Microsite Drivers of Natural Seed Regeneration of Eucalyptus globulus Labill. in Burnt Plantations †
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Sites
2.2. Sampling Design
2.3. Field Sampling
2.4. Laboratory Analyses
2.4.1. Soil Hydrophobicity
2.4.2. Soil Chemistry
2.5. Data Analyses
3. Results
3.1. Preliminary Observations
3.2. Exploratory Analyses
3.3. Microsites of Wildlings of Different Sizes
3.4. Microsites of Established Wildlings
4. Discussion
4.1. Origins of Wildlings
4.2. Wildlings of Different Sizes
4.3. Wildling Establishment
4.4. Ecological Niche and Ontogeny
4.5. Implications in Forest Management
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Richardson, D.; Cowling, R.; Le Maitre, D. Assessing the risk of invasive success in Pinus and Banksia in South African mountain fynbos. J. Veg. Sci. 1990, 1, 629–642. [Google Scholar] [CrossRef]
- Contreras, T.E.; Figueroa, J.A.; Abarca, L.; Castro, S.A. Fire regimen and spread of plants naturalized in central Chile. Rev. Chil. Hist. Nat. 2011, 84, 307–323. [Google Scholar] [CrossRef]
- Raison, R.J. Modification of the soil environment by vegetation fires, with particular reference to nitrogen transformations: A review. Plant Soil 1979, 51, 73–108. [Google Scholar] [CrossRef]
- Schoennagel, T.; Smithwick, E.A.H.; Turner, M.G. Landscape heterogeneity following large fires: Insights from Yellowstone National Park, USA. Int. J. Wildland Fire 2008, 17, 742–753. [Google Scholar] [CrossRef]
- DeBano, L.F.; Neary, D.G.; Ffolliott, P.F. Fire Effects on Ecosystems; John Wiley & Sons: Hoboken, NJ, USA, 1998; p. 333. [Google Scholar]
- Pausas, J.G. Changes in fire and climate in the eastern Iberian Peninsula (Mediterranean basin). Clim. Chang. 2004, 63, 337–350. [Google Scholar] [CrossRef]
- Keeley, J.E.; Fotheringham, C.J.; Morais, M. Reexamining fire suppression impacts on brushland fire regimes. Science 1999, 284, 1829–1832. [Google Scholar] [CrossRef] [Green Version]
- Águas, A.; Larcombe, M.J.; Matias, H.; Deus, E.; Potts, B.M.; Rego, F.C.; Silva, J.S. Understanding the naturalization of Eucalyptus globulus in Portugal: A comparison with Australian plantations. Eur. J. For. Res. 2017, 136, 433–446. [Google Scholar] [CrossRef]
- Larcombe, M.; Silva, J.S.; Vaillancourt, R.; Potts, B. Assessing the invasive potential of Eucalyptus globulus in Australia: Quantification of wildling establishment from plantations. Biol. Invasions 2013, 15, 2763–2781. [Google Scholar] [CrossRef]
- Lamont, B.B.; Le Maitre, D.C.; Cowling, R.M.; Enright, N.J. Canopy seed storage in woody plants. Bot. Rev. 1991, 57, 277–317. [Google Scholar] [CrossRef]
- Nathan, R.; Muller-Landau, H.C. Spatial patterns of seed dispersal, their determinants and consequences for recruitment. Trends Ecol. Evol. 2000, 15, 278–285. [Google Scholar] [CrossRef]
- Hutchinson, G. Concluding remarks. Proc. Cold Spring Harb. Symp. Quant. Biol. 1957, 22, 415–427. [Google Scholar] [CrossRef]
- Pulliam, H.R. On the relationship between niche and distribution. Ecol. Lett. 2000, 3, 349–361. [Google Scholar] [CrossRef]
- Holt, R.D. Bringing the Hutchinsonian niche into the 21st century: Ecological and evolutionary perspectives. Proc. Natl. Acad. Sci. USA 2009, 106, 19659–19665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grubb, P.J. The maintenance of species-richness in plant communities: The importance of the regeneration niche. Biol. Rev. 1977, 52, 107–145. [Google Scholar] [CrossRef]
- Poorter, L. Are species adapted to their regeneration niche, adult niche, or both? Am. Nat. 2007, 169, 433–442. [Google Scholar] [CrossRef] [PubMed]
- Battaglia, M.; Reid, J. The effect of microsite variation on seed-germination and seedling survival of Eucalyptus delegatensis. Aust. J. Bot. 1993, 41, 169–181. [Google Scholar] [CrossRef]
- Young, T.P.l.; Petersen, D.A.; Clary, J.J. The ecology of restoration: Historical links, emerging issues and unexplored realms. Ecol. Lett. 2005, 8, 662–673. [Google Scholar] [CrossRef]
- Quero, J.L.; Gómez-Aparicio, L.; Zamora, R.; Maestre, F.T. Shifts in the regeneration niche of an endangered tree (Acer opalus ssp. granatense) during ontogeny: Using an ecological concept for application. Basic Appl. Ecol. 2008, 9, 635–644. [Google Scholar] [CrossRef] [Green Version]
- Bailey, T.G.; Davidson, N.J.; Close, D.C. Understanding the regeneration niche: Microsite attributes and recruitment of eucalypts in dry forests. For. Ecol. Manag. 2012, 269, 229–238. [Google Scholar] [CrossRef]
- Schupp, E.W. Seed-seedling conflicts, habitat choice, and patterns of plant recruitment. Am. J. Bot. 1995, 82, 399–409. [Google Scholar] [CrossRef]
