The Impact of Climate and Adaptative Forest Management on the Intra-Annual Growth of Pinus halepensis Based on Long-Term Dendrometer Recordings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Measurements
2.3. Data Preparation
2.4. Statistical Analysis
3. Results
4. Discussion
4.1. The Influence of Weather Conditions on Growth
4.2. Can Thinning Mitigate Drought Stress?
4.3. The Impact of Social Status on Intra-Annual Growth Pattern
4.4. Perspectives
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Allen, C.D.; Breshears, D.D.; McDowell, N.G. On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere 2015, 6, 129. [Google Scholar] [CrossRef]
- Allan, R.P.; Soden, B.J. Atmospheric warming and the amplification of precipitation extremes. Science 2008, 321, 1481–1484. [Google Scholar] [CrossRef] [Green Version]
- Easterling, D.R.; Wehner, M.F. Is the climate warming or cooling? Geophysical Res. Lett. 2009, 36. Available online: https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2009GL037810 (accessed on 18 May 2022). [CrossRef] [Green Version]
- Martín-Benito, D.; Del Rio, M.; Heinrich, I.; Helle, G.; Canellas, I. Response of climate growth relationships and water use efficiency to thinning in a Pinus nigra afforestation. For. Ecol. Manag. 2010, 259, 967–975. [Google Scholar] [CrossRef]
- Olivar, J.; Bogino, S.; Rathgeber, C.; Bonnesoeur, V.; Ordoñez, C.; Bravo. Thinning has a positive effect on growth dynamics and growth-climate relationships in Aleppo pine (Pinus halepensis L.) trees of different crown classes. Ann. For. Sci. 2014, 71, 395–404. [Google Scholar] [CrossRef]
- Fotelli, M.N.; Nahm, M.; Heidenfelder, A.; Papen, H.; Rennenberg, H.; Geßler, A. Soluble nonprotein nitrogen compounds indicate changes in the nitrogen status of beech seedlings due to climate and thinning. New Phytol. 2002, 154, 85–97. [Google Scholar] [CrossRef]
- Peet, R.K.; Christensen, N.L. Competition and tree death. Bioscience 1987, 37, 586–594. [Google Scholar] [CrossRef]
- Orwig, D.A.; Abrams, M.D. Variation in radial growth responses to drought among species, site, and canopy strata. Trees 1997, 11, 474–484. [Google Scholar] [CrossRef]
- Li, X.; Rossi, S.; Liang, E. The onset of xylogenesis in Smith fir is not related to outer bark thickness. Am. J. Bot. 2019, 106, 1386–1391. [Google Scholar] [CrossRef]
- Linares, J.C.; Camarero, J.J.; Carreira, J.A. Plastic responses of Abies pinsapo xylogenesis to drought and competition. Tree Physiol. 2009, 29, 1525–1536. [Google Scholar] [CrossRef]
- Adams, H.D.; Kolb, T.E. Drought responses of conifers in ecotone forests of northern Arizona: Tree ring growth and leaf d13C. Oecologia 2004, 140, 217–225. [Google Scholar] [CrossRef]
- Barbero, M.; Loisel, R.; Quézel, P.; Richardson, D.M.; Romane, F. Pines of the Mediterranean Basin. In Ecology and Biogeography of Pinus; Richardson, D.M., Ed.; Cambridge University Press: Cambridge, UK, 1998. [Google Scholar]
- Richardson, D.M.; Rundel, P.W. An introduction. In Ecology and Biogeography of Pinus; Richardson, D.M., Ed.; Cambridge University Press: Cambridge, UK, 1998; pp. 3–46. [Google Scholar]
- Serrada, R.; Montero, G.; Reque, J. Compendio de Selvicultura Aplicada en España. In INIA-Fundación Conde del Valle de Salazar; Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid (España) Ministerio de Educación y Ciencia: Madrid, Spain, 2008. [Google Scholar]
- Pasho, E.; Camarero, J.J.; De Luis, M.; Vicente-Serrano, S.M. Spatial variability in large-scale and regional atmospheric drivers of Pinus halepensis growth in eastern Spain. Agric. For. Meteorol. 2011, 151, 1106–1119. [Google Scholar] [CrossRef]
