Northeastern American Forests: Natural Disturbances, Climate Change Impact, and the Utilization of Increasingly Damaged Forest Trees for Biofuel Production
Abstract
:1. Introduction
2. Distribution of Forests in United States
2.1. Northeastern United States Forests
2.2. Disturbances in Northeastern Forests
3. Effects of Climate Change on Forests
4. Utilization of Damaged Forest Trees and Forest Biomass for Biofuel Production
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Brown, G.S.; Pollock, L.; DeWitt, P.D.; Dawson, N. Responses of terrestrial animals to forest characteristics and climate reveals ecological indicators for sustaining wildlife in managed forests. For. Ecol. Manag. 2020, 459, 117854. [Google Scholar] [CrossRef]
- Kooch, Y.; Piri, A.S.; Tilaki, G.A.D. Conversion of forest to rangelands suppress soil fauna and flora densities during long-term in mountain ecosystems. Ecol. Eng. 2021, 165, 106241. [Google Scholar] [CrossRef]
- Wang, N.; Bi, H.; Peng, R.; Zhao, D.; Liu, Z. Disparities in soil and water conservation functions among different forest types and implications for afforestation on the Loess Plateau. Ecol. Indic. 2023, 155, 110935. [Google Scholar] [CrossRef]
- Kurzatkowski, D.; Leuschner, C.; Homeier, J. Effects of flooding on trees in the semi-deciduous transition forests of the Araguaia floodplain, Brazil. Acta Oecologica 2015, 69, 21–30. [Google Scholar] [CrossRef]
- Gong, C.; Tan, Q.; Liu, G.; Xu, M. Impacts of mixed forests on controlling soil erosion in China. Catena 2022, 213, 106147. [Google Scholar] [CrossRef]
- Su, Y.; Zhang, C.; Chen, X.; Liu, L.; Ciais, P.; Peng, J.; Wu, S.; Wu, J.; Shang, J.; Wang, Y.; et al. Aerodynamic resistance and Bowen ratio explain the biophysical effects of forest cover on understory air and soil temperatures at the global scale. Agric. For. Meteorol. 2021, 308–309, 108615. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, L.; Ma, Q.; Zhao, W.; Chen, Y. From tree to forest: Multiple carbon sink constraints. Innovation 2023, 4, 100463. [Google Scholar] [CrossRef] [PubMed]
- Loiseau, B.; Carrière, S.D.; Jougnot, D.; Singha, K.; Mary, B.; Delpierre, N.; Guérin, R.; Martin-StPaul, N.K. The geophysical toolbox applied to forest ecosystems—A review. Sci. Total Environ. 2023, 899, 165503. [Google Scholar] [CrossRef]
- Ryan, M.G.; Harmon, M.E.; Birdsey, R.A.; Giardina, C.P.; Heath, L.S.; Houghton, R.A.; Jackson, R.B.; McKinley, D.C.; Morrison, J.F.; Murray, B.C. A synthesis of the science on forests and carbon for US forests. Ecol. Soc. Am. Issues Ecol. 2010, 13, 1–16. [Google Scholar]
- MacCleery, D.W. American Forests: A History of Resiliency and Recovery, Revised edition; Forest History Society: Durham, NC, USA, 2011; p. 1. [Google Scholar]
- Loomis, E. Forests and Logging in the United States. In Oxford Research Encyclopedia of American History; Oxford University Press: Oxford, UK, 2017; pp. 1–16. [Google Scholar] [CrossRef]
- MacCleery, D.W. Resiliency and Recovery: A Brief History of Conditions and Trends in U.S. Forests. For. Conserv. Hist. 1994, 38, 135–139. [Google Scholar] [CrossRef]
- Perry, C.H.; Finco, M.V.; Wilson, B.T. Forest Atlas of the United States (No. FS-1172); U.S. Department of Agriculture, Forest Service: Washington, DC, USA, 2022. [CrossRef]
- Schulz, B.; Moser, W.K.; Olson, C.; Johnson, K. Regional distribution of introduced plant species in the forests if the northeastern United States. In Forest Health Monitoring: National Status, Trends, and Analysis; Potter, K.M., Conkling, B.L., Eds.; Gen. Tech. Rep. SRS-GTR-185; U.S. Forest Service, Southern Research Station: Asheville, NC, USA, 2011; pp. 79–107. [Google Scholar]
- Saha, N. Tropical Forest and Sustainability: An Overview. In Life on Land; Leal Filho, W., Azul, A., Brandli, L., Lange Salvia, A., Wall, T., Eds.; Encyclopedia of the UN Sustainable Development Goals; Springer: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
- Maps USA. US Forest Map. Available online: https://maps-usa.com/maps-united-states---usa-geography/us-forest-map (accessed on 20 June 2023).
- Sayre, A.P. Taiga; Twenty-First Century Books: New York, NY, USA, 1994; p. 64. [Google Scholar]
- Braun, E.L. Development of the Deciduous Forests of Eastern North America. Ecol. Monogr. 1947, 17, 211–219. [Google Scholar] [CrossRef]
- Brown, P.J.; Bradley, R.S.; Keimig, F.T. Changes in Extreme Climate Indices for the Northeastern United States, 1870–2005. J. Clim. 2010, 23, 6555–6572. [Google Scholar] [CrossRef]
- Huntington, T.G.; Richardson, A.D.; McGuire, K.J.; Hayhoe, K. Climate and hydrological changes in the northeastern United States: Recent trends and implications for forested and aquatic ecosystems. Can. J. For. Res. 2009, 39, 199–212. [Google Scholar] [CrossRef]
- Hayhoe, K.; Wake, C.P.; Huntington, T.G.; Luo, L.; Schwartz, M.D.; Sheffield, J.; Wood, E.; Anderson, B.; Bradbury, J.; De Gaetano, A.; et al. Past and future changes in climate and hydrological indicators in the US Northeast. Clim. Dyn. 2007, 28, 381–407. [Google Scholar] [CrossRef]
- North East climate: Temperature North East & Weather by Month. Climate Data. Available online: https://en.climate-data.org/north-america/united-states-of-america/pennsylvania/north-east-138147 (accessed on 3 July 2023).