- Fowler, N.L. What is a safe site?: Neighbor, litter, germination date, and patch effects. Ecology 1988, 69, 947–961. [Google Scholar] [CrossRef]
- Eriksson, O.; Ehrlén, J. Seed and microsite limitation of recruitment in plant populations. Oecologia 1992, 91, 360–364. [Google Scholar] [CrossRef]
- Setterfield, S.A. Seedling establishment in an Australian tropical savanna: Effects of seed supply, soil disturbance and fire. J. Appl. Ecol. 2002, 39, 949–959. [Google Scholar] [CrossRef]
- Jacobs, M.R. Growth Habits of the Eucalypts; Forest and Timber Bureau: Canberra, Australia, 1955. [Google Scholar]
- Stoneman, G.L. Ecology and physiology of establishment of eucalypt seedlings from seed: A review. Aust. For. 1994, 57, 11–29. [Google Scholar] [CrossRef]
- Wellington, A.B.; Noble, I.R. Post-fire recruitment and mortality in a population of the mallee Eucalyptus incrassata in semi-arid, south-eastern Australia. J. Ecol. 1985, 73, 645–656. [Google Scholar] [CrossRef]
- Bond, W.J.; Midgley, J.J. Ecology of sprouting in woody plants: The persistence niche. Trends Ecol. Evol. 2001, 16, 45–51. [Google Scholar] [CrossRef]
- Lamont, B.B.; Witkowski, E.T.F.; Enright, N.J. Post-fire litter microsites: Safe for seeds, unsafe for seedlings. Ecol. Lett. 1993, 74, 501–512. [Google Scholar] [CrossRef] [Green Version]
- Ashton, D.H. Ecology of eucalypt regeneration. In Diseases and Pathogens of Eucalypts; Keane, P.J., Kile, C.A., Podger, F.D., Brown, B.N., Eds.; CSIRO Publishing: Collingwood, Australia, 2000; pp. 47–60. [Google Scholar]
- Gill, A.M. Eucalypts and fires: Interdependent or independent. In Eucalypt Ecology: Individuals to Ecosystems; Williams, J., Woinarski, J., Eds.; Cambridge University Press: Cambridge, UK, 1997; pp. 151–167. [Google Scholar]
- O’Dowd, D.J.; Gill, A.M. Predator satiation and site alteration following fire: Mass reproduction of alpine ash (Eucalyptus delegatensis) in Southeastern Australia. Ecology 1984, 64, 1052–1066. [Google Scholar] [CrossRef]
- Ladiges, P. Phylogenetic history and classification of eucalypts. In Eucalypt Ecology: Individuals to Ecosystems; Williams, J., Woinarski, J., Eds.; Cambridge University Press: Cambridge, UK, 1997; pp. 16–29. [Google Scholar]
- House, S.M. Reproductive biology of eucalypts. In Eucalypt Ecology: Individuals to Ecosystems; Williams, J., Woinarski, J., Eds.; Cambridge University Press: Cambridge, UK, 1997; pp. 30–55. [Google Scholar]
- Wilkinson, G.; Battaglia, M.; Mount, T. Silvicultural Use and Effects of Fire. Native Forest Silviculture Tecnichal Bulletin n. 11; Forestry Comission of Tasmania: Hobart, Australia, 1993. [Google Scholar]
- Florence, R.G. Ecology and Silviculture of Eucalypt Forests; CSIRO: Collingwood, Australia, 1996. [Google Scholar]
- Cremer, K.W. Effects of fire of seedshed from Eucalyptus regnans. Aust. For. 1965, 29, 252–262. [Google Scholar] [CrossRef]
- Wellington, A.B.; Noble, I.R. Seed dynamics and factors limiting recruitment of the mallee Eucalyptus incrassata in semi-arid, south-eastern Australia. J. Ecol. 1985, 73, 657–666. [Google Scholar] [CrossRef]
- Silva, J.S.; Santos, P.; Sério, A.; Gomes, F. Effects of heat on dehiscence and germination in Eucalyptus globulus Labill. Int. J. Wildland Fire 2016, 25, 478–483. [Google Scholar] [CrossRef]
- Pennington, P.; Ellis, R.; Churchill, K. The evaluation of different seedbed preparation techniques for the regeneration of dry lowland forests in Tasmania after partial logging. Aust. For. 2001, 64, 38–44. [Google Scholar] [CrossRef]
- Calviño-Cancela, M.; Lorenzo, P.; González, L. Fire increases Eucalyptus globulus seedling recruitment in forested habitats: Effects of litter, shade and burnt soil on seedling emergence and survival. For. Ecol. Manag. 2018, 409, 826–834. [Google Scholar] [CrossRef]
- Mount, A.B. The interdependence of the eucalypts and forest fires in southern Australia. Aust. For. 1964, 28, 166–172. [Google Scholar] [CrossRef]
- Kirkpatrick, J.B. Natural distribution of Eucalyptus globulus Labill. Aust. Geogr. 1975, 13, 22–35. [Google Scholar] [CrossRef]
- Ganteaume, A.; Lampin-Maillet, C.; Guijarro, M.; Hernando, C.; Jappiot, M.; Fonturbel, T.; Pérez-Gorostiaga, P.; Vega, J.A. Spot fires: Fuel bed flammability and capability of firebrands to ignite fuel beds. Int. J. Wildland Fire 2010, 18, 951–969. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, P.M.; Loureiro, C.; Palheiro, P.; Vale-Gonçalves, H.; Fernandes, M.M.; Cruz, M.G. Fuels and fire hazard in blue gum (Eucalyptus globulus) stands in Portugal. Boletín Inf. CIDEU 2011, 10, 53–61. [Google Scholar]