- Maldonado, F.J.; Sainz de Ollero, H.; Sánchez de Dios, R. Distribución y Estado de Conservación de los Bosques en España; UAM-WWF: Adena, Madrid, Spain, 1998. [Google Scholar]
- Esteban, L.G.; Martín, J.A.; de Palacios, P.; García, F.; López, R. Adaptive anatomy of Pinus halepensis trees from different Mediterranean environments in Spain. Trees 2010, 24, 19. [Google Scholar] [CrossRef]
- Vaganov, E.A.; Hughes, M.K.; Shashkin, A.V. Growth Dynamics of Conifer Tree Rings: Images of Past and Future Environments; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- De Luis, M.; Novak, K.; Raventos, J.; Gricar, J.; Prislan, P.; Cufar, K. Cambial activity, wood formation and sapling survival of Pinus halepensis exposed to different irrigation regimes. For. Ecol. Manag. 2011, 262, 1630–1638. [Google Scholar] [CrossRef]
- Olivar, J.; Bogino, S.; Spiecker, H.; Bravo, F. Climate impact on growth dynamic and intra annual density fluctuations in Aleppo pine (Pinus halepensis) trees of different crown classes. Dendrochronologia 2012, 30, 35–47. [Google Scholar] [CrossRef]
- Zweifel, R.; Item, H.; Häsler, R. Link between diurnal stem radius changes and tree water relations. Tree Physiol. 2001, 21, 869–877. [Google Scholar] [CrossRef] [Green Version]
- Keeland, B.D.; Sharitz, R.R. Accuracy of tree growth measurements using dendrometer bands. Can. J. For. Res. 1993, 23, 2454–2457. [Google Scholar] [CrossRef]
- Pretzsch, H.; Biber, P. Size-symmetric versus size-asymmetric competition and growth partitioning among trees in forest stands along an ecological gradient in central Europe. Can. J. For. Res. 2010, 40, 370–384. [Google Scholar] [CrossRef]
- Reineke, L.H. Perfecting a stand-density index for even-aged forests. J. Agric. Res. 1993, 46, 627–638. [Google Scholar]
- De Martonne, E. L’indice d’aridité. In Bulletin de l’Association de Géographes Français; Open Edition: San Francisco, CA, USA, 1993; Volume 9, p. 3e année. [Google Scholar]
- Rais, A.; Van de Kuilen, J.-W.G.; Pretzsch, H. Growth reaction patterns of tree height.; diameter.; and volume of Douglas-fir (Pseudotsuga menziesii [Mirb.] Franco) under acute drought stress in Southern Germany. Eur. J. For. Res. 2014, 133, 1043–1056. [Google Scholar] [CrossRef]
- Pinheiro, J.C.; Bates, D.M. Mixed-Effects Models in S and S-PLUS; Springer: New York, NY, USA, 2000. [Google Scholar]
- Zuur, A.F.; Ieno, E.N.; Walkerx, N.; Saveliev, A.A.; Smith, G.M. Mixed Effects Models and Extensions in Ecology with R; Springer: New York, NY, USA, 2009. [Google Scholar]
- Garber, S.M.; Maguire, D.A. Modeling stem taper of three central Oregon species using nonlinear mixed effects models and autoregressive error structures. For. Ecol. Manag. 2003, 179, 507–522. [Google Scholar] [CrossRef]
- Akaike, H. A new look at the statistical model identification. IEEE Trans. Automat. Contr. 1974, 19, 716–723. [Google Scholar] [CrossRef]
- Burnham, K.P.; Anderson, D.R. Model Selection and Multi-Model Inference: A Practical Information-Theoretic Approach, 2nd ed; Springer: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Venables, W.N.; Smith, D.M. The R Development Core Team. In An Introduction to R; Version 1.0; Network Theory Limited: London, UK, 2003. [Google Scholar]
- Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; McGowan, L.; François, R.; Grolemund, G.; Hayes, A.; Henr, L.; Hester, J. Welcome to the Tidyverse. J. Open Source Softw. 2009, 4, 1686. [Google Scholar] [CrossRef]
- Wood, S.N. Generalized Additive Models: An Introduction with R, 2nd ed.; Chapmanand Hall/CRC: Boca Raton, FL, USA, 2017. [Google Scholar]
- Barton, K. MuMIn: Multi-Model Inference. R Package Version 1.43.15. 2009. Available online: http://r-forge.r-project.org/projects/mumin/ (accessed on 18 May 2022).