- Reich, P.; Frelich, L. Temperate Deciduous Forests. The Earth system: Biological and ecological dimensions of global environmental change. In Encyclopedia of Global Environmental; Mooney, H.A., Canadell, J.G., Eds.; Wiley: Hoboken, NJ, USA, 2002; Volume 2, pp. 565–569. [Google Scholar]
- Solecki, W.; Rosenzweig, C.; Hammer, S.; Mehrotra, S. Urbanization of climate change: Responding to a new global challenge. In The Urban Transformation: Health, Shelter and Climate Change; Sclar, E., Volavka-Close, N., Brown, P., Eds.; Routledge: New York, NY, USA, 2012; pp. 197–220. [Google Scholar]
- Horton, R.; Yohe, G.; Easterling, W.; Kates, R.; Ruth, M.; Sussman, E.; Whelchel, A.; Wolfe, D.; Lipschultz, F.C. 16: Northeast. In Climate Change Impacts in the United States: The Third National Climate Assessment; Melillo, J.M., Richmond, T.C., Yohe, G.W., Eds.; U.S. Global Change Research Program: Washington, DC, USA, 2014; pp. 371–395. [Google Scholar] [CrossRef]
- Dyer, J.M. Revisiting the Deciduous Forests of Eastern North America. BioScience 2006, 56, 341–352. [Google Scholar] [CrossRef]
- Wickham, J.; Stehman, S.V.; Sorenson, D.G.; Gass, L.; Dewitz, J.A. Thematic accuracy assessment of the NLCD 2016 land cover for the conterminous United States. Remote Sens. Environ. 2021, 257, 112357. [Google Scholar] [CrossRef]
- Loidi, J.; Marcenò, C. The Temperate Deciduous Forests of the Northern Hemisphere. A review. Mediterr. Bot. 2022, 43, e75527. [Google Scholar] [CrossRef]
- Archetti, M.; Richardson, A.D.; O’Keefe, J.; Delpierre, N. Predicting Climate Change Impacts on the Amount and Duration of Autumn Colors in a New England Forest. PLoS ONE 2013, 8, e57373. [Google Scholar] [CrossRef]
- Gill, A.L.; Gallinat, A.S.; Sanders-DeMott, R.; Rigden, A.J.; Short Gianotti, D.J.; Mantooth, J.A.; Templer, P.H. Changes in autumn senescence in northern hemisphere deciduous trees: A meta-analysis of autumn phenology studies. Ann. Bot. 2015, 116, 875–888. [Google Scholar] [CrossRef]
- Givnish, T.J. Adaptive significance of evergreen vs. deciduous leaves: Solving the triple paradox. Silva Fenn. 2002, 36, 535. [Google Scholar] [CrossRef]
- Franco, A.C.; Bustamante, M.; Caldas, L.S.; Goldstein, G.; Meinzer, F.C.; Kozovits, A.R.; Rundel, P.; Coradin, V.T.R. Leaf functional traits of Neotropical savanna trees in relation to seasonal water deficit. Trees 2005, 19, 326–335. [Google Scholar] [CrossRef]
- Silva, J.; Espírito-Santo, M.; Morais, H. Leaf traits and herbivory on deciduous and evergreen trees in a tropical dry forest. Basic Appl. Ecol. 2015, 16, 210–219. [Google Scholar] [CrossRef]
- Dreiss, L.; Volin, J. Forests: Temperate Evergreen and Deciduous. In Encyclopedia of Natural Resources; Wang, Y., Ed.; CRC Press: Boca Raton, FL, USA, 2014; Volume 1, pp. 214–223. [Google Scholar]
- Pringle, E.; Adams, R.; Broadbent, E.; Busby, P.; Donatti, C.; Kurten, E.; Renton, K.; Dirzo, R. Distinct leaf-trait syndromes of evergreen and deciduous trees in a seasonally dry tropical forest. Biotropica 2010, 43, 299–308. [Google Scholar] [CrossRef]
- Chaturvedi, R.K.; Raghubanshi, A.S.; Singh, J.S. Plant functional traits with particular reference to tropical deciduous forests: A review. J. Biosci. 2011, 36, 963–981. [Google Scholar] [CrossRef]
- Schmidt, S.I.; Hejzlar, J.; Kopáček, J.; Paule-Mercado, M.C.; Porcal, P.; Vystavna, Y.; Lanta, V. Forest damage and subsequent recovery alter the water composition in mountain lake catchments. Sci. Total Environ. 2022, 827, 154293. [Google Scholar] [CrossRef] [PubMed]
- Cholet, C.; Houle, D.; Sylvain, J.-D.; Doyon, F.; Maheu, A. Climate change increases the severity and duration of soil water stress in the temperate forest of Eastern North America. Front. For. Glob. Chang. Sec. For. Hydrol. 2022, 5, 879382. [Google Scholar] [CrossRef]
- Irmak, S.; Kabenge, I.; Woodward, D.; Moravek, M. Modeling leaf stomatal resistance for common reed, peach-leaf willow and cottonwood riparian plant communities. Hydrol. Process. 2022, 36, e14687. [Google Scholar] [CrossRef]
- Zhao, J.; Ma, J.; Zhu, Y. Evaluating impacts of climate change on net ecosystem productivity (NEP) of global different forest types based on an individual tree-based model FORCCHN and remote sensing. Glob. Planet. Change 2019, 182, 103010. [Google Scholar] [CrossRef]
- Lovett, G.M.; Christenson, L.M.; Groffman, P.M.; Jones, C.G.; Hart, J.E.; Mitchell, M.J. Insect Defoliation and Nitrogen Cycling in Forests. BioScience 2002, 52, 335. [Google Scholar] [CrossRef]
- Houle, D.; Duchesne, L.; Boutin, R. Effects of a spruce budworm outbreak on element export below the rooting zone: A case study for a balsam fir forest. Ann. For. Sci. 2009, 66, 707. [Google Scholar] [CrossRef]
- Lewis, G.P. Response of Stream Chemistry to Forest Insect Defoliation on the Allegheny High Plateau, Pennsylvania. Ph.D. Dissertation, Cornell University, New York, NY, USA, 1998; p. 9831266. [Google Scholar]
- Darr, M.N.; Coyle, D.R. Fall Cankerworm (Lepidoptera: Geometridae), a Native Defoliator of Broadleaved Trees and Shrubs in North America. J. Integr. Pest Manag. 2021, 12, 23. [Google Scholar] [CrossRef]
- Asaro, C.; Chamberlin, L. Outbreak History (1953–2014) of Spring Defoliators Impacting Oak-Dominated Forests in Virginia, with Emphasis on Gypsy Moth (Lymantria dispar L.) and Fall Cankerworm (Alsophila pometaria Harris). Am. Entomol. 2015, 61, 174–185. [Google Scholar] [CrossRef]
- Mikkelson, K.; Bearup, L.; Maxwell, R.; Stednick, J.; Mccray, J.; Sharp, J. Bark beetle infestation impacts on nutrient cycling, water quality and interdependent hydrological effects. Biogeochemistry 2013, 115, 1–21. [Google Scholar] [CrossRef]
- Penn State Extension. Spotted Lanternfly Public Meeting. Available online: https://extension.psu.edu/spotted-lanternfly-public-meeting (accessed on 3 September 2023).