- Fernandes, P.M. Combining forest structure data and fuel modelling to classify fire hazard in Portugal. Ann. For. Sci. 2009, 66, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Bond, W.J.; Midgley, J.J. Kill thy neighbour: An individualistic argument for the evolution of flammability. Oikos 1995, 73, 79–85. [Google Scholar] [CrossRef]
- Keeley, J.E.; Pausas, J.G.; Rundel, P.W.; Bond, W.J.; Bradstock, R.A. Fire as an evolutionary pressure shaping plant traits. Trends Plant Sci. 2011, 16, 406–411. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, P. Silvicultura preventiva e gestão de combustíveis: Opções e optimização. In Incêndios Florestais em Portugal: Caracterização, Impactes e Prevenção; Pereira, J.S., Pereira, J.M.C., Rego, F.C., Silva, J.M.N., Silva, T.P., Eds.; ISAPress: Lisboa, Portugal, 2006; pp. 327–354. [Google Scholar]
- Potts, B.M. Population dynamics and regeneration of a hybrid zone between Eucalyptus risdonii Hook-F. and E. amygdalina Labill. Aust. J. Bot. 1986, 34, 305–329. [Google Scholar] [CrossRef]
- Sanger, J.C.; Davidson, N.J.; O’Grady, A.P.; Close, D.C. Are the patterns of regeneration in the endangered Eucalyptus gunnii ssp. divaricata shifting in response to climate? Austral Ecol. 2011, 36, 612–620. [Google Scholar] [CrossRef]
- Wilson, N.; Gibbons, P. Microsite factors influencing Eucalyptus regeneration in temperate woodlands. Ecol. Manag. Restor. 2014, 15, 155–157. [Google Scholar] [CrossRef]
- Iglesias-Trabado, G.; Arballeira-Tenreiro, R.; Folgueira-Lozana, J. Eucalyptus Universalis: Global Cultivated Eucalypt Forests Map. Version 1.2. Eucalyptologics Information Resources on Eucalypt Cultivation Worldwide. Available online: http://www.git-forestry.com (accessed on 15 October 2009).
- Tomé, M.; Almeida, M.H.; Barreiro, S.; Branco, M.R.; Deus, E.; Pinto, G.; Silva, J.S.; Soares, P.; Rodríguez-Soalleiro, R. Opportunities and challenges of Eucalyptus plantations in Europe: The Iberian Peninsula experience. Eur. J. For. Res. 2021, 140, 489–510. [Google Scholar] [CrossRef]
- Alves, A.M.; Pereira, J.S.; Neves, S.J.M. (Eds.) O Eucaliptal em Portugal: Impactes Ambientais e Investigação Cientifica; ISAPress: Lisboa, Portugal, 2007. [Google Scholar]
- Richardson, D.M.; Rejmánek, M. Eucalypts. In Encyclopedia of Biological Invasions; Rejmánek, M., Simberloff, D., Eds.; University of California Press: Berkeley, CA, USA, 2011; pp. 203–209. [Google Scholar]
- Botequim, B.; Garcia-Gonzalo, J.; Marques, S.; Ricardo, A.; Borges, J.; Tomé, M.; Oliveira, M. Developing wildfire risk probability models for Eucalyptus globulus stands in Portugal. iForest 2013, 6, 217–227. [Google Scholar] [CrossRef] [Green Version]
- Anjos, A.; Fernandes, P.; Marques, C.; Borralho, N.; Valente, C.; Correia, O.; Máguas, C.; Chozas, S. Management and fire, a critical combination for Eucalyptus globulus dispersal. For. Ecol. Manag. 2021, 490, 119086. [Google Scholar] [CrossRef]
- Mack, R.N. Cultivation fosters plant naturalization by reducing environmental stochasticity. Biol. Invasions 2000, 2, 111–122. [Google Scholar] [CrossRef]
- Wilson, J.R.; Dormontt, E.E.; Prentis, P.J.; Lowe, A.J.; Richardson, D.M. Something in the way you move: Dispersal pathways affect invasion success. Trends Ecol. Evol. 2009, 24, 136–144. [Google Scholar] [CrossRef]
- Lockwood, J.L.; Cassey, P.; Blackburn, T. The role of propagule pressure in explaining species invasions. Trends Ecol. Evol. 2005, 20, 223–228. [Google Scholar] [CrossRef]
- Tedim, F.; Remelgado, R.; Borges, C.; Carvalho, S.; Martins, J. Exploring the occurrence of mega-fires in Portugal. For. Ecol. Manag. 2013, 294, 86–96. [Google Scholar] [CrossRef]
- Silva, J.S.; Vaz, P.; Moreira, F.; Catry, F.; Rego, F.C. Wildfires as a major driver of landscape dynamics in three fire-prone areas of Portugal. Landsc. Urban Plan. 2011, 101, 349–358. [Google Scholar] [CrossRef] [Green Version]
- Silva, J.S.; Nereu, M.; Pinho, S.; Queirós, L.; Jesús, C.; Deus, E. Post-fire demography, growth, and control of Eucalyptus globulus wildlings. Forests 2021, 12, 156. [Google Scholar] [CrossRef]
- Potts, B.M.; Vaillancourt, R.E.; Jordan, G.J.; Dutkowski, G.W.; da Costa e Silva, J.; McKinnon, G.E.; Steane, D.A.; Volker, P.W.; Lopez, G.A.; Apiolaza, L. Exploration of the Eucalyptus globulus gene pool. In Proceedings of the Eucalyptus in a Changing World —International IUFRO Conference of the WP2.08.03 on Silviculture and Improvement of Eucalypts, Aveiro, Portugal, 11–15 October 2004. [Google Scholar]
