remote Sens. Environ. 1997, 61, 399–409. [Google Scholar] [CrossRef]
- Waske, B.; Braun, M. Classifier Ensembles for Land Cover Mapping Using Multitemporal SAR Imagery. ISPRS J. Photogramm. Remote Sens. 2009, 64, 450–457. [Google Scholar] [CrossRef]
- Li, C.; Wang, J.; Wang, L.; Hu, L.; Gong, P. Comparison of Classification Algorithms and Training Sample Sizes in Urban Land Classification with Landsat Thematic Mapper Imagery. Remote Sens. 2014, 6, 964–983. [Google Scholar] [CrossRef]
- Hatami, B.; Asadi, F.; Bayani, A.; Zali, M.R.; Kavousi, K. Machine Learning-Based System for Prediction of Ascites Grades in Patients with Liver Cirrhosis Using Laboratory and Clinical Data: Design and Implementation Study. Clin. Chem. Lab. Med. 2022, 60, 1946–1954. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Salgado, B.P.; Ponomaryov, V.I.; Robles-Gonzalez, M.A. Parallel Multilayer Perceptron Neural Network Used for Hyperspectral Image Classification. Proc. SPIE 2016, 9897, 141–153. [Google Scholar]
- Thakur, A.; Mishra, D. Hyper Spectral Image Classification Using Multilayer Perceptron Neural Network & Functional Link ANN. In Proceedings of the 7th International Conference on Cloud Computing, Data Science & Engineering—Confluence, Noida, India, 12–13 January 2017; pp. 639–642. [Google Scholar]
- Kalaiarasi, G.; Maheswari, S. Frost Filtered Scale-Invariant Feature Extraction and Multilayer Perceptron for Hyperspectral Image Classification. arXiv 2020. [Google Scholar] [CrossRef]
- He, X.; Chen, Y. Modifications of the Multi-Layer Perceptron for Hyperspectral Image Classification. Remote Sens. 2021, 13, 3547. [Google Scholar] [CrossRef]
- Delwart, S. ESA Standard Document; European Space Agency: Paris, France, 2015; 64p. [Google Scholar]
- Huang, C.; Davis, L.S.; Townshend, J.R.G. An Assessment of Support Vector Machines for Land Cover Classification. Int. J. Remote Sens. 2002, 23, 725–749. [Google Scholar] [CrossRef]
- Foody, G.M.; Mathur, A. A Relative Evaluation of Multiclass Image Classification by Support Vector Machines. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1335–1343. [Google Scholar] [CrossRef]
- Qian, Y.; Zhou, W.; Yan, J.; Li, W.; Han, L. Comparing Machine Learning Classifiers for Object-Based Land Cover Classification Using Very High Resolution Imagery. Remote Sens. 2015, 7, 153–168. [Google Scholar] [CrossRef]
- Maxwell, A.E.; Warner, T.A.; Fang, F. Implementation of Machine-Learning Classification in Remote Sensing: An Applied Review. Int. J. Remote Sens. 2018, 39, 2784–2817. [Google Scholar] [CrossRef]
- Thanh Noi, P.; Kappas, M. Comparison of Random Forest, k-Nearest Neighbor, and Support Vector Machine Classifiers for Land Cover Classification Using Sentinel-2 Imagery. Sensors 2018, 18, 18. [Google Scholar] [CrossRef]
- Wei, C.; Huang, J.; Mansaray, L.R.; Li, Z.; Liu, W.; Han, J. Estimation and Mapping of Winter Oilseed Rape LAI from High Spatial Resolution Satellite Data Based on a Hybrid Method. Remote Sens. 2017, 9, 488. [Google Scholar] [CrossRef]
- Akbulut, Y.; Sengur, A.; Guo, Y.; Smarandache, F. NS-k-NN: Neutrosophic Set-Based k-Nearest Neighbors Classifier. Symmetry 2017, 9, 179. [Google Scholar] [CrossRef]