- State Extension. Penn State Extension. Spotted Lanternfly Management Guide. Available online: https://extension.psu.edu/spotted-lanternfly-management-guide (accessed on 2 September 2023).
- U.S.DA. Animal and Plant Health Inspection Service. Pests and Diseases. Available online: https://www.aphis.usda.gov/aphis/resources/pests-diseases (accessed on 30 August 2023).
- Barringer, L.E.; Donovall, L.R.; Spichiger, S.-E.; Lynch, D.; Henry, D. The First New World Record of Lycorma delicatula (Insecta: Hemiptera: Fulgoridae). Entomol. News 2015, 125, 20–23. [Google Scholar] [CrossRef]
- Lawrence, J.G.; Colwell, A.; Sexton, O.J. The ecological impact of allelopathy in Ailanthus altissima (Simaroubaceae). Am. J. Bot. 1991, 78, 948–958. [Google Scholar] [CrossRef]
- Kim, J.G.; Lee, E.-H.; Seo, Y.-M.; Kim, N.-Y. Cyclic Behavior of Lycorma delicatula (Insecta: Hemiptera: Fulgoridae) on Host Plants. J. Insect Behav. 2011, 24, 423–435. [Google Scholar] [CrossRef]
- Nixon, L.J.; Jones, S.K.; Tang, L.; Urban, J.; Felton, K.; Leskey, T.C. Survivorship and Development of the Invasive Lycorma delicatula (Hemiptera: Fulgoridae) on Wild and Cultivated Temperate Host Plants. Environ. Entomol. 2022, 51, 222–228. [Google Scholar] [CrossRef]
- U.S.DA. Current Northeast Drought Conditions. 2020. Available online: https://www.climatehubs.usda.gov/hubs/northeast/drought-map (accessed on 3 July 2023).
- Marchin, R.; Zeng, H.; Hoffmann, W. Drought-deciduous behavior reduces nutrient losses from temperate deciduous trees under severe drought. Oecologia 2010, 163, 845–854. [Google Scholar] [CrossRef]
- Farooq, M.; Hussain, M.; Wahid, A.; Siddique, K.H.M. Drought Stress in Plants: An Overview. In Plant Responses to Drought Stress: From Morphological to Molecular Features; Aroca, R., Ed.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 1–33. [Google Scholar] [CrossRef]
- Wujeska, A.; Bossinger, G.; Tausz, M. Responses of foliar antioxidative and photoprotective defence systems of trees to drought: A meta-analysis. Tree Physiol. 2013, 33, 1018–1029. [Google Scholar] [CrossRef]
- Hasselquist, N.J.; Allen, M.F.; Santiago, L.S. Water relations of evergreen and drought-deciduous trees along a seasonally dry tropical forest chronosequence. Oecologia 2010, 164, 881–890. [Google Scholar] [CrossRef]
- Augé, R.M.; Duan, X.; Croker, J.L.; Witte, W.T.; Green, C.D. Foliar dehydration tolerance of twelve deciduous tree species. J. Exp. Bot. 1998, 49, 753–759. [Google Scholar] [CrossRef]
- Martin-Stpaul, N.K.; Limousin, J.-M.; Vogt-Schilb, H.; Rodríguez-Calcerrada, J.; Rambal, S.; Longepierre, D.; Misson, L. The temporal response to drought in a Mediterranean evergreen tree: Comparing a regional precipitation gradient and a throughfall exclusion experiment. Glob. Change Biol. 2013, 19, 2413–2426. [Google Scholar] [CrossRef]
- Sousa, V.; Ferreira, J.P.A.; Miranda, I.; Quilhó, T.; Pereira, H. Quercus rotundifolia Bark as a Source of Polar Extracts: Structural and Chemical Characterization. Forests 2021, 12, 1160. [Google Scholar] [CrossRef]
- IPCC. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation; Field, C.B., Barros, V., Stocker, D., Qin, D., Dokken, D.J., Ebi, K.L., Mastrandrea, M.D., Mach, K.J., Plattner, G.K., Allen, S.K., et al., Eds.; Cambridge University Press: Cambridge, UK, 2012; p. 582. [Google Scholar]
- Yao, Y.; Luo, Y.; Huang, J.; Zhao, Z. Comparison of monthly temperature extremes simulated by CMIP3 and CMIP5 models. J. Clim. 2013, 26, 7692–7707. [Google Scholar] [CrossRef]
- Teskey, R.; Wertin, T.; Bauweraerts, I.; Ameye, M.; McGuire, M.A.; Steppe, K. Responses of tree species to heat waves and extreme heat events. Plant Cell Environ. 2015, 38, 1699–1712. [Google Scholar] [CrossRef]
- Stéfanon, M.; Drobinski, P.; D’Andrea, F.; Lebeaupin Brossier, C.; Bastin, S. Soil moisture-temperature feedbacks at meso-scale during summer heat waves over Western Europe. Clim. Dyn. 2013, 42, 1309–1324. [Google Scholar] [CrossRef]
- Hozain, M.I.; Salvucci, M.E.; Fokar, M.; Holaday, A.S. The differential response of photosynthesis to high temperature for a boreal and temperate Populus species relates to differences in Rubisco activation and Rubisco activase properties. Tree Physiol. 2010, 30, 32–44. [Google Scholar] [CrossRef]
- Perry, K.B. Basics of Frost and Freeze Protection for Horticultural Crops. HortTechnology 1998, 8, 10–15. [Google Scholar] [CrossRef]
- Rodrigo, J. Spring frosts in deciduous fruit trees-morphological damage and flower hardiness. Sci. Hortic. 2000, 85, 155–173. [Google Scholar] [CrossRef]
- Gill, R. A review of damage by mammals in north temperate forests: 3. Impact on trees and forests. Forestry 1992, 65, 363–388. [Google Scholar] [CrossRef]