- Legg, P.; Frakes, I.; Gavran, M. Australian Plantation Statistics and Log Availability Report 2021; Australian Bureau of Agricultural and Resource Economics and Sciences: Canberra, Australia, 2021; p. 119. [Google Scholar]
- CMR. Estudio Sobre La Ordenación Forestal en La Eurorregión Galicia-Norte de Portugal; Consellería do Medio Rural, Xunta de Galicia: Santiago de Compostela, Spain, 2010. [Google Scholar]
- ICNF. IFN6–Áreas dos Usos do Solo e das Espécies Florestais de Portugal Continental. Resultados Preliminares; Instituto da Conservação da Natureza e das Florestas: Lisboa, Portugal, 2013; p. 33. [Google Scholar]
- Brus, R.; Pötzelsberger, E.; Lapin, K.; Brundu, G.; Orazio, C.; Straigyte, L.; Hasenauer, H. Extent, distribution and origin of non-native forest tree species in Europe. Scand. J. For. Res. 2019, 34, 533–544. [Google Scholar] [CrossRef]
- Rejmánek, M.; Richardson, D.M. Trees and shrubs as invasive alien species—2013 update of the global database. Divers. Distrib. 2013, 19, 1093–1094. [Google Scholar] [CrossRef]
- Booth, T.H. Going nowhere fast: A review of seed dispersal in eucalypts. Aust. J. Bot. 2017, 65, 401–410. [Google Scholar] [CrossRef] [Green Version]
- Richardson, D.M.; Rejmánek, M. Trees and shrubs as invasive alien species—A global review. Divers. Distrib. 2011, 17, 788–809. [Google Scholar] [CrossRef]
- Fernandes, P.; Antunes, C.; Pinho, P.; Máguas, C.; Correia, O. Natural regeneration of Pinus pinaster and Eucalyptus globulus from plantation into adjacent natural habitats. For. Ecol. Manag. 2016, 378, 91–102. [Google Scholar] [CrossRef]
- Deus, E.; Silva, J.S.; Larcombe, M.J.; Catry, F.X.; Queirós, L.; dos Santos, P.; Matias, H.; Águas, A.; Rego, F.C. Investigating the invasiveness of Eucalyptus globulus in Portugal: Site-scale drivers, reproductive capacity and dispersal potential. Biol. Invasions 2019, 21, 2027–2044. [Google Scholar] [CrossRef]
- Calviño-Cancela, M.; Rubido-Bará, M. Invasive potential of Eucalyptus globulus: Seed dispersal, seedling recruitment and survival in habitats surrounding plantations. For. Ecol. Manag. 2013, 305, 129–137. [Google Scholar] [CrossRef]
- Kirkpatrick, J. Eucalypt invasion in southern California. Aust. Geogr. 1977, 13, 387–393. [Google Scholar] [CrossRef]
- Moreira, F.; Vaz, P.; Catry, F.; Silva, J.S. Regional variations in wildfire susceptibility of land-cover types in Portugal: Implications for landscape management to minimize fire hazard. Int. J. Wildland Fire 2009, 18, 563–574. [Google Scholar] [CrossRef]
- Nunes, A.N. Regional variability and driving forces behind forest fires in Portugal an overview of the last three decades (1980–2009). Appl. Geogr. 2012, 34, 576–586. [Google Scholar] [CrossRef]
- Manuel-Valdés, C.; Gil-Sánchez, L. Tercer Inventario Forestal Nacional 1997–2006—la Transformación Histórica del Paisaje Forestal en Galicia; Ministerio de Medio Ambiente: Madrid, Spain, 2002. [Google Scholar]
- Fernandes, P.M.; Guiomar, N.; Rossa, C.G. Analysing eucalypt expansion in Portugal as a fire-regime modifier. Sci. Total Environ. 2019, 666, 79–88. [Google Scholar] [CrossRef]
- Fernandes, P.; Luz, A.; Loureiro, C.; Ferreira-Godinho, P.; Botelho, H. Fuel modelling and fire hazard assessment based on data from the Portuguese National Forest Inventory. In Proceedings of the V International Conference on Forest Fire Research, Figueira da Foz, Portugal, 27–30 November 2006. [Google Scholar]
- Águas, A.; Ferreira, A.; Maia, P.; Fernandes, P.M.; Roxo, L.; Keizer, J.; Silva, J.S.; Rego, F.C.; Moreira, F. Natural establishment of Eucalyptus globulus Labill. in burnt stands in Portugal. For. Ecol. Manag. 2014, 323, 47–56. [Google Scholar] [CrossRef] [Green Version]
- Reyes, O.; Casal, M. The influence of seed age on germinative response to the effects of fire in Pinus pinaster, Pinus radiata and Eucalyptus globulus. Ann. For. Sci. 2001, 58, 439–447. [Google Scholar] [CrossRef] [Green Version]
- Reyes, O.; Casal, M. Germination of Pinus pinaster, P. radiata and Eucalyptus globulus in relation to the amount of ash produced in forest fires. Ann. Des. Sci. For. 1998, 55, 837–845. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, P.; Máguas, C.; Correia, O.; González-Moreno, P. What drives Eucalyptus globulus natural establishment outside plantations? The relative importance of climate, plantation and site characteristics. Biol. Invasions 2018, 20, 1129–1146. [Google Scholar] [CrossRef]
- IPMA. Normais Climatológicas; Instituto Português do Mar e da Atmosfera: Lisboa, Portugal; Available online: https://www.ipma.pt/pt/oclima/normais.clima/ (accessed on 11 July 2017).
