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Abstract: Forestry work involves scientific management and the effective utilization of forest land
resources, and finding economical, efficient and accurate acquisition methods for forest land resource
information. In previous land-use classification research, machine learning algorithms have achieved
good results, and Sentinel public data have been used in various remote sensing applications.
However, there is a paucity of research using these data to evaluate the performance of machine
learning algorithms in the extracting of complex forest land resource information. Using the Sentinel-
2 satellite multispectral image data, the spectral reflectance, vegetation index characteristics and
image texture characteristics of different forest land resources in the study area were calculated
and compared. Then, based on three groups of features, the performances of the Support Vector
Machine (SVM), K-Nearest Neighbor (KNN), Random Forest (RF), decision trees (DT) and Multi-layer
Perceptron (MLP) were examined and compared to identify and classify forest land resource types.
The research indicates the following: (1) The SVM algorithm achieved the highest OA (95.8%). The
average accuracy of the SVM algorithm was much higher than other algorithms (SVM 88.3%, KNN
87.5, RF 85.3%, MLP 85.00% and DT 77.5%). (2) The classification accuracies of each algorithm for
coniferous forests were relatively high, and the recognition accuracy was above 95%, whereas the
classification accuracies of the other categories varied greatly. (3) Adding texture features can improve
the accuracy of the five algorithms. This study reports new references for the qualitative methods
of forest land resource distribution. It has also produced more efficient and accurate acquisitions of
forest land resource information, scientific management and effective use of forest land resources.

Keywords: forest land resource information; sentinel-2; classification algorithms; machine learning

1. Introduction

Forest ecosystems have an important impact on climate change [1]. Therefore, it is of
great significance to study the qualitative methods of forest land resource distribution to
understand forest dynamics and evaluate the climate. In order to scientifically manage and
effectively utilize forest land resources, forestry work focuses on finding an economical,
efficient and accurate method for obtaining information on forest land resources. The
rapid development of space remote sensing technology has provided an effective means
for obtaining information on national forest land resources. The regular and real-time
monitoring of forest resources, and the accurate, fast, high-quality and efficient acquisition
of information from different sources and different forms, all provide a useful tool for
inventorying forest resources, forecasting forest fires and utilizing and protecting forest
resources [2]. At present, scholars have carried out much research on the extraction of
forest land resources by using different remote sensing data to improve the classification
accuracy of forest land resources [3].

Sentinel-2 carries a multispectral imager (MSI) for land monitoring, which can provide
images of vegetation, soil and water coverage, inland waterways and coastal areas, with a
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high spatial resolution and good spectral quality [4,5]. With the free disclosure of data, a
variety of new remote sensing research possibilities have emerged. In previous studies on
forest vegetation, the three red-edge vegetation and Shortwave-infrared (SWIR) bands in
Sentinel-2 are more sensitive to chlorophyll content and enable the distinction of different
vegetation types and Land-Use Land Cover (LULC) classification accuracy [6]. Nelson [7]
classified the tree populations in central Sweden through multi-time-series Sentinel-2
data and Random Forest (RF) classifiers (including mixed coniferous forests, coniferous
and deciduous forests, deciduous and broad-leaved forests, etc.). Hawrylo et al. [8] used
Sentinel-2 data to test the RF and Support Vector Machine (SVM) algorithms by investi-
gating the defoliation of Scots pines in Poland, and found that Sentinel-2 data are suitable
for this goal. In addition, studies have found that spectral features and texture features
can effectively improve the accuracy of the vegetation species classification and can be
used to distinguish different forest species [9,10]. Several studies found that Sentinel-2
data have a high potential for use in different classification tasks and applications, such
as tree species classification [11–13], information extraction of burned areas, forest-type
classification, etc. [14–17].

The improvement of land-use classification results not only depends on the suitability
of remote sensing images, but also the correct selection of classification methods [18]. In
recent years, the continuous development of remote sensing technology and the rise of
machine classification algorithms have accelerated the intelligent process of image recogni-
tion. At present, many advanced machine integration algorithms and classifiers have been
applied to remote sensing image classification, and these methods have been successful
in land use mapping and monitoring [19–21]. Hatami et al. found that in remote sensing
image classification, machine learning algorithms such as SVM, K-Nearest Neighbor (KNN)
and RF are superior to other traditional supervised classifiers [22]. In recent years, the
cellular neural network (CNN) has generally achieved better classification performance
compared to other types of deep learning. However, Multi-layer Perceptron (MLP), a basic
neural network, has proven to be a promising machine learning technique [23–25]. For
example, compared with CNN, Xin He and Yushi Chen [26] improved the results of hy-
perspectral image classification by improving the MLP model, indicating that MLP-based
methods are still competitive in remote sensing image classification.