- Riley, R.; Salamov, A.A.; Brown, D.W.; Nagy, L.G.; Floudas, D.; Held, B.W.; Levasseur, A.; Lombard, V.; Morin, E.; Otillar, R.; et al. Extensive sampling of basidiomycete genomes demonstrates inadequacy of the white-rot/brown-rot paradigm for wood decay fungi. Proc. Natl. Acad. Sci. USA 2014, 111, 9923–9928. [Google Scholar] [CrossRef]
- Liers, C.; Arnstadt, T.; Ullrich, R.; Hofrichter, M. Patterns of lignin degradation and oxidative enzyme secretion by different wood- and litter-colonizing basidiomycetes and ascomycetes grown on beech-wood. FEMS Microbiol. Ecol. 2011, 78, 91–102. [Google Scholar] [CrossRef]
- Kreye, J.K.; Varner, J.M.; Hiers, J.K.; Mola, J. Toward a mechanism for eastern North American forest mesophication: Differential litter drying across 17 species. Ecol. Appl. Ecol. Soc. Am. 2013, 23, 1976–1986. [Google Scholar] [CrossRef]
- Johnson, E.A.; Gutsell, S.L. Heat budget and fire behaviour associated with the opening of serotinous cones in two pinus species. J. Veg. Sci. 1993, 4, 745–750. [Google Scholar] [CrossRef]
- Bauen, A.; Berndes, G.; Junginger, M.; Londo, M.; Vuille, F. Bioenergy—A Sustainable and Reliable Energy Source: A Review of Status and Prospects; International Energy Agency (IEA) Bioenergy ExCo: Paris, France, 2009; p. 5. [Google Scholar]
- Matlack, G.R. Resource allocation among clonal shoots of the fire-tolerant Shrub Gaylussacia baccata. Oikos 1997, 80, 509–518. [Google Scholar] [CrossRef]
- Schier, G. Vegetative regeneration of Gambel oak and chokecherry from excised rhizomes. For. Sci. 1983, 29, 499–502. [Google Scholar] [CrossRef]
- Hanson, C.T.; North, M.P. Post-fire epicormic branching in Sierra Nevada Abies concolor (white fir). Int. J. Wildland Fire 2006, 15, 31–35. [Google Scholar] [CrossRef]
- Matlack, G.R. Reassessment of the use of fire as a management tool in deciduous forests of eastern North America. Conserv. Biol. 2013, 27, 916–926. [Google Scholar] [CrossRef]
- Parker, T.; Clancy, K.; Mathiasen, R. Interactions Among Fire, Insects and Pathogens in Coniferous Forests of the Interior Western United States and Canada. Agric. For. Entomol. 2006, 8, 167–189. [Google Scholar] [CrossRef]
- US EPAO. Climate Change Indicators: Wildfires. 2016. Available online: https://www.epa.gov/climate-indicators/climate-change-indicators-wildfires (accessed on 20 August 2023).
- NOAA. U.S. 2022; Wildfires. Available online: https://www.ncei.noaa.gov/access/monitoring/monthly-report/fire/202213 (accessed on 20 August 2023).
- Zawadzkas, P.P.; Abrahamson, W.G. Composition and Tree-Size Distributions of the Snyder-Middleswarth Old-Growth Forest, Snyder County, Pennsylvania. Castanea 2003, 68, 31–42. [Google Scholar]
- Wolf, S.; Paul-Limoges, E. Drought and heat reduce forest carbon uptake. Nat. Commun. 2023, 14, 6217. [Google Scholar] [CrossRef]
- Abbass, K.; Qasim, M.Z.; Song, H.; Murshed, M.; Mahmood, H.; Younis, I. A review of the global climate change impacts, adaptation, and sustainable mitigation measures. Environ. Sci. Pollut. Res. 2022, 29, 42539–42559. [Google Scholar] [CrossRef] [PubMed]
- Touma, D.; Stevenson, S.; Swain, D.L.; Singh, D.; Kalashnikov, D.A.; Huang, X. Climate change increases risk of extreme rainfall following wildfire in the western United States. Sci. Adv. 2022, 8, eabm0320. [Google Scholar] [CrossRef] [PubMed]
- Allen, R.J.; Zhao, X.; Randles, C.A.; Kramer, R.J.; Samset, B.H.; Smith, C.J. Surface warming and wetting due to methane’s long-wave radiative effects muted by short-wave absorption. Nat. Geosci. 2023, 16, 314–320. [Google Scholar] [CrossRef]
- Mohan, J.E.; Cox, R.M.; Iverson, L.R. Composition and carbon dynamics of forests in northeastern North America in a future, warmer world. Can. J. For. Res. 2009, 39, 213–230. [Google Scholar] [CrossRef]
- Janowiak, M.K.; D’Amato, A.; Swanston, C.W.; Iverson, L.R.; Thompson, F.R.; Dijak, W.D.; Matthews, S.; Peters, M.P.; Prasad, A.; Fraser, J.S.; et al. New England and Northern New York Forest Ecosystem Vulnerability Assessment and Synthesis: A Report from the New England Climate Change Response Framework Project (No. NRS-173); General Technical Report; Northern Research Station: Madison, WI, USA, 2018. [CrossRef]
- DeHayes, D.H.; Jacobson, G.L.; Schaber, P.G.; Bongarten, B.; Iverson, L.R.; Dieffenbacker-Krall, A. Forest responses to chancing climates: Lessons from the past and uncertainty for the future. In Responses of Northern Forests to Environmental Change; Ecol. Stud., 139, Mickler, R.A., Birdsey, R.A., Horn, J.L., Eds.; Springer: New York, NY, USA; Berlin/Heidelberg, Germany, 2000; pp. 495–540. [Google Scholar]
- Rustad, L.E.; Campbell, J.L.; Cox, R.M.; DeBlois, M.; Dukes, J.S.; Huntington, T.J.; Magill, A.H.; Mohan, J.E.; Pontius, J.; Richardson, A.D.; et al. NE Forests 2100: A Synthesis of Climate Change Impacts on Forests of the Northeastern US and Eastern Canada. Can. J. For. Res. 2009, 39, iii–iv. [Google Scholar]