- Papadopoulos, A.; Tolica, K.; Pantera, A.; Maheras, P. Investigation of the annual variability of the Aleppo pine tree-ring width: The relationship with the climatic conditions in the Attica basin. Glob. Nest J. 2008, 11, 583–592. [Google Scholar]
- Lara, W.; Bravo, F.; Maguire, D.A. Modeling patterns between drought and tree biomass growth from dendrochronological data: A multilevel approach. Agric. For. Meteorol. 2013, 178–179, 140–151. [Google Scholar] [CrossRef]
- Babst, F.; Poulter, B.; Trouet, V.; Tan, K.; Neuwirth, B.; Wilson, R.; Carrer, M.; Grabner, M.; Tegel, W.; Levanic, T. Site- and species-specific responses of forest growth to climate across the European continent. Glob. Ecol. Biogeogr. 2013, 22, 706–717. [Google Scholar] [CrossRef]
- Moser, S.C.; Ekstrom, J.A. A framework to diagnose barriers to climate change adaptation. Proc. Natl. Acad. Sci. USA 2010, 107, 22026–22031. [Google Scholar] [CrossRef] [Green Version]
- Cherubini, P.; Gartner, B.L.; Tognetti, R.; Bräker, O.U.; Schoch, W.; Innes, J.L. Identification.; measurement and interpretation of tree rings in woody species from Mediterranean climates. Biol. Rev. Camb. Philos. Soc. 2003, 78, 119–148. [Google Scholar] [CrossRef] [Green Version]
- Klein, T.; Cohen, S.; Yakir, D. Hydraulic adjustments underlying drought resistance of Pinus halepensis. Tree Physiol. 2011, 31, 637–648. [Google Scholar] [CrossRef] [Green Version]
- Van der Maaten, E.; van der Maaten-Theunissen, M.; Spiecker, H. Temporally resolved intra-annual wood density variations in European beech (Fagus sylvatica L.) as affected by climate and aspect. Ann. For. Res. 2012, 55, 105–116. [Google Scholar]
- Lechuga, V.; Carraro, V.; Viñegla, B.; Carreira, J.A.; Linares, J.C. Managing drought-sensitive forests under global change. Low competition enhances long-term growth and water uptake in Abies pinsapo. For. Ecol. Manag. 2017, 406, 72–82. [Google Scholar] [CrossRef]
- Jiménez, M.N.; Navarro, F.B.; Sánchez-Miranda, A.; Ripoll, M.A. Using stem diameter variations to detect and quantify growth and relationships with climatic variables on a gradient of thinned Aleppo pines. For. Ecol. Manag. 2019, 442, 53–62. [Google Scholar] [CrossRef]
- Carnwath, G.C.; Peterson, D.W.; Nelson, C.R. Effect of crown class and habitat type on climate–growth relationships of ponderosa pine and Douglas-fir. For. Ecol. Manag. 2012, 285, 44–52. [Google Scholar] [CrossRef]
- Aldea, J.; Bravo, F.; Bravo-Oviedo, A.; Ruiz-Peinado, R.; Rodríguez, F.; del Río, M. Thinning enhances the species-specific radial increment response to drought in Mediterranean pine-oak stands. Agric. For. Meteorol. 2017, 237–238, 371–383. [Google Scholar] [CrossRef]
- Gea-Izquierdo, G.; Martín-Benito, D.; Cherubini, P.; Cañellas, I. Climate-growth variability in Quercus ilex L. west Iberian open woodlands of different stand density. Ann. For. Sci. 2009, 66, 802. [Google Scholar] [CrossRef] [Green Version]