Therefore, research should compare and evaluate the performance of SVM, KNN, RF,
decision trees (DT) and MLP for forest land resource information acquisition methods in
the south of Genhe City (Located in Inner Mongolia Autonomous Region, China) using the
new satellite data and Sentinel-2 images. The objectives of this study are: (i) to evaluate
the performance of the five classifiers, SVM, KNN, RF, DT and MLP, when applied to a
Sentinel-2 image and (ii) to assess the effects of the spectral reflectance, vegetation index
characteristics and image texture characteristics on the accuracy of the forest resource
information extraction results of the five aforementioned classifiers.

2. Materials and Methods
2.1. Study Area

Genhe City is a county-level city in the north of Hulunbeir City, the Inner Mongolia
Autonomous Region, located in the northern section of the Great Khingan Mountains.
It has one of the highest latitudes of all cities in China, and is also the county-levelcity
with the lowest average temperature in China. The resources of Genhe City are mainly
forest resources, with a forest coverage rate of 91.7% and a forest area of 1.745 million hm2.
Pinus sylvestris var.mongolica, Larix gmelinii and Betula platyphylla are the main tree
species in the area. The core area of this study is rectangular (50◦59′–50◦52′ N, 121◦24′–
121◦35′ E), and it includes the first forest ecological observation station in Inner Mongolia’s
“Greater Khingan Mountains Forest Climate Ecological Observation Station”, which is
located in the south of Genhe City (Figure 1). The study area mainly includes six typical
classes: broad-leaved forests, shrubland, barren land, impervious surface, grasslands and
coniferous forests.
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Figure 1. The study area: (a) China (b) Inner Mongolia Autonomous Region, with blue polygons
representing Hulunbeir, (c) the Research Area.

2.2. Data Used

The multispectral image data used in this study are from the Sentinel-2 platform,
downloaded from the ESA Copernicus Data Center (https://scihub.copernicus.eu, accessed
on 1 September 2022). The satellite revisit period was 5 days. The width was 290 km,
covering 13 spectral bands from visible light to short-wave infrared, with a spatial resolution
of up to 10 m [27]. This paper selects the L2A-level data product of Sentinel-2 located in
Genhe City (1 September 2022) as the research area. The geographic coordinate system used
was UTM/WGS84. Due to image distortion problems caused by remote sensors, sun height,
atmospheric scattering, etc., the reflectivity data of the lower atmosphere in the study area
can be directly obtained. In this paper, the three bands unrelated to vegetation growth
(Band-1, Band-9 and Band-10) were removed. For the image data of the remaining bands,
the sen2cor tool provided by ESA was used to preprocess the image, by using radiometric
calibration, atmospheric correction, resampling, format conversion, and band synthesis.
Multispectral data with a resolution of 10 m were generated, and spatial registration and
vector clipping were performed in the ENVI software. The parameter information of each
band is shown in Table 1.

Table 1. Multispectral band parameters of sentinel-2 satellite.

Band Central Wavelength (nm) Bandwidth (nm) Spatial Resolution (m)

2-Blue 443.9 98 10
3-Green 560.0 45 10
4-Red 664.5 38 10

5-Red Edge 703.9 19 20
6-Red Edge 740.2 18 20
7-Red Edge 782.5 28 20

8-NIR 835.1 145 10
8A-Red Edge 864.8 33 20

11-SWIR-1 1613.7 143 20
12-SWIR-2 2202.4 242 20

https://scihub.copernicus.eu
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2.3. Feature Setting

The categorical features in this study were divided into three groups:
(1) Multispectral features of Sentinel-2 images (Mul); (2) Combined characteristics

of Multispectral features and vegetation index characteristics (Mul-vegetation); and
(3) Combination of multispectral features and texture features of Grey-Level Cooccurrence
Matrix (Mul-GLCM). Based on the above three sets of characteristics, the performance of
four machine learning algorithms, SVM, KNN, RF, DT and MLP, in the extraction of forest
resources information was explored.

Based on the multispectral images of the study area, this study selected some com-
monly used vegetation indices for calculation, including: Normalized Difference Vegetation
Index (NDVI), Green Red Vegetation Index (GRVI), Difference Vegetation Index (DVI),
Ratio Vegetation Index (RVI), Normalized Difference Red-Edge Index (NDREI) and Land
Surface Water Index (LSWI). Based on the Grey-Level Co-occurrence Matrix (GLCM) [19],
the texture features of Sentinel-2 multispectral images were calculated, the filter window
size was set to 3 × 3, and the mean, variance, synergy, contrast, dissimilarity and infor-
mation entropy of image texture were calculated. Second-order moment and dissimilarity
features were used for further analysis of texture features. The vegetation index and texture
feature details are presented in Table 2.

