Assessment of Air Quality and Meteorological Changes Induced by Future Vegetation in Madrid
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Model System
2.2. Modelling Domains
2.3. Vegetation Scenarios
- Baseline: intended to represent the current situation (year 2015);
- Future: incorporates the vegetation associated to intended measures in the whole Madrid Region.
2.3.1. Baseline Scenario
2.3.2. Future Scenario
- ‘Arco verde’: linear plantations along drovers’ roads, trails and other rural paths to connect already existing periruban forests or green areas, a number or native species are considered.
- ‘Barrios productores’: areas designated for the municipal network of urban vegetable gardens, considered as low-density shrub areas.
- ‘Madrid Nuevo Norte’: a major urban development approved by the local and regional governments. It is intended to be a carbon-neutral mix of uses including new residential, business and green areas. Lacking more specific information, we have assumed that this green area will have the average characteristics (in term of species and density) of existing parks in Madrid.
- ‘Bosque metropolitano’: The metropolitan forest is the most ambitious action of NBS projected for the coming years in the city of Madrid. It is framed on the air-quality and climate-change plans and the sustainability and urban green infrastructure strategies. This action aims to create a 75 km periurban green ring, which will connect existing parks, gardens and natural spaces and expand the urban green areas by more than 5000 hectares.
3. Results and Discussion
3.1. Impact of NBS on Meteorology
3.2. Impact of NBS on Air Quality
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- EEA. Climate Change, Impacts and Vulnerability in Europe 2016—An Indicator-Based Report; EEA Report No 1/2017; Publications Office of the European Union: Luxembourg; European Environment Agency: Copenhagen, Denmark, 2017; ISBN 978-92-9213-835-6. [Google Scholar] [CrossRef]
- IPCC. Global Warming of 1.5 °C; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2018; Available online: http://www.ipcc.ch/report/sr15/ (accessed on 2 January 2022).
- IPCC. Climate Change and Land—An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; Summary for policymakers, Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2019; Available online: https://www.ipcc.ch/site/assets/uploads/sites/4/2020/02/SPM_Updated-Jan20.pdf (accessed on 24 February 2022).
- EEA. Nature-Based Solutions in Europe: Policy, Knowledge and Practice for Climate Change Adaptation and Disaster Risk Reduction; EEA Report No 01/2021; Publications Office of the European Union: Luxembourg; European Environment Agency: Copenhagen, Denmark, 2021; ISBN 978-92-9480-362-7. [Google Scholar] [CrossRef]
- Kim, G.; Coseo, P. Urban Park Systems to Support Sustainability: The Role of Urban Park Systems in Hot Arid Urban Climates. Forests 2018, 9, 439. [Google Scholar] [CrossRef] [Green Version]
- Hanson, H.I.; Wickenberg, B.; Olsson, J.A. Working on the boundaries—How do science use and interpret the nature-based solution concept? Land Use Policy 2020, 90, 104302. [Google Scholar] [CrossRef]
- Wickenberg, B.; McCormick, K.; Olsson, J.A. Advancing the implementation of nature-based solutions in cities: A review of frameworks. Environ. Sci. Policy 2021, 125, 44–53. [Google Scholar] [CrossRef]
- WHO. World Health Statistics 2016: Monitoring Health for the SDGs Sustainable Development Goals; World Health Organization: Geneva, Switzerland, 2016; ISBN 978 92 4 156526 4. [Google Scholar]
- OPPLA. European Union Repository of Nature-Based Solutions. 2022. Available online: https://oppla.eu/case-study-finder (accessed on 10 January 2022).