- Lafleur, B.; Paré, D.; Munson, A.D.; Bergeron, Y. Response of northeastern North American forests to climate change: Will soil conditions constrain tree species migration? Environ. Rev. 2010, 18, 279–289. [Google Scholar] [CrossRef]
- Ollinger, S.V.; Goodale, C.L.; Hayhoe, K.; Jenkins, J.P. Potential effects of climate change and rising CO2 on ecosystem processes in nort eastern U.S. forests. Mitig. Adapt. Strateg. Glob. Change 2008, 13, 467–485. [Google Scholar] [CrossRef]
- Kumar, J.A.; Sathish, S.; Prabu, D.; Renita, A.A.; Saravanan, A.; Deivayanai, V.C.; Anish, M.; Jayaprabakar, J.; Baigenzhenov, O.; Hosseini-Bandegharaei, A. Agricultural waste biomass for sustainable bioenergy production: Feedstock, characterization and pre-treatment methodologies. Chemosphere 2023, 331, 138680. [Google Scholar] [CrossRef]
- Jayakumar, M.; Gindaba, G.T.; Gebeyehu, K.B.; Periyasamy, S.; Jabesa, A.; Baskar, G.; John, B.I.; Pugazhendhi, A. Bioethanol production from agricultural residues as lignocellulosic biomass feedstock’s waste valorization approach: A comprehensive review. Sci. Total Environ. 2023, 879, 163158. [Google Scholar] [CrossRef]
- Rocha-Meneses, L.; Bergamo, T.F.; Kikas, T. Potential of cereal-based agricultural residues available for bioenergy production. Data Brief 2019, 23, 103829. [Google Scholar] [CrossRef]
- Domingues, J.P.; Pelletier, C.; Brunelle, T. Cost of ligno-cellulosic biomass production for bioenergy: A review in 45 countries. Biomass Bioenergy 2022, 165, 106583. [Google Scholar] [CrossRef]
- Balan, V. Current challenges in commercially producing biofuels from lignocellulosic biomass. ISRN Biotechnol. 2014, 2014, 463074. [Google Scholar] [CrossRef]
- Yu, Q.; Wang, Y.; Le, Q.V.; Yang, H.; Hosseinzadeh-Bandbafha, H.; Yang, Y.; Sonne, C.; Tabatabaei, M.; Lam, S.S.; Peng, W. An Overview on the Conversion of Forest Biomass into Bioenergy. Front. Energy Res. 2021, 9, 684234. [Google Scholar] [CrossRef]
- Guo, Z.; Sun, C.; Grebner, D.L. Utilization of forest derived biomass for energy production in the U.S.A.: Status, challenges, and public policies. Int. For. Rev. 2007, 9, 748–758. [Google Scholar] [CrossRef]
- Wu, C. Dead Wood Is Not Dead: The Ecological Functions and Management of Dead Wood. In Final Project for PLSC480: Urban Ecology, Management of Urban Forest Edges; Department of Plant Science and Landscape Architecture, University of Maryland: College Park, MD, USA, 2016. [Google Scholar]
- Le Mer, J.; Roger, P. Production, oxidation, emission and consumption of methane by soils: A review. Eur. J. Soil Biol. 2001, 37, 25–50. [Google Scholar] [CrossRef]
- Pan, Y.; Birdsey, R.A.; Fang, J.; Houghton, R.; Kauppi, P.E.; Kurz, W.A.; Phillips, O.L.; Shvidenko, A.; Lewis, S.L.; Canadell, J.G.; et al. A Large and Persistent Carbon Sink in the World’s Forests. Science 2011, 333, 988–993. [Google Scholar] [CrossRef]
- Ciolkosz, D.; Jacobson, M. A Primer on Woody Biomass Energy for Forest Landowners. 2012. Available online: https://extension.psu.edu/a-primer-on-woody-biomass-energy-for-forest-landowners (accessed on 3 August 2023).
- Harmon, M.E.; Fasth, B.G.; Yatskov, M.; Kastendick, D.; Rock, J.; Woodall, C.W. Release of coarse woody detritus-related carbon: A synthesis across forest biomes. Carbon Balance Manag. 2020, 15, 1. [Google Scholar] [CrossRef] [PubMed]
- Lee, K. The Effects of Deforestation in the Northeast U.S. 2012. Available online: https://education.seattlepi.com/effects-deforestation-northeast-us-6475.html (accessed on 26 November 2023).
- Kosiba, A.M.; Meigs, G.W.; Duncan, J.A.; Pontius, J.A.; Keeton, W.S.; Tait, E.R. Spatiotemporal patterns of forest damage and disturbance in the northeastern United States: 2000–2016. For. Ecol. Manag. 2018, 430, 94–104. [Google Scholar] [CrossRef]
- Buford, M.A.; Neary, D.G. Sustainable biofuels from forests: Meeting the challenge. In Biofuels and Sustainability Reports; Ecological Society of America: Washington, DC, USA, 2010; pp. 1–9. [Google Scholar]
- Creutzig, F.; Ravindranath, N.H.; Berndes, G.; Bolwig, S.; Bright, R.; Cherubini, F.; Chum, H.; Corbera, E.; Delucchi, M.; Faaji, A.; et al. Bioenergy and climate change mitigation: An assessment. Glob. Change Biol. Bioenergy 2015, 7, 916–944. [Google Scholar] [CrossRef]
- Hanaki, K.; Portugal-Pereira, J. The Effect of Biofuel Production on Greenhouse Gas Emission Reductions. In Biofuels and Sustainability: Holistic Perspectives for Policy-Making, Science for Sustainable Societies; Takeuchi, K., Shiroyama, H., Saito, O., Matsuura, M., Eds.; Springer: Tokyo, Japan, 2018; pp. 53–71. [Google Scholar] [CrossRef]
- UNdata. Biogasoline. 2023. Available online: http://data.un.org/Data.aspx?q=United+States+datamart%5BEDATA%5D&d=EDATA&f=cmID%3AAL%3BcrID%3A840 (accessed on 10 August 2023).