Table 2. Vegetation Index and Texture Feature Details.

Feature Types Feature Names Details Remarks

Vegetation indices

Ratio vegetation index (RVI) NIR/R

/

Difference vegetation index (DVI) NIR − Blue
Normalized difference vegetation

index (NDVI) (NIR1 − R)/(NIR1+ R)

Green Red Vegetation Index (GRVI) (Green − R)/(Green + R)

Normalized Difference Red-Edge I
Index (NDRE I)

(Red-edge 2 −
Red-edge 1)/(Red-edge 2 +

Red-edge 1)

Land Surface Water Index (LSWI) (NIR − SWIR-1)/(NIR +
SWIR-1)

Texture features based
on the gray-level

co-occurrence matrix
(GLCM)

Mean (ME) N−1
∑

i=0

N−1
∑

j=0
P(i, j) ∗ i P(i, j) =

V(i, j)/
N−1
∑

i=0

N−1
∑

j=0
V(i, j)

V(i, j) is the ith row of the jth
column in the Nth moving

window

ux=
N−1
∑

j=0
j

N−1
∑

i=0
P(i, j)

uy=
N−1
∑

i=0
i

N−1
∑

j=0
P(i, j)

σx=
N−1
∑

j=0
(j− ui)

2 N−1
∑

i=0
P(i, j)

σy=
N−1
∑

i=0

(
i− uj

)2 N−1
∑

j=0
P(i, j)

Variance (VA) N−1
∑

i=0

N−1
∑

j=0
(i−mean)2P(i, j)

Entropy (EN) −
N−1
∑

i=0

N−1
∑

j=0
P(i, j) log(P(i, j))

Angular second moment (SE) N−1
∑

i=0

N−1
∑

j=0
P(i, j)2

Homogeneity (HO) N−1
∑

i=0

N−1
∑

j=0

P(i,j)
1+(i−j)2

Contrast (CON) N−1
∑

|i−j|=0
|i− j|2

{
N
∑

i=1

N
∑

j=1
P(i, j)

}
Dissimilarity (DI) N−1

∑
|i−j|=0

|i− j|
{

N
∑

i=1

N
∑

j=1
P(i, j)

}
Correlation (COR) ∑N−1

i=0 ∑N−1
j=0 P(i,j)2−µxµy

σxσy

2.4. Training Sample Datasets

The training dataset was collected from raw Sentinel-2 data, and a visual interpretation
of high-resolution imagery was provided by Google Earth. To collect training sample data,
the Regions of Interest tool in the ENVI 5.6 Toolbox was used to create 50 polygons for the
forest land resource information. Due to the different polygon sizes, the number of pixels
for each land cover class was also different. Details are shown in Table 3.
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Table 3. Training Datasets and Validation Datasets.

Land Cover Training Datasets (Objects) Training Datasets (Pixel)

Broad-leaved forests 50 691
Shrubland 50 478

Barren land 50 507
Impervious surface 50 504

Grasslands 50 529
Coniferous forests 50 653

2.5. Machine Learning Image Classification

In this study, five machine learning algorithms were used to perform pixel-based
supervised image classification: SVM, KNN, RF, DT and MLP.

The main process includes the following four parts: (1) Preprocessing of sentry image
data and the extraction of the vegetation index and texture information; (2) The Mul, Mul
vegetation and Mul GLCM feature settings, and the division of the training set and test
set; (3) The parameters of SVM, KNN, RF, DT and MLP are adjusted, and the classification
results under the best parameters of each classifier are used to compare the performance
of the classifier; (4) Model accuracy verification and result analysis. Details are shown in
Figure 2.
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2.5.1. Support Vector Machine (SVM)

The fundamental principle of SVM learning is to solve the separation hyperplane that
can correctly divide the training data sets with the largest geometric interval. It transforms
the nonlinear classification problem into a high-dimension linear problem, and constructs a
linear discriminant function in the high-dimension feature space and introduces a kernel
function to reduce the amount of calculation [28,29]. According to previous studies, despite
the different types of kernels in kernel functions, including linear, polynomial, radial basis
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function and sigmoid, the radial basis function (RBF) kernel is the most effective parameter
in remote sensing image classifications [30–32]. To exploit the potential of RBF kernels,
the penalty value (C) and gamma (γ) should be optimized. The C parameter balances
the relationship between the complexity of the support vector and the misclassification
rate. The larger the C, the poorer the generalization ability, which causes the overfitting
phenomenon; the smaller the C, the better the generalization ability, which can also cause
the overfitting phenomenon. The γ mainly defines the influence of a single sample on the
entire classification hyperplane. When γ is relatively large, a single sample has a greater
impact on the entire classification hyperplane and is more likely to be selected as a support
vector, or the entire model will have more support vectors [29]. Because of the research of
Li et al. [21], in this study, the parameters of RBF were set as C value = 30 and gamma =
0.0001. This procedure was applied to all datasets.