- Lafortezza, R.; Chen, J.; van den Bosch, C.K.; Randrup, T.B. Nature-based solutions for resilient landscapes and cities. Environ. Res. 2018, 165, 431–441. [Google Scholar] [CrossRef]
- Zwierzchowska, I.; Fagiewicz, K.; Poniży, L.; Lupa, P.; Mizgajski, A. Introducing nature-based solutions into urban policy—facts and gaps. Case study of Poznań. Land Use Policy 2019, 85, 161–175. [Google Scholar] [CrossRef]
- Rendón, O.R.; Sandorf, E.D.; Beaumonta, N.J. Heterogeneity of values for coastal flood risk management with nature-based solutions. J. Environ. Manag. 2022, 304, 114212. [Google Scholar] [CrossRef]
- Hynes, S.; Burger, R.; Tudella, J.; Norton, D.; Chen, W. Estimating the costs and benefits of protecting a coastal amenity from climate change-related hazards: Nature based solutions via oyster reef restoration versus grey infrastructure. Ecol. Econ. 2022, 194, 107349. [Google Scholar] [CrossRef]
- Lallemant, D.; Hamel, P.; Balbi, M.; Lim, T.N.; Schmitt, R.; Win, S. Nature-based solutions for flood risk reduction: A probabilistic modeling framework. One Earth 2021, 4, 1310–1321. [Google Scholar] [CrossRef]
- Langergraber, G.; Masi, F. Treatment wetlands in decentralised approaches for linking sanitation to energy and food security. Water Sci. Technol. 2018, 77, 859–860. [Google Scholar] [CrossRef]
- Coventry, P.A.; Brown, J.V.E.; Pervin, J.; Brabyn, S.; Pateman, R.; Breedvelt, J.; Gilbody, S.; Stancliffe, R.; McEachan, R.; White, P.C.L. Nature-based outdoor activities for mental and physical health: Systematic review and meta-analysis. SSM Popul. Health 2021, 16, 100934. [Google Scholar] [CrossRef]
- Keskinen, K.E.; Rantakokko, M.; Suomi, K.; Rantanen, T.; Portegijs, E. Nature as a facilitator for physical activity: Defining relationships between the objective and perceived environment and physical activity among community-dwelling older people. Health Place 2018, 49, 111–119. [Google Scholar] [CrossRef] [PubMed]
- Croeser, T.; Garrard, G.; Roshan, S.; Ossola, A.; Bekessy, S. Choosing the right nature-based solutions to meet diverse urban challenges. Urban For. Urban Green. 2021, 65, 127337. [Google Scholar] [CrossRef]
- Carvalho, P.N.; Finger, D.C.; Masi, F.; Cipolletta, G.; Oral, H.V.; Tóth, A.; Regelsberger, M.; Exposito, A. Nature-based solutions addressing the water-energy-food nexus: Review of theoretical concepts and urban case studies. J. Clean Prod. 2022, 338, 130652. [Google Scholar] [CrossRef]
- Ignatieva, M.; Eriksson, F.; Eriksson, T.; Berg, P.; Hedblom, M. The lawn as a social and cultural phenomenon in Sweden. Urban For. Urban Green. 2017, 21, 213–223. [Google Scholar] [CrossRef]
- Sung, C.Y. Mitigating surface urban heat island by a tree protection policy: A case study of The Woodland, Texas, USA. Urban For. Urban Green. 2013, 12, 474–480. [Google Scholar] [CrossRef]
- Grote, R.; Samson, R.; Alonso, R.; Amorim, J.H.; Cariñanos, P.; Churkina, G.; Fares, S.; Thiec, D.L.; Niinemets, Ü.; Mikkelsen, T.N. Functional traits of urban trees: Air pollution mitigation potential. Front. Ecol. Environ. 2016, 14, 543–550. [Google Scholar] [CrossRef]