- Awogbemi, O.; Kallon, D.V.V.; Onuh, E.I.; Aigbodion, V.S. An Overview of the classification, production and utilization of biofuels for internal combustion engine applications. Energies 2021, 14, 5687. [Google Scholar] [CrossRef]
- Soltanian, S.; Aghbashlo, M.; Almasi, F.; Hosseinzadeh-Bandbafha, H.; Nizami, A.-S.; Ok, Y.S.; Lam, S.S.; Tabatabaei, M. A critical review of the effects of pretreatment methods on the exergetic aspects of lignocellulosic biofuels. Energy Convers. Manag. 2020, 212, 112792. [Google Scholar] [CrossRef]
- Sahoo, K.; Bilek, E.; Bergman, R.; Mani, S. Techno-economic analysis of producing solid biofuels and biochar from forest residues using portable systems. Appl. Energy 2019, 235, 578–590. [Google Scholar] [CrossRef]
- Picchio, R.; Di Marzio, N.; Cozzolino, L.; Venanzi, R.; Stefanoni, W.; Bianchini, L.; Pari, L.; Latterini, F. Pellet Production from Pruning and Alternative Forest Biomass: A Review of the Most Recent Research Findings. Materials 2023, 29, 4689. [Google Scholar] [CrossRef]
- Jåstad, E.O.; Bolkesjø, T.F.; Rørstad, P.K.; Midttun, A.; Sandquist, J.; Trømborg, E. The future role of forest-based biofuels: Industrial impacts in the Nordic Countries. Energies 2021, 14, 2073. [Google Scholar] [CrossRef]
- Schulzke, T. Biomass gasification: Conversion of forest residues into heat, electricity and base chemicals. Chem. Pap. 2019, 73, 1833–1852. [Google Scholar] [CrossRef]
- Rijo, B.; Dias, A.P.S.; Ramos, M.; Ameixa, M. Valorization of forest waste biomass by catalyzed pyrolysis. Energy 2022, 243, 122766. [Google Scholar] [CrossRef]
- Pinzi, S.; Garcia, I.L.; Lopez-Gimenez, F.J.; Luque de Castro, M.D.; Dorado, G.; Dorado, M.P. The Ideal Vegetable Oil-based Biodiesel Composition: A Review of Social, Economical and Technical Implications. Energy Fuels 2009, 23, 2325–2341. [Google Scholar] [CrossRef]
- Jeong, H.; Park, Y.C.; Seong, Y.J.; Lee, S.M. Sugar and ethanol production from woody biomass via supercritical water hydrolysis in a continuous pilot-scale system using acid catalyst. Bioresour Technol. 2017, 245, 351–357. [Google Scholar] [CrossRef]
- Pang, S. Advances in thermochemical conversion of woody biomass to energy, fuels and chemicals. Biotechnol. Adv. 2019, 37, 589–597. [Google Scholar] [CrossRef]
- Bušić, A.; Marđetko, N.; Kundas, S.; Morzak, G.; Belskaya, H.; Ivančić Šantek, M.; Komes, D.; Novak, S.; Šantek, B. Bioethanol production from renewable raw materials and its separation and purification: A Review. Food Technol. Biotechnol. 2018, 56, 289–311. [Google Scholar] [CrossRef]
- Chintagunta, A.D.; Zuccaro, G.; Kumar, M.; Kumar, S.P.J.; Garlapati, V.K.; Postemsky, P.D.; Kumar, N.S.S.; Chandel, A.K.; Simal-Gandara, J. Biodiesel production from lignocellulosic biomass using oleaginous microbes: Prospects for integrated biofuel production. Front. Microbiol. 2021, 12, 658284. [Google Scholar] [CrossRef] [PubMed]
- Datta, A.; Hossain, A.; Roy, S. An Overview on Biofuels and Their Advantages and Disadvantages. Asian J. Chem. 2019, 31, 1851–1858. [Google Scholar] [CrossRef]
- Titus, B.D.; Brown, K.; Helmisaari, H.-S.; Vanguelova, E.; Stupak, I.; Evans, A.; Clarke, N.; Guidi, C.; Bruckman, V.J.; Varnagiryte-Kabasinskiene, I.; et al. Sustainable forest biomass: A review of current residue harvesting guidelines. Energy Sustain. Soc. 2021, 11, 10. [Google Scholar] [CrossRef]
- Falk, B.; McKeever, D. Generation and Recovery of Solid Wood Waste in the U.S. Biocycle. 2012. Available online: https://www.biocycle.net/generation-and-recovery-of-solid-wood-waste-in-the-u-s/ (accessed on 2 August 2023).
- Weitz, K.; Padhye, A.; Sifleet, S.; Gabriele, H.-S. Wood Waste Inventory: Final Report, EPA/600/R-18/262; EPA United States Environmental Protection Agency: Washington, DC, USA, 2018; pp. 3.3–3.5.
- US EPAO. Wood: Material-Specific Data. 2017. Available online: https://www.epa.gov/facts-and-figures-about-materials-waste-and-recycling/wood-material-specific-data (accessed on 10 August 2023).
- Lam, M.K.; Loy, A.C.M.; Yusup, S.; Lee, K.T. Biohydrogen Production from Algae. In Biohydrogen; Pandey, A., Mohan, S.V., Chang, J.-S., Hallenbeck, P.C., Larroche, C., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 219–245. [Google Scholar] [CrossRef]
- Scarlat, N.; Blujdea, V.; Dallemand, J.-F. Assessment of the availability of agricultural and forest residues for bioenergy production in Romania. Biomass Bioenergy 2011, 35, 1995–2005. [Google Scholar] [CrossRef]
- Perea-Moreno, A.-J.; Perea-Moreno, M.-Á.; Hernandez-Escobedo, Q.; Manzano-Agugliaro, F. Towards forest Sustainability in Mediterranean countries using biomass as fuel for heating. J. Clean. Prod. 2017, 156, 624–634. [Google Scholar] [CrossRef]
- Kacprzak, A.; Kobyłecki, R.; Włodarczyk, R.; Bis, Z. Efficiency of non-optimized direct carbon fuel cell with molten alkaline electrolyte fueled by carbonized biomass. J. Power Sourc. 2016, 321, 233–240. [Google Scholar] [CrossRef]
- Bain, R.L.; Overend, R.P. Biomass for heat and power. For. Prod. J. 2002, 52, 12–19. [Google Scholar]
- van der Stelt, M.J.C.; Gerhauser, H.; Kiel, J.H.A.; Ptasinski, K.J. Biomass upgrading by torrefaction for the production of biofuels: A review. Biomass Bioenergy 2011, 35, 3748–3762. [Google Scholar] [CrossRef]
- Chen, W.H.; Peng, J.; Bi, X.T. A state-of-the-art review of biomass torrefaction, densification and applications. Renew. Sustain. Energy Rev. 2015, 44, 847–866. [Google Scholar] [CrossRef]