2.5.2. K-Nearest Neighbor (KNN)

KNN is the simplest classification algorithm. The algorithm relies on the distance
between eigenvectors. The basic theory is that it finds a group of k samples closest to
unknown samples in the dataset. From the k samples, the label of the unknown sample is
determined by computing the mean of the response variables [33,34]. The KNN classifica-
tion algorithm has two key parameters: “n_ neighbors” and “Weights” [35]. “n_ neighbors”
indicates the number of nearest neighbors to be used in the learning process, that is, the k
value; “Weights” is used to identify the weight of each sample’s neighbor samples. The
Weight function is used in the prediction of possible values: “uniform” means that all
nearest neighbor samples have the same weight; “distance” indicates that the weight and
distance are inversely proportional [36]. To optimize results, Scikit-Learn’s GridSearchCV
is used to systematically traverse multiple parameter combinations and determine the best
effect parameters through ten-fold cross-validation; multiple k-values and distance metrics
(uniform and distance) were included in the GridSearchCV parameters. In this study, the
most accurate results for the KNN algorithm were obtained when the n_ neighbors was set
to 4, while the Weights were set to “distance”.

2.5.3. Random Forest (RF)

RF is an integrated classifier, which obtains different training sample sets by resam-
pling samples, trains decision trees on these new training sample sets, and finally, merges
the results of each learner. The final classification/prediction decision is based on majority
voting, and the result is the classification label with the most “votes” [37]. RF classifiers
use the Gini index as an attribute-selection criterion, which measures the heterogeneity of
attributes associated with classes [38]. There are two important parameters affecting the
RF classification accuracy: the number of trees (Ntree) and the number of features in each
split (Mtry) [39]. According to previous research results on these two parameters, the most
common suggestion is to set the Ntree parameter to 500 and set Mtry to the square root of
the number of input variables. To find the optimal RF model for classification, a range of
values for Ntree (‘n_estimators’) and Mtry (‘max_features’) were tested and evaluated in
this study: n_estimators of 1 to 1000 and max_features count from 1 to 10. It can be seen
from the test results that the RF classifier performs best when n_estimates are set to 500
and max_feature is set to 5.

2.5.4. Decision Trees (DT)

DT is a tree structure that describes the classification of instances [40,41]. In remote
sensing image classification, decision trees effectively use the probability distribution
defined in feature and class space to construct models. The algorithm has the advantages
of fast classification speed, a concise model, readability, and easy implementation [42,43].
DT construction usually includes feature selection, the generation of decision trees and
the pruning of decision trees [44]. Feature selection calculates the Info Gain Ratio of
all variables and selects the optimal variable with a high value as the split dataset. DT
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organizes information extracted from data sets into a recursive hierarchical structure made
up of nodes and branches. The main process of decision tree classification starts from the
root node, then tests a certain feature of the instance, and finally assigns the instance to its
child nodes according to the test results; at this time, each child node corresponds to a value
of the feature. The instances are tested and assigned recursively until the leaf nodes are
reached, and then, the instances are classified into the classes of the leaf nodes [20,41,42].
Branches are pruned when a node’s weighted error exceeds that of its parent. Finally, an
optimal decision tree is generated. To optimize results, Scikit-Learn’s GridSearchCV is
used to systematically traverse multiple parameter combinations and determine the most
effective parameters through ten-fold cross-validation. In this study, the most accurate
results for the DT algorithm were obtained when the ‘criterion’ was set to gini, ‘max_depth’
was set to 7, ‘min_impurity_decrease’ was set to 0.1 and ‘min_samples_leaf’ was set to 5.

2.5.5. Multi-Layer Perceptron (MLP)

MLP is a forward-structured artificial neural network (ANN) that maps a set of input
vectors to a set of output vectors [24]. An MLP can be viewed as a directed graph consisting
of multiple layers of nodes, each fully connected to the next layer. Except for the input node,
each node is a neuron with a non-linear activation function. The main process [45] includes
(1) the random distribution of the weights of all edges; (2) forward propagation: using the
input features of all samples in the training set as the input layer, the ANN is activated
for all inputs in the training data sets, and then passes through forward propagation to
obtain the output value; (3) backpropagation: using the output value and sample value to
calculate the total error, and then, using backpropagation to update the weight; (4) repeat
2–3 times until the output error is lower than the established standard. In this study, the
neural network models (supervised) module in Scikit-Learn was used to construct the
MLP model. Through multiple experiments, the main parameters of the model were set
as follows: the hidden layer was set to seven layers (64, 128, 256, 512, 256, 128, 64); the
activation function of the hidden layer was set to “relu”; the solver for weight optimization
was set as ‘adam’, which works relatively well on relatively large datasets (i.e., those with
over a thousand training samples or more), in terms of both training time and validation
score; alpha was set at 0.01.