- Moreno-Gutiérrez, C.; Dawson, T.E.; Nicolás, E.; Querejeta, J.I. Isotopes reveal contrasting water use strategies among coexisting plant species in a Mediterranean ecosystem. New Phytol. 2012, 196, 489–496. [Google Scholar] [CrossRef]
- D’Amato, A.W.; Bradford, J.B.; Fraver, S.; Palik, B.J. Effects of thinning on drought vulnerability and climate response in north temperate forest ecosystems. Ecol. Appl. 2013, 23, 1735–1742. [Google Scholar] [CrossRef] [Green Version]
- Mencuccini, M.; Martinez-Vilalta, J.; Vanderklein, D.; Hamid, H.A.; Korakaki, E.; Lee, S.; Michiels, B. Size-mediated ageing reduces vigour in trees. Ecol. Let. 2005, 8, 1183–1190. [Google Scholar] [CrossRef]
- De Luis, M.; Gricar, J.; Cufar, K.; Raventós, J. Seasonal dynamics of wood formation in Pinus halepensis from dry and semi-arid ecosystems in Spain. IAWA J. 2007, 28, 389–404. [Google Scholar] [CrossRef] [Green Version]
- Camarero, J.J.; Olano, J.M.; Parras, A. Plastic bimodal xylogenesis in conifers from continental Mediterranean climates. New Phytol. 2010, 185, 471–480. [Google Scholar] [CrossRef]
- Liu, S.; Li, X.; Rossi, S.; Wang, L.; Li, X.; Liang, E.; Leavitt, S.W. Differences in xylogenesis between dominant and suppressed trees. Am. J. Bot. 2018, 105, 950–956. [Google Scholar] [CrossRef] [PubMed]
- Rathgeber, C.B.; Rossi, S.; Bontemps, J.D. Cambial activity related to tree size in a mature silver-fir plantation. Ann. Bot. 2011, 108, 429–438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Misson, L.; Nicault, A.; Guiot, J. Effects of different thinning intensities on drought response in Norway spruce (Picea abies (L.) Karst.). For. Ecol. Manag. 2003, 183, 47–60. [Google Scholar]
- Moreno, G.; Cubera, E. Impact of stand density on water status and leaf gas exchange in Quercus ilex. For. Ecol. Manag. 2012, 254, 74–84. [Google Scholar] [CrossRef]
Stand | Reduction in BA 1 (%) | Ho 2 (m) | Initial BA 1 (m2ha−1) | Final BA 1 (m2ha−1) | Initial Mean DBH 3 (cm) | Final Mean DBH 3 (cm) | Longitude 4 | Latitude 4 |
---|---|---|---|---|---|---|---|---|
T0 | 0 | 10.6 | 22.6 (0.1) | 22.6 (0.1) | 18.6 (6.4) | 18.6 (6.4) | 35°32′22″ | 46°36′342″ |
T15 | 15 | 10.1 | 27.6 (0.1) | 23.5 (0.1) | 18.2 (6.1) | 18.9 (6.1) | 35°31′89″ | 46°36′384″ |
T30 | 30 | 9.4 | 20.0 (0.1) | 14.0 (0.1) | 17.1 (5.8) | 18.5 (5.8) | 35°31′41″ | 46°36′347″ |
T45 | 45 | 9.1 | 20.5 (0.1) | 11.2 (0.1) | 17.6 (6.1) | 21.2 (6.2) | 35°31′56″ | 46°36′281″ |
Year | n | Omitted Time-Series (%) | SDIlocal 1 (trees ha−1) | De Martonne Index 2 (mm °C−1) | Winter Precipitation 3 (mm) |
---|---|---|---|---|---|
2011 | 41 | 14.6 | 834 (455) | 5.9 | 96 |
2012 | 30 | 37.5 | 803 (460) | 8.2 | 28 |
2013 | 37 | 22.9 | 896 (485) | 18.3 | 109 |
2014 | 34 | 29.2 | 882 (485) | 11.1 | 177 |