- Devi, A.; Singh, A.; Bajar, S.; Pant, D.; Din, Z.U. Ethanol from lignocellulosic biomass: An in-depth analysis of pre-treatment methods, fermentation approaches and detoxification processes. J. Environ. Chem. Eng. 2021, 9, 105798. [Google Scholar] [CrossRef]
- Sahay, S. Impact of Pretreatment Technologies for Biomass to Biofuel Production. In Substrate Analysis for Effective Biofuels Production, Clean Energy Production Technologies; Srivastava, N., Srivastava, M., Mishra, P.K., Gupta, V.K., Eds.; Springer: Singapore, 2020; pp. 173–216. [Google Scholar] [CrossRef]
- Salam, M.A.; Ahmed, K.; Akter, N.; Hossain, T.; Abdullah, B. A review of hydrogen production via biomass gasification and its prospect in Bangladesh. Int. J. Hydrog Energy 2018, 43, 14944–14973. [Google Scholar] [CrossRef]
- Yang, B.; Wyman, C.E. Pretreatment: The key to unlocking low-cost cellulosic ethanol. Biofuels Bioprod. Biorefining 2008, 2, 26–40. [Google Scholar] [CrossRef]
- Amiri, H.; Karimi, K. Improvement of acetone, butanol, and ethanol production from woody biomass using organosolv pretreatment. Bioprocess Biosyst. Eng. 2015, 38, 1959–1972. [Google Scholar] [CrossRef] [PubMed]
- Galkin, M.V.; Smit, A.T.; Subbotina, E.; Artemenko, K.A.; Bergquist, J.; Huijgen, W.J.J.; Samec, J.S.M. Hydrogen-free catalytic fractionation of woody biomass. ChemSusChem 2016, 9, 3280–3287. [Google Scholar] [CrossRef]
- Hanaoka, T.; Yoshida, T.; Fujimoto, S.; Kamei, K.; Harada, M.; Suzuki, Y.; Hatano, H.; Yokoyama, S.; Minowa, T. Hydrogen production from woody biomass by steam gasification using a CO2 sorbent. Biomass Bioenergy 2005, 28, 63–68. [Google Scholar] [CrossRef]
- Kalyani, D.C.; Fakin, T.; Horn, S.J.; Tschentscher, R. Valorisation of woody biomass by combining enzymatic saccharification and pyrolysis. Green Chem. 2017, 19, 3302–3312. [Google Scholar] [CrossRef]
- Kim, K.-H.; Eom, I.-Y.; Lee, S.-M.; Cho, S.-T.; Choi, I.-G.; Choi, J.W. Applicability of sub- and supercritical water hydrolysis of woody biomass to produce monomeric sugars for cellulosic bioethanol fermentation. J. Ind. Eng. Chem. 2010, 16, 918–922. [Google Scholar] [CrossRef]
- Patel, A.; Matsakas, L.; Rova, U.; Christakopoulos, P. Heterotrophic cultivation of Auxenochlorella protothecoides using forest biomass as a feedstock for sustainable biodiesel production. Biotechnol. Biofuels 2018, 11, 169. [Google Scholar] [CrossRef]
- Valenzuela, M.B.; Jones, C.W.; Agrawal, P.K. Batch aqueous-phase reforming of woody biomass. Energy Fuels 2006, 20, 1744–1752. [Google Scholar] [CrossRef]
- Jia, L.; Cheng, P.; Yu, Y.; Chen, S.; Wang, C.; He, L.; Nie, H.; Wang, J.; Zhang, J.; Fan, B.; et al. Regeneration mechanism of a novel high-performance biochar mercury adsorbent directionally modified by multimetal multilayer loading. J. Environ. Manag. 2023, 326, 116790. [Google Scholar] [CrossRef] [PubMed]
- Pascoli, D.U.; Suko, A.; Gustafson, R.; Gough, H.L.; Bura, R. Novel ethanol production using biomass preprocessing to increase ethanol yield and reduce overall costs. Biotechnol. Biofuels 2021, 14, 9. [Google Scholar] [CrossRef] [PubMed]
Common Name | Scientific Name | Tree Type |
---|---|---|
American arborvitae | Thuja occidentalis | Evergreen |
American beech | Fagus grandifolia | Deciduous |
American elm | Ulmus americana | Deciduous |
American holly | Ilex opaca | Evergreen |
American hophornbeam | Ostrya virginiana | Deciduous |
American hornbeam | Carpinus caroliniana | Deciduous |
American sycamore | Platanus occidentalis | Deciduous |
Anglojap yew | Taxus media | Evergreen |
Apple | Malus domestica | Deciduous |
Atlas cedar | Cedrus atlantica | Evergreen |
Austrian pine | Pinus nigra | Evergreen |
Balsam fir | Abies balsamea | Evergreen |
Bigtooth aspen | Populus grandidentata | Deciduous |
Bitternut hickory | Carya cordiformis | Deciduous |
Black cherry | Prunus serotina | Deciduous |
Black gum | Nyssa sylvatica | Evergreen |
Black locust | Robinia pseudoacacia | Deciduous |
Black maple | Acer nigrum | Deciduous |
Black oak | Quercus velutina | Deciduous |
Black tupelo | Nyssa sylvatica | Deciduous |
Boxelder maple | Acer negundo | Deciduous |
Butternut | Juglans cinerea | Deciduous |
Canada hemlock | Tsuga canadensis | Evergreen |
Carolina hemlock | Tsuga caroliniana | Evergreen |
Carolina rhododendron | Rhododendron carolinianum | Evergreen |
Catawba rhododendron | Rhododendron catawbiense | Evergreen |
Chestnut oak | Quercus prinus | Deciduous |
Chinese holly | Ilex cornuta | Evergreen |
Chinese juniper | Juniperus chinensis | Evergreen |
Christmas fern | Polystichum acrostichoides | Evergreen |
Colorado spruce | Picea pungens | Evergreen |
Common boxwood | Buxus sempervirens | Evergreen |
Concolor-fir | Abies concolor | Evergreen |
Creeping juniper | Juniperus horizontalis | Evergreen |
Cucumber tree | Magnolia acuminata | Deciduous |
Douglas-fir | Pseudotsuga menziesii | Evergreen |
Downy serviceberry | Amelanchier arborea | Deciduous |
Drooping leucothoe | Leucothoe fontanesiana | Evergreen |
Eastern black walnut | Juglans nigra | Deciduous |
Eastern hemlock | Tsuga canadensis | Evergreen |
Eastern hop-hornbeam | Ostrya virginiana | Deciduous |
Eastern juniper | Juniperus virginiana | Evergreen |
Eastern red cedar | Juniperus virginiana | Evergreen |
Eastern redbud | Cercis canadensis | Deciduous |
Eastern white pine | Pinus strobus | Evergreen |
Eastern white pine | Pinus strobus | Evergreen |
English yew | Taxus baccata repandens | Evergreen |
Flowering dogwood | Cornus florida | Deciduous |
Fraser-fir | Abies fraseri | Evergreen |
Garden phlox | Phlox paniculata | Evergreen |
Gray birch | Betula populifolia | Deciduous |