2.6. Accuracy Assessment and Comparisons

Because the study area has implemented the policy of closing mountains for afforesta-
tion, the environment in the forest is relatively complex. The verification sample datasets
are mainly field survey data, although it also refers to Google images for visual interpre-
tation. A total of 120 sample points evenly distributed in the study area were selected
(20 verification points for each forest land resource type). In algorithm comparison work,
the overall accuracy, user accuracy, and producer accuracy are often used to determine
which classifier achieves better accuracy [21,46]. In this study, we generated the overall
accuracy (OA), user accuracy (UA), and producer accuracy (PA) using the validation sam-
ples. Through these accuracy measures, the performance of five algorithms for forest land
resource information extraction on three feature sets was evaluated.

3. Results and Analysis

To assess and compare the performance of the algorithms and the different datasets, we
used threes datasets (the Mul, Mul-vegetation and Mul-GLCM), and five classifiers (SVM,
KNN, RF, DT and MLP algorithms). Consequently, each classifier had three classification
results, totaling fifteen overall classification results.

3.1. Forest Land Resource Information Acquisition Results Based on Four Algorithms

Tables 4–6 show the accuracy of the forest land resource information for the three
feature groups of Mul, Mul-vegetation and Mul-GLCM by SVM, KNN, RF, DT and MLP
algorithms. Further analysis of Tables 4–6 found that among the three feature combinations,
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the SVM algorithm achieved the highest OA (95.8%) and the DT algorithms had the lowest
OA, followed by the KNN, RF and MLP algorithms; overall, the average accuracy of the
SVM algorithm was higher than the other three algorithms (SVM 88.3%, KNN 87.5, RF
85.3%, MLP 85.0% and DT 77.5%). The analyses in Tables 4–6 also show that including the
vegetation index on the basis of multispectral features reduces the accuracy of the SVM,
KNN, RF and DT algorithms. In particular, the accuracy of the DT algorithm was reduced
to 51.7%. Only the MLP algorithm improved by 2.5 percent; conversely, adding texture
features can improve the accuracy of the five algorithms.

Table 4. Forest land resource information accuracy of five classifiers (SVM, KNN, RF, DT and MLP)
based on Mul feature.

SVM KNN RF DT MLP
Class PA UA PA UA PA UA PA UA PA UA

Broad-leaved forests 0.750 0.938 0.600 0.800 0.800 0.842 0.750 0.790 0.500 0.769
Shrubland 1.000 0.909 1.000 0.952 0.950 0.950 1.000 0.909 0.950 0.731

Barren land 0.950 0.826 0.850 0.708 0.850 0.850 0.800 0.800 0.700 0.778
Impervious surface 0.950 1.000 0.900 1.000 0.900 1.000 0.900 1.000 0.900 0.818

Grasslands 1.000 0.952 1.000 0.909 1.000 0.909 1.000 0.909 0.800 1.000
Coniferous forests 0.950 1.000 1.000 1.000 1.000 0.952 0.950 1.000 1.000 0.800
Overall Accuracy 0.933 0.892 0.917 0.900 0.808

Table 5. Forest land resource information accuracy of five classifiers (SVM, KNN, RF, DT and MLP)
based on Mul-vegetation.

SVM KNN RF DT MLP
Class PA UA PA UA PA UA PA UA PA UA

Broad-leaved forests 0.000 0.000 0.400 0.889 0.550 0.917 0.300 0.600 0.400 0.889
Shrubland 0.700 1.000 0.800 0.889 0.050 0.333 0.000 0.000 0.800 0.889

Barren land 0.950 0.576 0.900 0.692 0.900 0.947 0.800 0.471 0.900 0.692
Impervious surface 0.900 0.692 0.900 0.900 0.900 0.720 0.050 0.333 0.900 0.900

Grasslands 1.000 0.909 1.000 0.909 0.950 0.905 0.950 0.864 1.000 0.909
Coniferous forests 1.000 0.800 1.000 0.800 1.000 0.500 1.000 0.392 1.000 0.800
Overall Accuracy 0.758 0.833 0.725 0.517 0.833

Table 6. Forest land resource information accuracy of five classifiers (SVM, KNN, RF, DT and MLP)
based on the Mul-GLCM.