- France, S.L.; Douglas Carroll, J.; Xiong, H. Distance Metrics for High Dimensional Nearest Neighborhood Recovery: Compression and Normalization. Inf. Sci. 2012, 184, 92–110. [Google Scholar] [CrossRef]
- Yesilbudak, M.; Sagiroglu, S.; Colak, I. A New Approach to Very Short Term Wind Speed Prediction Using K-Nearest Neighbor Classification. Energy Convers. Manag. 2013, 69, 77–86. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăguţ, L. Random Forest in Remote Sensing: A Review of Applications and Future Directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Pal, M. Random Forest Classifier for Remote Sensing Classification. Int. J. Remote Sens. 2005, 26, 217–222. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Huang, J.; Ling, C.X. Using AUC and Accuracy in Evaluating Learning Algorithms. IEEE Trans. Knowl. Data Eng. 2005, 17, 299–310. [Google Scholar] [CrossRef]
- Duro, D.C.; Franklin, S.E.; Dubé, M.G. A Comparison of Pixel-Based and Object-Based Image Analysis with Selected Machine Learning Algorithms for the Classification of Agricultural Landscapes Using SPOT-5 HRG Imagery. Remote Sens. Environ. 2012, 118, 259–272. [Google Scholar] [CrossRef]
- Pal, M.; Mather, P.M. An Assessment of the Effectiveness of Decision Tree Methods for Land Cover Classification. Remote Sens. Environ. 2003, 86, 554–565. [Google Scholar] [CrossRef]
- Han, N.; Du, H.; Zhou, G.; Xu, X.; Ge, H.; Liu, L.; Gao, G.; Sun, S. Exploring the Synergistic Use of Multi-Scale Image Object Metrics for Land-Use/Land-Cover Mapping Using an Object-Based Approach. Int. J. Remote Sens. 2015, 36, 3544–3562. [Google Scholar] [CrossRef]
- Siknun, G.P.; Sitanggang, I.S. Web-Based Classification Application for Forest Fire Data Using the Shiny Framework and the C5.0 Algorithm. Procedia Environ. Sci. 2016, 33, 332–339. [Google Scholar] [CrossRef]
- Tripathi, A.; Tiwari, R.K.; Tiwari, S.P. A Deep Learning Multi-Layer Perceptron and Remote Sensing Approach for Soil Health Based Crop Yield Estimation. Int. J. Appl. Earth Obs. Geoinf. 2022, 113, 102959. [Google Scholar] [CrossRef]
- Rodriguez-Galiano, V.F.; Ghimire, B.; Rogan, J.; Chica-Olmo, M.; Rigol-Sanchez, J.P. An Assessment of the Effectiveness of a Random Forest Classifier for Land-Cover Classification. ISPRS J. Photogramm. Remote Sens. 2012, 67, 93–104. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and Photographic Infrared Linear Combinations for Monitoring Vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef]
- Jurado, J.M.; Ortega, L.; Cubillas, J.J.; Feito, F.R. Multispectral Mapping on 3D Models and Multi-Temporal Monitoring for Individual Characterization of Olive Trees. Remote Sens. 2020, 12, 1106. [Google Scholar] [CrossRef]
- Guan, P.; Zheng, Y.; Lei, G. Analysis of Canopy Phenology in Man-Made Forests Using near-Earth Remote Sensing. Plant Methods 2021, 17, 104. [Google Scholar] [CrossRef]
- Jordan, C.F. Derivation of Leaf-Area Index from Quality of Light on the Forest Floor. Ecology 1969, 50, 663–666. [Google Scholar] [CrossRef]
- Ren, Z.; Rui, G.A.O.; Wang, D. Identification and Classification of Rice Lodging Based on Sentinel-2 Multispectral Image. Water Sav. Irrig. 2022, 7, 44–50. [Google Scholar]