2015 | 31 | 35.4 | 794 (441) | 9.7 | 55 |
2016 | 40 | 16.7 | 794 (436) | 11.2 | 127 |
2017 | 14 | 70.8 | 711(239) | 5.5 | 63 |
2018 | 15 | 68.8 | 736 (249) | 20.2 | 99 |
RelBA25 (Day of Year) | RelBA50 (Day of Year) | RelBA75 (Day of Year) | ||
---|---|---|---|---|
Social status | offset (suppressed) | 114 (2) | 153 (2) | 208 (4) |
dominant | 2.3 (2.0) | −1.3 (2.6) | 8.4 (4.8) | |
p-value | 0.249 | 0.629 | 0.0792 | |
SDIlocal (ha−1) | offset | 115 (2) | 142 (3) | 196 (5) |
slope | 5.7 × 10−4 (2.3 × 10−3) | 1.3 × 10−2 (2.8 × 10−3) | 2.1 × 10−2 (5.2 × 10−3) | |
p-value | 0.804 | *** | *** | |
De Martonne index (mm °C−1) | offset | 111 (3) | 155 (3) | 236 (6) |
slope | 4.1 × 10−1 (2.2 × 10−1) | −2.4 × 10−1 (2.8 × 10−1) | −2.1 (0.5) | |
p-value | 0.057 | 0.402 | *** | |
Winter precipitation (mm) | offset | 119 (2) | 156 (3) | 225 (6) |
slope | −3.6 × 10−2 (2.2 × 10−2) | −3.7 × 10−2 (2.9 × 10−2) | −1.2 × 10−1 (5.3 × 10−2) | |
p-value | 0.110 | 0.209 | 0.021 | |
n | 242 | 242 | 242 |
RelBA25 [Day of Year] | RelBA50 [Day of Year] | RelBA75 [Day of Year] | |||
---|---|---|---|---|---|
a0 | 114 (3) | 146 (4) | 229 (11) | ||
Social status | suppressed | a1 | - | - | - |
dominant | 7.9 (4.2) | ||||
SDIlocal (ha−1) | a2 | - | 1.3 × 10−2 *** (2.8 × 10−3) | 1.1 × 10−3 (8.3 × 10−3) | |
De Martonne index (mm °C−1) | a3 | 6.1 × 10−1 ** (2.2 × 10−1) | –2.0 *** (4.8 × 10−1) | ||
Winter precipitation (mm) | a4 | –5.1 × 10−2 * (2.3 × 10−2) | –4.4 × 10−2 (2.8 × 10−2) | ||
bi (σ) | 5.7 × 10−4 | 9.1 × 10−4 | 13.4 | ||
bij (σ) | 9.3 × 10−4 | 1.4 × 10−3 | 4.1 × 10−3 | ||
ɛij (σ) | 1.5 × 101 | 1.9 × 101 | 3.3 × 101 | ||
φ | 0.06 | −0.02 | −0.05 | ||
RMSE | 15.1 | 19.0 | 32.9 | ||
AIC weights | 0.385 | 0.248 | 0.300 | ||
nseries | 242 | 242 | 242 | ||
ntree | 46 | 46 | 46 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olivar, J.; Rais, A.; Pretzsch, H.; Bravo, F. The Impact of Climate and Adaptative Forest Management on the Intra-Annual Growth of Pinus halepensis Based on Long-Term Dendrometer Recordings. Forests 2022, 13, 935. https://doi.org/10.3390/f13060935
Olivar J, Rais A, Pretzsch H, Bravo F. The Impact of Climate and Adaptative Forest Management on the Intra-Annual Growth of Pinus halepensis Based on Long-Term Dendrometer Recordings. Forests. 2022; 13(6):935. https://doi.org/10.3390/f13060935
Chicago/Turabian StyleOlivar, Jorge, Andreas Rais, Hans Pretzsch, and Felipe Bravo. 2022. "The Impact of Climate and Adaptative Forest Management on the Intra-Annual Growth of Pinus halepensis Based on Long-Term Dendrometer Recordings" Forests 13, no. 6: 935. https://doi.org/10.3390/f13060935
APA StyleOlivar, J., Rais, A., Pretzsch, H., & Bravo, F. (2022). The Impact of Climate and Adaptative Forest Management on the Intra-Annual Growth of Pinus halepensis Based on Long-Term Dendrometer Recordings. Forests, 13(6), 935. https://doi.org/10.3390/f13060935