SVM KNN RF DT MLP
Class PA UA PA UA PA UA PA UA PA UA

Broad-leaved forests 0.950 0.905 0.600 0.857 0.800 0.800 0.800 0.842 0.750 1.000
Shrubland 1.000 0.952 1.000 0.952 0.950 0.826 0.900 0.900 1.000 0.870

Barren land 0.900 1.000 0.900 0.720 0.800 1.000 0.850 0.895 0.950 0.864
Impervious surface 0.900 1.000 0.900 1.000 0.950 1.000 0.900 1.000 0.850 0.895

Grasslands 1.000 0.909 1.000 0.909 1.000 0.952 1.000 0.909 0.950 0.864
Coniferous forests 1.000 1.000 1.000 1.000 1.000 0.952 1.000 0.909 0.950 1.000
Overall Accuracy 0.958 0.900 0.917 0.908 0.908

Table 4 shows that the RF algorithm is better than the DT algorithm in obtaining
information on forest land resources of broad-leaved forests and barren land. The PA
values of broad-leaved forests by the RF and DT algorithms were 80% and 75%, and those
for barren land were 85% and 80%. The accuracy of the MLP algorithm was poor, at
only 50% and 70%. Compared with the RF algorithm, the PA of the SVM algorithm was
better for shrubland, barren land and impervious surfaces. As shown in Table 5, after
the multispectral features of the Sentinel-2 image were added to the vegetation index, the
accuracy rates of four out of the five algorithms, SVM, KNN, RF, and DT, decreased, with
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the MLP algorithm being the exception. The shrubland PA value of the RF algorithm
was 65% and 75% lower than that of the SVM and KNN algorithms, respectively. In
addition, the SVM, KNN and RF algorithms mainly produced improvements in PA values
for impervious surfaces, grasslands and coniferous forests. As shown in Table 6, after
adding texture features on the basis of multi-spectral features, and compared with adding
vegetation index, the five algorithms have improved the classification effect of six types of
ground object. At the same time, the accuracy of the SVM algorithm is better than for the
other four algorithms in some categories.

In summary, the SVM algorithm obtained high extraction accuracies for land-use types,
and KNN and MLP have better robustness on three feature sets. Adding texture features
on the basis of multispectral features can effectively improve the classification accuracy of
ground object types, but the accuracy is reduced by adding the vegetation index.

The spatial distribution of forest land resource information based on five classifiers of
Mul, Mul-vegetation and Mul-GLCM is shown in Figures 3–5.

• The spatial distribution of forest land resource information based on five classifiers
based on Mul:

Based on the Mul features, SVM better identified forest land resource types that were
difficult for other algorithms to distinguish, including barren land and impervious sur-
face. However, the forest land resource-type extraction effect of KNN, RF, DT and MLP
algorithms was unsatisfactory. Further analysis of Figure 3 shows that the SVM algorithm
can correctly distinguish between barren land and impervious surface, while the KNN,
RF, DT and MLP algorithms confused them; the RF algorithm accurately identified broad-
leaved forests and shrubland, while KNN, MLP and DT misclassified broad-leaved forests
as shrubland; barren lands were misclassified as broad-leaved forests for KNN, RF, DT and
MLP while the SVM algorithm accurately distinguished between them; SVM, KNN, RF
and DT algorithms misclassified some grasslands as barren lands, and MLP misclassified
some grasslands as impervious surface.

• The spatial distribution of forest land resource information based on five classifiers
based on Mul-vegetation:

Based on the Mul-vegetation features, the KNN and MLP algorithms better recognized
shrubland, barren land and impervious surface. On the contrary, the recognition effect
of SVM, RF and DT algorithms was poor. As shown in Figure 4, RF and DT algorithms
confused broad-leaved forests, shrubland and barren land, whereas the KNN and MLP
algorithms correctly distinguished shrubland and barren land. The DT algorithm misiden-
tified the impervious surface, while the other four algorithms had better identification
results of forest land resource information. SVM, KNN and MLP identified shrubland
and coniferous forests, but RF and DT algorithms misclassified shrubland as coniferous
forests. All the classifiers misclassified some broad-leaved forests as shrubland, barren
land, impermeable surface and coniferous forests.

• The spatial distribution of forest land resource information based on five classifiers
based on Mul-GLCM:

Based on Mul-GLCM, five algorithms can better identify each category of forest land
resource type, especially grassland and coniferous forests. These identification results are
the best. As shown in Figure 5, the KNN, RF, DT and MLP algorithms incorrectly classified
most broad-leaved forests as shrubland and barren land, whereas the SVM algorithms
identified these types better; the SVM algorithms accurately identified the broad-leaved
forests, while the KNN, RF, DT and MLP algorithms misclassified them; all classifiers
misidentified some impervious surfaces as grassland.
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3.2. Forest Land Resource Information Acquisition Confusion Matrix Results Analysis

As shown in Figure 6, a confusion matrix was constructed based on the forest land
resource information extraction results of SVM, KNN, RF, DT and MLP algorithms on Mul,
Mul-vegetation and Mul-GLCM. The current study found that when using the combination
of three features to extract information on forest resources, each algorithm had a relatively
high classification accuracy for coniferous forests, and the recognition accuracy was above
95%, while the accuracy of other forest land resource categories varied greatly.