- Silva, A.M.S. Carta litológica–unidades litológicas, 1:1,000,000. In Portugal-Atlas do Ambiente; Comissão Nacional de Ambiente: Lisboa, Portugal, 1983. [Google Scholar]
- Cardoso, J.C.; Bessa, M.T.; Marado, M.B. Carta de Solos 1:1,000,000; Serviço de Reconhecimento e Ordenamento Agrário: Lisboa, Portugal, 1971. [Google Scholar]
- Nicolle, D. A classification and census of regenerative strategies in the eucalypts (Angophora, Corymbia and Eucalyptus—Myrtaceae), with special reference to the obligate seeders. Aust. J. Bot. 2006, 54, 391–407. [Google Scholar] [CrossRef]
- Forestry Tasmania. Lowland Dry Eucalypt Forests, Native Forest Silviculture Tecnhical Bulletin, nº 3, 2nd ed.; Forestry Tasmania: Hobart, Australia, 2009; Volume 3. [Google Scholar]
- Doerr, S.H. On standardizing the water drop penetration time and the molarity of an ethanol droplet’ techniques to classify soil hydrophobicity: A case study using medium textured soils. Earth Surf. Processes Landf. 1998, 23, 663–668. [Google Scholar] [CrossRef]
- Letey, J.; Carrillo, M.L.K.; Pang, X.P. Approaches to characterize the degree of water repellency. J. Hydrol. 2000, 231, 61–65. [Google Scholar] [CrossRef]
- Dekker, L.W.; Ritsema, C.J. How water moves in a water repellent sandy soil: 1. Potential and actual water repellency. Water Resour. Res. 1994, 30, 2507–2517. [Google Scholar] [CrossRef]
- Leighton-Boyce, G.; Doerr, S.H.; Shakesby, R.A.; Walsh, R.P.D.; Ferreira, A.J.D.; Boulet, A.-K.; Coelho, C.O.A. Temporal dynamics of water repellency and soil moisture in eucalypt plantations, Portugal. Soil Res. 2005, 43, 269–280. [Google Scholar] [CrossRef]
- Gonçalves, M.J.S. Determinação da Matéria Orgânica do Solo. Estudo de um Método Expedito com Oxidação por via Húmida e Doseamento Colorimétrico; Direcção Geral de Agricultura, Laboratório Químico Agrícola Rebelo da Silva: Lisboa, Portugal, 1985; p. 12. [Google Scholar]
- Dias, R.M.S.; Sempiterno, C.M.; Simões, A.M. Determinação do Carbono Orgânico em solos. Estudo Comparativo da Norma ISO 10694 e do Método de Oxidação por via Húmida com Doseamento Colorimétrico; Instituto Nacional de Investigação Agrária e das Pescas, Laboratório Químico Agrícola Rebelo da Silva: Lisboa, Portugal, 2005. [Google Scholar]
- Zar, J.H. Biostatistical Analysis, 3rd ed.; Prentice-Hall: Upper Saddle River, NJ, USA, 1996; p. 662. [Google Scholar]
- StatSoft Inc. STATISTICA for Windows Version 6.0 [Computer Program Manual]; Statsoft: Tulsa, OK, USA, 2000. [Google Scholar]
- IBM Corp. IBM SPSS Statistics for Windows, Version 22.0.; IBM Corp.: Armonk, NY, USA, 2013. [Google Scholar]
- Jordan, G.J.; Potts, B.M.; Wiltshire, R.J.E. Strong, independent, quantitative genetic control of the timing of vegetative phase change and first flowering in Eucalyptus globulus ssp. globulus (Tasmanian blue gum). Heredity 1999, 83, 179–187. [Google Scholar] [CrossRef] [PubMed]
- Cremer, K.W. Distance of seed dispersal in eucalypts estimated from seed weights. Aust. For. Res. 1977, 7, 225–228. [Google Scholar]
- Williams, K.; Potts, B. The natural distribution of Eucalyptus species in Tasmania. Tasforests 1996, 8, 39–165. [Google Scholar]
- Santos, P.; Matias, H.; Deus, E.; Águas, A.; Silva, J.S. Fire effects on capsules and encapsulated seeds from Eucalyptus globulus in Portugal. Plant Ecol. 2015, 216, 1611–1621. [Google Scholar] [CrossRef]
- Leal, S.; Pereira, H.; Grabnerz, M.; Wimmert, R. Tree-ring structure and climatic effects in young Eucalyptus globulus Labill. grown at two Portuguese sites: Preliminary results. Dendrochronologia 2004, 21, 139–146. [Google Scholar] [CrossRef]
- Williams, J.E.; Brooker, M.I.H. Eucalypts: An introduction. In Eucalypt Ecology: Individuals to Ecosystems; Williams, J.E., Woinarski, J.C.Z., Eds.; Cambridge University Press: Cambridge, UK, 1997; pp. 1–15. [Google Scholar]
- Tomé, M.; Ribeiro, F.; Soares, P. Modelo Globulus 2.1; Departamento Engenharia Florestal, Instituto Superior de Agronomia: Lisboa, Portugal, 2001; p. 96. [Google Scholar]
- Gilbert, J.M. Forest succession in the Florentine valley, Tasmania. Pap. Proc. R. Soc. Tasman. 1959, 93, 129–152. [Google Scholar]
- Goes, E. Os Eucaliptos-Ecologia, Cultura, Produções e Rentabilidade; Portucel: Lisboa, Portugal, 1977. [Google Scholar]
- López, M.; Humara, J.M.; Casares, A.; Majada, J. The effect of temperature and water stress on laboratory germination of Eucalyptus globulus Labill. seeds of different sizes. Ann. For. Sci. 2000, 57, 245–250. [Google Scholar] [CrossRef] [Green Version]