- Yan, Y.-E.; Ouyang, Z.-T.; Guo, H.-Q.; Jin, S.-S.; Zhao, B. Detecting the Spatiotemporal Changes of Tidal Flood in the Estuarine Wetland by Using MODIS Time Series Data. J. Hydrol. 2010, 384, 156–163. [Google Scholar] [CrossRef]
- Chandrasekar, K.; Sesha Sai, M.V.R.; Roy, P.S.; Dwevedi, R.S. Land Surface Water Index (LSWI) Response to Rainfall and NDVI Using the MODIS Vegetation Index Product. Int. J. Remote Sens. 2010, 31, 3987–4005. [Google Scholar] [CrossRef]
- Zhang, X.; Cui, J.; Wang, W.; Lin, C. A Study for Texture Feature Extraction of High-Resolution Satellite Images Based on a Direction Measure and Gray Level Co-Occurrence Matrix Fusion Algorithm. Sensors 2017, 17, 1474. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Du, P.; Chen, J.; Xia, J.; Li, E.; Xu, Z.; Li, X.; Yokoya, N. Performance Evaluation of Downscaling Sentinel-2 Imagery for Land Use and Land Cover Classification by Spectral-Spatial Features. Remote Sens. 2017, 9, 1274. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, G.; Tang, C.; Luo, C.; Zeng, W.; Zha, Z.-J. A Battle of Network Structures: An Empirical Study of CNN, Transformer, and MLP. arXiv 2021. [Google Scholar] [CrossRef]
- Koukal, T.; Suppan, F.; Schneider, W. The Impact of Relative Radiometric Calibration on the Accuracy of KNN-Predictions of Forest Attributes. Remote Sens. Environ. 2007, 110, 431–437. [Google Scholar] [CrossRef]
- Gjertsen, A.K. Accuracy of Forest Mapping Based on Landsat TM Data and a KNN-Based Method. Remote Sens. Environ. 2007, 110, 420–430. [Google Scholar] [CrossRef]
Band | Central Wavelength (nm) | Bandwidth (nm) | Spatial Resolution (m) |
---|---|---|---|
2-Blue | 443.9 | 98 | 10 |
3-Green | 560.0 | 45 | 10 |
4-Red | 664.5 | 38 | 10 |
5-Red Edge | 703.9 | 19 | 20 |
6-Red Edge | 740.2 | 18 | 20 |
7-Red Edge | 782.5 | 28 | 20 |
8-NIR | 835.1 | 145 | 10 |
8A-Red Edge | 864.8 | 33 | 20 |
11-SWIR-1 | 1613.7 | 143 | 20 |
12-SWIR-2 | 2202.4 | 242 | 20 |
Feature Types | Feature Names | Details | Remarks |
---|---|---|---|
Vegetation indices | Ratio vegetation index (RVI) | NIR/R | / |
Difference vegetation index (DVI) | NIR Blue | ||
Normalized difference vegetation index (NDVI) | (NIR1 R)/(NIR1+ R) | ||
Green Red Vegetation Index (GRVI) | (Green R)/(Green + R) | ||
Normalized Difference Red-Edge I Index (NDRE I) | (Red-edge 2 Red-edge 1)/(Red-edge 2 + Red-edge 1) | ||
Land Surface Water Index (LSWI) | (NIR SWIR-1)/(NIR + SWIR-1) | ||
Texture features based on the gray-level co-occurrence matrix (GLCM) | Mean (ME) | is the th row of the th column in the th moving window | |
Variance (VA) | |||
Entropy (EN) | |||
Angular second moment (SE) | |||
Homogeneity (HO) | |||
Contrast (CON) | |||
Dissimilarity (DI) | |||
Correlation (COR) |
Land Cover | Training Datasets (Objects) | Training Datasets (Pixel) |
---|---|---|
Broad-leaved forests | 50 | 691 |
Shrubland | 50 | 478 |
Barren land | 50 | 507 |
Impervious surface | 50 | 504 |
Grasslands | 50 | 529 |
Coniferous forests | 50 | 653 |
SVM | KNN | RF | DT | MLP | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Class | PA | UA | PA | UA | PA | UA | PA | UA | PA | UA |
Broad-leaved forests | 0.750 | 0.938 | 0.600 | 0.800 | 0.800 | 0.842 | 0.750 | 0.790 | 0.500 | 0.769 |