Further analysis of Figure 6 found that (1) based on the Mul features, the forest land
resource information extraction accuracies of the SVM algorithm for Barren land were
significantly better than for the KNN, RF, DT and MLP algorithms, whereas the DT and
MLP algorithms misclassified barren land as broad-leaved forests at a higher rate. The
KNN mistakenly classified 35% of the broad-leaved forests as barren land, while the
SVM, DT and MLP algorithms only predicted 20% incorrectly. In conclusion, the SVM
algorithm has obvious advantages in forest land resource information acquisition. (2) For
the Mul-vegetation features, while the accuracy of SVM, KNN, RF and DT algorithms
all have different degrees of decline, MLP improved. Five algorithms have a higher
classification accuracy for grasslands and coniferous forests, with an accuracy of 95% and
100%. Compared with those of the RF and DT algorithms (95%), the SVM, KNN and
MLP algorithms yielded higher extraction accuracies of Grasslands (100%). A total of
95% of shrubland was classified into coniferous forests by the RF and DT algorithms,
while the misclassification rates of SVM, KNN and MLP algorithms were only 25% and
20%. Therefore, the KNN and MLP algorithms performed the best at collecting forest
land resource information compared with other algorithms. (3) For Mul-GLCM features,
the SVM and KNN algorithms had very high accuracy for shrubland, grasslands, and
coniferous forests (100%), which is the highest among all grassland classification results.
Compared with the forest land resource information acquisition accuracy of KNN, RF
and DT (65%, 80%), the accuracy of SVM is 15–35% higher. From the data in Figure 6, it
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is apparent that the RF and DT algorithms misclassified 20% of the broad-leaved forests
as shrubland and barren land, and the misclassification rate of KNN is 5% and 35%,
respectively. MLP also reaches 25%, whereas the misclassification rates of SVM were
relatively low (5%).
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4. Discussion

The classification of Sentinel-2 imagery using five algorithms was implemented, eval-
uated, and compared. Three different datasets, including Mul features, Mul-vegetation
features and Mul-GLCM features, were used.

Figure 7 shows the difference between the OA of datasets from the 15 results of three
different training sample sizes for five classifiers. Two different trends are clear: Compared
with the Mul features, (1) the accuracy of the four of the five algorithms, SVM, KNN,
DT and MLP, improved in the Mul-GLCM features, not including the RF algorithm; in
the Mul-vegetation feature set, four algorithms showed different degrees of degradation,
although the MLP algorithm did not. (2) KNN and MLP showed good stability on the three
datasets. However, the performance of SVM, KNN, RF, DT and MLP on three datasets was
significantly different.
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As shown in Figure 7, the SVM algorithm achieved the highest OA (95.8%). The
average accuracy of the SVM algorithm was much higher than the other algorithms (SVM
88.3%, KNN 87.5, RF 85.3%, MLP 85.0%, DT 77.5%). The analysis in Tables 4–6 also shows
that adding the vegetation index onto the basis of multispectral features causes a decline in
the accuracy of each algorithm, especially the accuracy of the DT algorithm, which reduced
to 51.7%. Previous studies have shown that NDVI can significantly reflect vegetation
cover and plant physiological status [47]; GRVI can reflect plant growth and health [48,49];
RVI can enhance the difference between vegetation and soil background radiation values,
and can better distinguish vegetated areas from non-vegetated areas in areas with high
vegetation cover [50]; DVI is highly correlated with vegetation soil background variation
values and is often used to distinguish vegetation from water bodies [47]; NDREI is sensitive
to small changes in vegetation parameters [51]; and LSWI can sense changes in plant and
soil moisture content and is more effective when used to distinguish between different
vegetation types [52,53]. This is quite different from previous research results. Therefore,
we further investigated the distribution of the six taxonomic categories over the respective
vegetation. Figure 8 shows that the separation degree of the six classification categories
is relatively large for DVI, and the distribution of other vegetation indices is relatively
concentrated, meaning the difference is not obvious. The majority of the vegetation indices
overlapped considerably in different forest land resources, and the separation was not
obvious enough to be used as a feature to distinguish between different land-use types.
Careful consideration should be given when considering vegetation indices.
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Figure 8. Boxplot of each category on the vegetation index. The centerline in each box in the boxplot
is the median, and the edges of the box represent the upper and lower quartiles. Abscissa label:
1. Coniferous forests; 2. Impervious surface; 3. Barren land; 4. Shrubland; 5. Broad-leaved forests;
6. Grasslands.