- Rix, K.D.; Gracie, A.J.; Potts, B.M.; Brown, P.H.; Spurr, C.J.; Gore, P.L. Germination response of Eucalyptus globulus seeds exposed to low and high temperature stress. Seed Sci. Technol. 2011, 39, 686–691. [Google Scholar] [CrossRef]
- Pita, P.; Pardos, J.A. Growth, leaf morphology, water use and tissue water relations of Eucalyptus globulus clones in response to water deficit. Tree Physiol. 2001, 21, 599–607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neyland, M.; Hickey, J.; Beadle, C.; Bauhus, J.; Davidson, N.; Edwards, L. An examination of stocking and early growth in the Warra silvicultural systems trial confirms the importance of a burnt seedbed for vigorous regeneration in Eucalyptus obliqua forest. For. Ecol. Manag. 2009, 258, 481–494. [Google Scholar] [CrossRef]
- Fagg, P.C. Eucalypt Sowing and Seedfall. Native Forest Silviculture Guideline, 8; Department of Natural Resources and Environment: Melbourne, Australia, 2001. [Google Scholar]
- Turnbull, L.A.; Crawley, M.J.; Rees, M. Are plant populations seed-limited? A review of seed sowing experiments. Oikos 2000, 88, 225–238. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, A.J.D.; Coelho, C.O.A.; Walsh, R.P.D.; Shakesby, R.A.; Ceballos, A.; Doerr, S.H. Hydrological implications of soil water-repellency in Eucalyptus globulus forests, north-central Portugal. J. Hydrol. 2000, 231, 165–177. [Google Scholar] [CrossRef]
- McIver, J.D.; Starr, L. Environmental Effects of Post-Fire Logging: Literature Review and Annotated Bibliography; United States Department of Agriculture, Forest Service, Pacific Northwest Research Station: Portland, OR, USA, 2000. [Google Scholar]
- Fernandes, P.; Maguas, C.; Correia, O. Combined effects of climate, habitat, and disturbance on seedling establishment of Pinus pinaster and Eucalyptus globulus. Plant Ecol. 2017, 218, 501–515. [Google Scholar] [CrossRef]
- Bowman, D.M.J.S.; Kirkpatrick, J.B. Establishment, suppression and growth of Eucalyptus delegatensis R. T. Baker in multiaged forests. III. Intraspecific allelopathy, competition between adult and juvenile for moisture and nutrients, and frost damage to seedlings. Aust. J. Bot. 1986, 34, 81–94. [Google Scholar] [CrossRef]
- Tomé, M.; Tomé, J.A.; Araújo, M.C.; Pereira, J.S. Intraspecific competition in irrigated and fertilized eucalypt plantations. For. Ecol. Manag. 1994, 69, 211–218. [Google Scholar] [CrossRef]
- Bowman, D.M.J.S.; Kirkpatrick, J.B. Establishment, suppression and growth of Eucalyptus delegatensis R. T. Baker in multiaged forests. II. Sapling growth and its environmental correlates. Aust. J. Bot. 1986, 34, 73–80. [Google Scholar] [CrossRef]
- Rotheram, I. Suppression of growth of surrounding regeneration by veteran trees of Karri (Eucalyptus diversicolor). Aust. For. 1983, 46, 8–13. [Google Scholar] [CrossRef]
- Incoll, W.D. Effect of overwood trees on growth of young stands of Eucalyptus sieberi. Aust. For. 1979, 42, 110–116. [Google Scholar] [CrossRef]
- Stachowicz, J.J. Mutualism, facilitation, and the structure of ecological communities. Bioscience 2001, 51, 235–246. [Google Scholar] [CrossRef]
- Callaway, R.M. Positive interactions among plants. Bot. Rev. 1995, 61, 306–349. [Google Scholar] [CrossRef]
- García, D.; Zamora, R.; Hódar, J.A.; Gómez, J.M.; Castro, J. Yew (Taxus baccata L.) regeneration is facilitated by fleshy-fruited shrubs in Mediterranean environments. Biol. Conserv. 2000, 95, 31–38. [Google Scholar] [CrossRef] [Green Version]
- Barbour, R.C.; Otahal, Y.; Vaillancourt, R.E.; Potts, B.M. Assessing the risk of pollen-mediated gene flow from exotic Eucalyptus globulus plantations into native eucalypt populations of Australia. Biol. Conserv. 2008, 141, 896–907. [Google Scholar] [CrossRef]
- Jovanovic, T.; Booth, T.H. Improved Species Climatic Profiles; Rural Industries Research and Development Corporation: Kingston, Australia, 2002. [Google Scholar]
- Boland, D.J.; Brooker, M.I.H.; Turnbull, J.W. Eucalyptus Seed; CSIRO: Canberra, Australia, 1980. [Google Scholar]
- Ashton, D.H.; Spalding, D.K. The ecology of a stressful site: Mount Towrong, Central Victoria 1967–1997. Aust. For. 2001, 64, 143–150. [Google Scholar] [CrossRef]
- Ryser, P. Influences of neighbouring plants on seedling establishment in limestone grassland. J. Veg. Sci. 1993, 4, 195–202. [Google Scholar] [CrossRef]
- Gómez-Aparicio, L.; Zamora, R.; Gómez, J.M.; Hódar, J.A.; Castro, J.; Baraza, E. Applying plant facilitation to forest restoration: A meta-analysis of the use of shrubs as nurse plants. Ecol. Appl. 2004, 14, 1128–1138. [Google Scholar] [CrossRef] [Green Version]