Great laurel | Rhododendron maximum | Evergreen |
Hackberry | Celis occidentalis | Deciduous |
Hinoki falsecypress, | Chamaecyparis obtusa | Evergreen |
Horse-chestnut | Aesculus hippocastanum | Deciduous |
Inkberry | Ilex glabra | Evergreen |
Japanese black pine | Pinus thunbergi | Evergreen |
Japanese cedar cryptomeria | Cryptomeria japonica | Evergreen |
Japanese falsecypress | Chamaecyparis pisifera | Evergreen |
Japanese holly | Ilex crenata | Evergreen |
Japanese pieris | Pieris japonica | Evergreen |
Japanese yew | Taxus cuspidata | Evergreen |
Lacebark pine | Pinus bungeana | Evergreen |
Leatherleaf mahonia | Mohonia bealei | Evergreen |
Leatherleaf viburnum | Viburnum rhytidophyllum | Evergreen |
Litterleaf boxwood | Buxus microphylla | Evergreen |
Mountain pieris | Pieris floribunda | Evergreen |
Mountain-laurel | Kalmia latifolia | Evergreen |
Mugo pine | Pinus mugo mughus | Evergreen |
Northern catalpa | Catalpa speciosa | Deciduous |
Northern red oak | Quercus rubra | Deciduous |
Northern white cedar | Thuja occidentalis | Evergreen |
Norway maple | Acer platanoides | Deciduous |
Norway pine | Pinus resinosa | Evergreen |
Norway spruce | Picea abies | Evergreen |
Ohio buckeye | Aesculus glabra | Deciduous |
Oregon hollygrape | Mahonia aquifolium | Evergreen |
Oriental spruce | Picea orientalis | Evergreen |
Paper birch | Betual papyrifera | Deciduous |
Paw paw | Asimina triloba | Deciduous |
Pin oak | Quercus palustris | Deciduous |
Pine tree | Pinus strobus | Evergreen |
Pine umbrella | Sciadopitys verticillata | Evergreen |
Pinyon pine | Pinus cembroides | Evergreen |
Pitch pine | Pinus rigida | Evergreen |
Red or swamp maple | Acer rubrum | Deciduous |
Red pine | Pinus resinosa | Evergreen |
River birch | Betula nigra | Deciduous |
Scarlet firethorn | Pyracantha coccinea | Evergreen |
Scots pine | Pinus sylvestris | Evergreen |
Serbian spruce | Picea omorika | Evergreen |
Serviceberry/shadblow/shadbush | Amelanchier canadensis | Deciduous |
Shagbark hickory | Carya ovata | Deciduous |
Sheep laurel | Kalmaia angustifolia | Evergreen |
Shortleaf pine | Pinus echinata | Evergreen |
Silver maple | Acer saccharinum | Deciduous |
Striped maple/moosewood | Acer pensylvanicum | Deciduous |
Sugar or rock maple | Acer saccharum | Deciduous |
Sumac | Rhus glabra | Evergreen |
Swamp birch | Betula alleghaniensis | Deciduous |
Swamp Spanish oak | Quercus palustris | Deciduous |
Sweet birch | Betula lenta | Deciduous |
Sweetbay magnolia | Magnolia virginiana | Semi-evergreen |
Tabletop pine | Pinus densiflora umbraculifera | Evergreen |
Tamarack | Larix laricina | Deciduous |
Trembling aspen | Populus tremuloides | Deciduous |
Trident red maple | Acer buergerianum | Deciduous |
Tulip poplar tree | Liriodendron tulipifera | Deciduous |
Virginia bluebells | Mertensia virginica | Deciduous |
Virginia pine | Pinus virginiana | Evergreen |
Warty barberry | Berberis verruculosa | Evergreen |
Weeping willow | Salix babylonica | Deciduous |
White ash | Fraxinus americana | Deciduous |
White fringetree | Chionanthus virginicus | Deciduous |
White oak | Quercus alba | Deciduous |
White spruce | Picea glauca | Evergreen |
Wild black cherry | Prumus serotina | Deciduous |
Winterberry | Ilex verticillata | Deciduous |
Wintergreen barberry | Berberis julianae | Evergreen |
Yellow birch | Betula alleghaniensis | Deciduous |
Yellow or sweet buckeye | Aesculus flava | Deciduous |
Classification Type | Group Name | Examples Based on Current Production | References |
---|---|---|---|
Physical state | Solid | Wood, wood pellets, biochar. | [111,112,113,114] |
Liquid | Biodiesel, bio-oil, bioethanol, jet fuel. | [115] | |
Gaseous | Biogas, biohydrogen, biomethane. | [116] | |
Feedstock | 1st generation | Bioethanol, biodiesel, biogas, biohydrogen. | [115,116] |
2nd generation | Bioethanol, biodiesel, bio-oil, biogas, biochar, Fischer-Tropsch gasoline. | [113,115,116] | |
3rd generation | Biodiesel, bio-oil. | [117] | |
Production process | Chemical | Biodiesel (by transesterification) | [118] |
Thermochemical | Heat (combustion) Biochar (torrefaction and pyrolysis) Bio-oil (hydrothermal liquefaction, gasification, pyrolysis) Pyrolysis Biogas, syngas or producer gas (gasification, hyrothermal gasification and pyrolysis). | [111,116,118,119,120] | |
Biological | Bioethanol and other bioalcohols (fermentation). Biogas (anaerobic digestion) Biodiesel (biological transesterification) | [121,122] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faluyi, M.O.; Irmak, S. Northeastern American Forests: Natural Disturbances, Climate Change Impact, and the Utilization of Increasingly Damaged Forest Trees for Biofuel Production. Forests 2023, 14, 2409. https://doi.org/10.3390/f14122409
Faluyi MO, Irmak S. Northeastern American Forests: Natural Disturbances, Climate Change Impact, and the Utilization of Increasingly Damaged Forest Trees for Biofuel Production. Forests. 2023; 14(12):2409. https://doi.org/10.3390/f14122409
Chicago/Turabian StyleFaluyi, Marvellous Oluwaferanmi, and Sibel Irmak. 2023. "Northeastern American Forests: Natural Disturbances, Climate Change Impact, and the Utilization of Increasingly Damaged Forest Trees for Biofuel Production" Forests 14, no. 12: 2409. https://doi.org/10.3390/f14122409
APA StyleFaluyi, M. O., & Irmak, S. (2023). Northeastern American Forests: Natural Disturbances, Climate Change Impact, and the Utilization of Increasingly Damaged Forest Trees for Biofuel Production. Forests, 14(12), 2409. https://doi.org/10.3390/f14122409