In this study, the vegetation index may lead to lower forest land resource information
acquisition accuracy in multispectral bands. However, the combination of multispec-
tral features and GLCM texture features improved the accuracy more than just by using
multispectral features. Comparing our results with the results of other studies confirms
that texture feature extraction plays a very important role in improving the classification
accuracy of remote sensing images. This supports other studies in this area by linking
multispectral features with GLCM texture features. This finding is consistent with that
of Zhang et al. [54], who verified the importance of GLCM texture feature extraction as a
classification accuracy improvement. These texture features provide information about
different objects with the same spectra, while spectral bands provide the data for the same
objects in different spectra. These results reflect those of Zheng et al. [55], who also found
that extracted and added GLCM textures can improve the discrimination between cate-
gories of shrubland, agricultural land, and barren areas. Further analysis shows that the
forest land resource information acquisition accuracies of the SVM and KNN algorithms
for shrubland, grasslands, and coniferous forests were very high (100%) on the Mul-GLCM
features, and these accuracies were the highest among all the grassland classification results.
Compared with Mul features and Mul-vegetation features, on Mul-GLCM features, the
average classification accuracy of the five algorithms for broad-leaved forests was the
highest (78%, 68% and 33%). Therefore, it provides a reference for feature sets mapping
forest land resources information from Sentinel-2 imagery.

It is apparent from this study that the performance of SVM, KNN, RF, DT and MLP on
Mul features, Mul-vegetation features and Mul-GLCM features was significantly different.
However, the single most striking observation to emerge from the data comparison was
that KNN and MLP showed good stability on the three datasets. There are several possible
explanations for this result. In this study, MLP would have a better recognition rate and a
faster classification speed. However, its training is not as fast as with SVM classification,
especially for a huge training set. If the time required for classification is great, the MLP
method is a good choice. The MLP model neural network in this study is composed of
multiple hidden layers, and the different layers are fully connected. The fully connected
layer maps the original data to the hidden layer feature space (feature extraction + selection
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process); it maps the learned feature representation to the label space of the sample. Then,
the features are highly refined (integrated together) to improve the model performance.
Results of this study show that its network structure is reasonable and its model is robust.
Therefore, recent MLP-based work shows that even a structure that is simple in terms of
design philosophy and design skills can achieve comparable performance to CNN and
Transformer [56]. One of the advantages of the KNN classifier is that it has few parameters,
all of which are intuitive. At the same time, the KNN classifier can work with very little
training data. KNN was the fastest of all classifiers during training. KNN directly compares
each unknown sample with the original training data [57,58], which is a more extreme
form of the instance-based method, and the comparison between samples is kept as part of
the model during all training processes. Inside the model, predictive decisions are made
by using the rivalry between data instances. The objective similarity measure between
samples is to compare the similarity between the given sample data and unknown data,
which is helpful for the prediction of the model. The KNN model does not build a model
from the given training samples until it needs to make a prediction. In this way, a timely
response can be made based on the corresponding actual samples.

The findings based on the above results give us more thinking, and there is still a lot
of work to be done in the future. On the one hand, neural network models have great
advantages in solving complex problems, and should be vigorously developed in the field
of forestry to make forestry develop towards intelligence; on the other hand, machine
learning and deep learning have their own advantages. How to design a reasonable model,
and find an economical, efficient and accurate method of obtaining information on forest
land resources requires further research.

5. Conclusions

Using Sentinel-2 satellite multispectral image data, the spectral reflectance, vegetation
index characteristics and image texture characteristics of different forest land resources
in the study area were calculated and compared, and then, based on three groups of
features (Mul features, Mul-vegetation features and Mul-GLCM features), five classification
algorithms, SVM, KNN, RF, DT and MLP, were constructed to identify and classify forest
land site types. The research indicates: (1) Among the three feature combinations, the SVM
algorithm achieved the highest OA (95.8%). The average accuracy of the SVM algorithm
was much higher than other algorithms (SVM 88.3%, KNN 87.5, RF 85.3%, MLP 85.0%,
DT 77.5%). (2) The classification accuracies of each algorithm for coniferous forests were
relatively high, and the recognition accuracy was above 95%, whereas the classification
accuracies of the other categories varied greatly. (3) The results show that adding texture
features can improve the accuracy of the algorithms; on the contrary, adding vegetation
index based on multispectral features reducing the accuracy of each algorithm. In particular,
the accuracy of the DT algorithm was reduced to 51.7%. This study provides a new reference
for the qualitative methods of forest land resource distribution. It has also produced more
efficient and accurate acquisition of forest land resource information, scientific management
and effective use of forest land resources.
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