- Clarke, P.J.; Davison, E.A. Experiments on the mechanism of tree and shrub establishment in temperate grassy woodlands: Seedling emergence. Austral Ecol. 2001, 26, 400–412. [Google Scholar] [CrossRef]
- Hulme, P.E. Post-dispersal seed predation: Consequences for plant demography and evolution. Perspect. Plant Ecol. Evol. Syst. 1998, 1, 32–46. [Google Scholar] [CrossRef]
- Doerr, S.H.; Shakesby, R.A.; Walsh, R.P.D. Soil hydrophobicity variations with depth and particle size fraction in burned and unburned Eucalyptus globulus and Pinus pinaster forest terrain in the Águeda Basin, Portugal. Catena 1996, 27, 25–47. [Google Scholar] [CrossRef]
- Doerr, S.H.; Shakesby, R.A.; Walsh, R.P. Spatial variability of soil hydrophobicity in fire-prone eucalyptus and pine forests, Portugal. Soil Sci. Soc. Am. J. 1998, 163, 313–324. [Google Scholar] [CrossRef]
- DeBano, L.F. Water Repellent Soils: A State-of-the-Art. General Technical Report PSW-46; United States Department of Agriculture, Forest Service, Pacific Southwest Forest and Range Experiment Station: Berkeley, CA, USA, 1981; p. 21. [Google Scholar]
- DeBano, L.F.; Krammes, J. Water repellent soils and their relation to wildfire temperatures. Hydrol. Sci. J. 1966, 11, 14–19. [Google Scholar] [CrossRef]
- Pryor, L.D. Ash bed growth response as a key to plantation establishment on poor sites. Aust. For. 1963, 27, 48–51. [Google Scholar] [CrossRef]
- Willis, R. Australian studies on allelopathy in Eucalyptus: A review. In Principles and Practices in Plant Ecology: Allelochemical Interactions; Inderjit, Dakshini, K.M.M., Foy, C.L., Eds.; CRS Press: Boca Raton, FL, USA, 1999; pp. 201–219. [Google Scholar]
- Cremer, K.W.; Mount, A.B. Early stages of plant succession following the complete felling and burning of Eucalyptus regnans forest in the Florentine Valley, Tasmania. Aust. J. Bot. 1965, 13, 303–322. [Google Scholar] [CrossRef]
- Águas, A.; Incerti, G.; Saracino, A.; Lanzotti, V.; Silva, J.S.; Rego, F.C.; Mazzoleni, S.; Bonanomi, G. Fire effects on litter chemistry and early development of Eucalyptus globulus. Plant Soil 2018, 422, 495–514. [Google Scholar] [CrossRef]
- del Moral, R.; Muller, C.H. Fog drip: A mechanism of toxin transport from Eucalyptus globulus. Bull. Torrey Bot. Club 1969, 96, 467–475. [Google Scholar] [CrossRef]
- Hille, M.; den Ouden, J. Charcoal and activated carbon as adsorbate of phytotoxic compounds—A comparative study. Oikos 2005, 108, 202–207. [Google Scholar] [CrossRef]
- Wardle, D.A.; Zackrisson, O.; Nilsson, M.C. The charcoal effect in Boreal forests: Mechanisms and ecological consequences. Oecologia 1998, 115, 419–426. [Google Scholar] [CrossRef]
- DeLuca, T.H.; MacKenzie, M.D.; Gundale, M.J.; Holben, W.E. Wildfire-produced charcoal directly influences nitrogen cycling in ponderosa pine forests. Soil Sci. Soc. Am. J. 2006, 70, 448–453. [Google Scholar] [CrossRef] [Green Version]
- Glaser, B.; Lehmann, J.; Zech, W. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal—A review. Biol. Fertil. Soils 2002, 35, 219–230. [Google Scholar] [CrossRef]
- Stoof, C.R.; Wesseling, J.G.; Ritsema, C.J. Effects of fire and ash on soil water retention. Geoderma 2010, 159, 276–285. [Google Scholar] [CrossRef]
- Khanna, P.K.; Raison, R.J.; Falkiner, R.A. Chemical properties of ash derived from Eucalyptus litter and its effects on forest soils. For. Ecol. Manag. 1994, 66, 107–125. [Google Scholar] [CrossRef]
- Santos, J.Q. Fertilização, Fundamentos Agroambientais da Utilização dos Adubos e Corretivos; Publindústria: Porto, Portugal, 2014. [Google Scholar]
- Truog, E. The liming of soils. In Science in Farming, The Yearbook of Agriculture 1943–1947; Stefferud, A., Ed.; United Sates Department of Agriculture: Washington, DC, USA, 1947; pp. 566–576. [Google Scholar]
- Thomson, B.D.; Grove, T.S.; Malajczuk, N.; Hardy, G.E.S. The effect of soil pH on the ability of ectomycorrhizal fungi to increase the growth of Eucalyptus globulus Labill. Plant Soil 1996, 178, 209–214. [Google Scholar] [CrossRef]
- Brañas, J.; Merino, A.; González-Río, F. Contenido y distribución de nutrientes en plantaciones de Eucalyptus globulus del noroeste de la Península Ibérica. For. Syst. 2000, 9, 317–335. [Google Scholar]
- Marschner, H. Mineral Nutrition of Higher Plants, 2nd ed.; Academic Press: Amsterdam, The Netherlands, 1995. [Google Scholar]
- Judd, T.S.; Bennett, L.T.; Weston, C.J.; Attiwill, P.M.; Whiteman, P.H. The response of growth and foliar nutrients to fertilizers in young Eucalyptus globulus (Labill.) plantations in Gippsland, southeastern Australia. For. Ecol. Manag. 1996, 82, 87–101. [Google Scholar] [CrossRef]