Shrubland | 1.000 | 0.909 | 1.000 | 0.952 | 0.950 | 0.950 | 1.000 | 0.909 | 0.950 | 0.731 |
Barren land | 0.950 | 0.826 | 0.850 | 0.708 | 0.850 | 0.850 | 0.800 | 0.800 | 0.700 | 0.778 |
Impervious surface | 0.950 | 1.000 | 0.900 | 1.000 | 0.900 | 1.000 | 0.900 | 1.000 | 0.900 | 0.818 |
Grasslands | 1.000 | 0.952 | 1.000 | 0.909 | 1.000 | 0.909 | 1.000 | 0.909 | 0.800 | 1.000 |
Coniferous forests | 0.950 | 1.000 | 1.000 | 1.000 | 1.000 | 0.952 | 0.950 | 1.000 | 1.000 | 0.800 |
Overall Accuracy | 0.933 | 0.892 | 0.917 | 0.900 | 0.808 |
SVM | KNN | RF | DT | MLP | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Class | PA | UA | PA | UA | PA | UA | PA | UA | PA | UA |
Broad-leaved forests | 0.000 | 0.000 | 0.400 | 0.889 | 0.550 | 0.917 | 0.300 | 0.600 | 0.400 | 0.889 |
Shrubland | 0.700 | 1.000 | 0.800 | 0.889 | 0.050 | 0.333 | 0.000 | 0.000 | 0.800 | 0.889 |
Barren land | 0.950 | 0.576 | 0.900 | 0.692 | 0.900 | 0.947 | 0.800 | 0.471 | 0.900 | 0.692 |
Impervious surface | 0.900 | 0.692 | 0.900 | 0.900 | 0.900 | 0.720 | 0.050 | 0.333 | 0.900 | 0.900 |
Grasslands | 1.000 | 0.909 | 1.000 | 0.909 | 0.950 | 0.905 | 0.950 | 0.864 | 1.000 | 0.909 |
Coniferous forests | 1.000 | 0.800 | 1.000 | 0.800 | 1.000 | 0.500 | 1.000 | 0.392 | 1.000 | 0.800 |
Overall Accuracy | 0.758 | 0.833 | 0.725 | 0.517 | 0.833 |
SVM | KNN | RF | DT | MLP | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Class | PA | UA | PA | UA | PA | UA | PA | UA | PA | UA |
Broad-leaved forests | 0.950 | 0.905 | 0.600 | 0.857 | 0.800 | 0.800 | 0.800 | 0.842 | 0.750 | 1.000 |
Shrubland | 1.000 | 0.952 | 1.000 | 0.952 | 0.950 | 0.826 | 0.900 | 0.900 | 1.000 | 0.870 |
Barren land | 0.900 | 1.000 | 0.900 | 0.720 | 0.800 | 1.000 | 0.850 | 0.895 | 0.950 | 0.864 |
Impervious surface | 0.900 | 1.000 | 0.900 | 1.000 | 0.950 | 1.000 | 0.900 | 1.000 | 0.850 | 0.895 |
Grasslands | 1.000 | 0.909 | 1.000 | 0.909 | 1.000 | 0.952 | 1.000 | 0.909 | 0.950 | 0.864 |
Coniferous forests | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.952 | 1.000 | 0.909 | 0.950 | 1.000 |
Overall Accuracy | 0.958 | 0.900 | 0.917 | 0.908 | 0.908 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C.; Liu, Y.; Tie, N. Forest Land Resource Information Acquisition with Sentinel-2 Image Utilizing Support Vector Machine, K-Nearest Neighbor, Random Forest, Decision Trees and Multi-Layer Perceptron. Forests 2023, 14, 254. https://doi.org/10.3390/f14020254
Zhang C, Liu Y, Tie N. Forest Land Resource Information Acquisition with Sentinel-2 Image Utilizing Support Vector Machine, K-Nearest Neighbor, Random Forest, Decision Trees and Multi-Layer Perceptron. Forests. 2023; 14(2):254. https://doi.org/10.3390/f14020254
Chicago/Turabian StyleZhang, Chen, Yang Liu, and Niu Tie. 2023. "Forest Land Resource Information Acquisition with Sentinel-2 Image Utilizing Support Vector Machine, K-Nearest Neighbor, Random Forest, Decision Trees and Multi-Layer Perceptron" Forests 14, no. 2: 254. https://doi.org/10.3390/f14020254
APA StyleZhang, C., Liu, Y., & Tie, N. (2023). Forest Land Resource Information Acquisition with Sentinel-2 Image Utilizing Support Vector Machine, K-Nearest Neighbor, Random Forest, Decision Trees and Multi-Layer Perceptron. Forests, 14(2), 254. https://doi.org/10.3390/f14020254