- Ribeiro, F.; Tomé, M. Classificação climática de Portugal continental, baseada em informação do Atlas do Ambiente. Rev. De Ciências Agrárias 2000, 23, 39–50. [Google Scholar]
- Correia, M.J.; Torres, F.; Pereira, J.S. Water and nutrient supply regimes and the water relations of juvenile leaves of Eucalyptus globulus. Tree Physiol. 1989, 5, 459–471. [Google Scholar] [CrossRef]
- van Wilgen, B.W.; Richardson, D.M. Challenges and trade-offs in the management of invasive alien trees. Biol. Invasions 2014, 16, 721–734. [Google Scholar] [CrossRef]
- Le Maitre, D.C.; Gaertner, M.; Marchante, E.; Ens, E.-J.; Holmes, P.M.; Pauchard, A.; O’Farrell, P.J.; Rogers, A.M.; Blanchard, R.; Blignaut, J. Impacts of invasive Australian acacias: Implications for management and restoration. Divers. Distrib. 2011, 17, 1015–1029. [Google Scholar] [CrossRef]
CM1 | CM2 | CV | SA | |
---|---|---|---|---|
Coordinates (centroid) | 39°07′36” N 9°13′06” W | 39°07′53” N 9°12′55” W | 40°23′59” N 8°00′25” W | 40°18′05” N 7°57′28” W |
Altitude | 75–100 m | 50–74 m | 176–226 m | 249–338 m |
Lithology | Paleogene sandstone | Paleogene sandstone | Granite | (Pre-)cambrian schist-greywacke |
Soil type | Eutric cambisol | Eutric cambisol | Humic and dystric cambisols | Humic cambisol |
Mean annual rainfall (mm, period 1961–1990) | 650.1 | 650.1 | 1007.8 | 1007.8 |
Tree density (trees ha−1) | 1263 | 1041 | 788 | 840 |
Rotation | 2nd | 2nd | 2nd | 2nd |
Pole age at fire date | 10 years | 8 years | 6 years | 13 years |
Burnt area | 14.90 ha | 10.59 ha | 7.35 ha | 14.00 ha |
Wildfire date | 3 Sep. 2012 | 3 Sep. 2012 | 5 Sep. 2012 | 15 Sep. 2012 |
Tree harvesting date | May 2014 | May 2014 | Jan.–Feb. 2013 | Nov. 2013 |
Sampling date | Aug.–Sep. 2014 | Sep. 2014 | Aug. 2014 | Aug. 2014 |
Seedlings (Se) | Short Saplings (SSa) | Tall Saplings (TSa) | |
---|---|---|---|
Height (cm) | <18 | 30–100 | >150 |
Stem architecture | single stem, ≤12 nodes | Branched | branched |
Lignotuber width (mm) | 0 (absent) | ≤23 | ≥29 |
Damage on stem | absent | present | present |
No. of growth seasons of stem | 1 | >1 | >1 |
(a) Persistence of Soil Hydrophobicity | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Water drop penetration time (s) | <5 | 5–9 | 10–29 | 30–59 | 60–179 | 180–299 | 300–599 | 600–899 | 900–3599 | 3600–7199 | 7200–10,799 | ≥10,800 | ||||
Persistence class | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | ||||
Descriptive category | Wettable | Slight | Strong | Severe | Extreme | |||||||||||
(b) Severity of Soil Hydrophobicity | ||||||||||||||||
Ethanol concentration (%, v/v) | 0 | 1 | 2 | 3 | 5 | 8.5 | 13 | 18 | 24 | 36 | 50 | >50 | ||||
Severity class | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | ||||
Descriptive category | Wettable | Low | Moderate | Severe | Extreme |
Microsite Attribute | Test Statistic | p Value |
---|---|---|
Slope | F3,56 = 5.313 | 0.003 |
Shelter amplitude | χ2r = 5.913 | 0.001 |
Shelter maximum height | F3,56 = 16.207 | <0.001 |
Distance to nearest plant | χ2r = 10.600 | 0.014 |
Small-shrub cover | χ2r = 12.210 | 0.007 |
Bare soil | χ2r = 4.968 | 0.002 |
Charcoal cover | χ2r = 10.399 | 0.015 |
Ash cover | χ2r = 22.288 | <0.001 |
Ash depth | χ2r = 22.288 | <0.001 |
Persistence of soil hydrophobicity | χ2r = 25.532 | <0.001 |
Severity of soil hydrophobicity | χ2r = 21.475 | <0.001 |
Occurrence of alive stumps nearby | Q = 16.833 | 0.001 |
Capsule occurrence | Q = 12.488 | 0.006 |
Abundance of other wildlings | χ2r = 21.221 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Águas, A.; Matias, H.; Rodrigues, A.; Bailey, T.; Silva, J.; Rego, F. Microsite Drivers of Natural Seed Regeneration of Eucalyptus globulus Labill. in Burnt Plantations. Forests 2022, 13, 889. https://doi.org/10.3390/f13060889
Águas A, Matias H, Rodrigues A, Bailey T, Silva J, Rego F. Microsite Drivers of Natural Seed Regeneration of Eucalyptus globulus Labill. in Burnt Plantations. Forests. 2022; 13(6):889. https://doi.org/10.3390/f13060889
Chicago/Turabian StyleÁguas, Ana, Hugo Matias, Abel Rodrigues, Tanya Bailey, Joaquim Silva, and Francisco Rego. 2022. "Microsite Drivers of Natural Seed Regeneration of Eucalyptus globulus Labill. in Burnt Plantations" Forests 13, no. 6: 889. https://doi.org/10.3390/f13060889
APA StyleÁguas, A., Matias, H., Rodrigues, A., Bailey, T., Silva, J., & Rego, F. (2022). Microsite Drivers of Natural Seed Regeneration of Eucalyptus globulus Labill. in Burnt Plantations. Forests, 13(6), 889. https://doi.org/10.3390/f13060889