- Gong, C.; Xian, C.; Ouyang, Z. Assessment of NO2 Purification by Urban Forests Based on the i-Tree Eco Model: Case Study in Beijing, China. Forests 2022, 13, 369. [Google Scholar] [CrossRef]
- Zafra-Mejía, C.; Suárez-López, J.; Rondón-Quintana, H. Analysis of Particulate Matter Concentration Intercepted by Trees of a Latin-American Megacity. Forests 2021, 12, 723. [Google Scholar] [CrossRef]
- Bonn, B.; von Schneidemesser, E.; Butler, T.; Churkina, G.; Ehlers, C.H.; Grotea, R.; Klemp, D.; Nothard, R.; Schäfe, K.; von Stülpnagel, A.; et al. Impact of vegetative emissions on urban ozone and biogenic secondary organic aerosol: Box model study for Berlin, Germany. J. Clean Prod. 2018, 176, 827–841. [Google Scholar] [CrossRef]
- Kasprzyk, I.; Ćwik, A.; Kluska, K.; Wójcik, T.; Cariñanos, P. Allergenic pollen concentrations in the air of urban parks in relation to their vegetation. Urban For. Urban Green. 2019, 46, 126486. [Google Scholar] [CrossRef]
- Lara, B.; Rojo, J.; Fernández-González, F.; González-García-Saavedra, A.; Serrano-Bravo, M.D.; Pérez-Badia, R. Impact of Plane Tree Abundance on Temporal andSpatial Variations in Pollen Concentration. Forests 2020, 11, 817. [Google Scholar] [CrossRef]
- Speak, A.; Escobedo, F.J.; Russo, A.; Zerbea, S. An ecosystem service-disservice ratio: Using composite indicators to assess the net benefits of urban trees. Ecol. Indic. 2018, 95, 544–553. [Google Scholar] [CrossRef]
- Guenther, A.; Hewitt, C.N.; Erickson, D.; Fall, R.; Geron, C.; Graedel, T.; Harley, P.; Klinger, L.; Lerdau, M.; Mckay, W.A.; et al. A global model of natural volatile organic compound emissions. J. Geophys. Res. 1995, 100, 8873–8892. [Google Scholar] [CrossRef]
- Sindelarova, K.; Granier, C.; Bouarar, I.; Guenther, A.; Tilmes, S.; Stavrakou, T.; Müller, J.-F.; Kuhn, U.; Stefani, P.; Knorr, W. Global data set of biogenic VOC emissions calculated by the MEGAN model over the last 30 years. Atmos. Chem. Phys. Eur. Geosci. Union 2014, 14, 9317–9341. [Google Scholar] [CrossRef] [Green Version]
- Sartelet, K.N.; Couvidat, F.; Seigneur, C.; Roustan, Y. Impact of biogenic emissions on air quality over Europe and North America. Atmos. Environ. 2012, 53, 131–141. [Google Scholar] [CrossRef] [Green Version]
- Tagaris, E.; Sotiropoulou, R.E.P.; Gounaris, N.; Andronopoulos, S.; Vlachogiannis, D. Impact of biogenic emissions on ozone and fine particles over Europe: Comparing effects of temperature increase and a potential anthropogenic NOx emissions abatement strategy. Atmos. Environ. 2014, 98, 214–223. [Google Scholar] [CrossRef]
- Gao, Y.; Ma, M.; Yan, F.; Su, H.; Wang, S.; Liao, H.; Zhao, B.; Wang, X.; Sun, Y.; Hopkins, J.R.; et al. Impacts of biogenic emissions from urban landscapes on summer ozone and secondary organic aerosol formation in megacities. Sci. Total Environ. 2022, 814, 152654. [Google Scholar] [CrossRef]
- Marchetti, P.; Pesce, G.; Villani, S.; Antonicelli, L.; Ariano, R.; Attena, F.; Bono, R.; Bellisario, V.; Fois, A.; Gibelli, N.; et al. Pollen concentra-tions and prevalence of asthma and allergic rhinitis in Italy: Evidence from the GEIRD study. Sci. Total Environ. 2017, 584–585, 1093–1099. [Google Scholar] [CrossRef]
- Idrose, N.S.; Dharmage, S.C.; Lowe, A.J.; Lambert, K.A.; Lodge, C.J.; Abramson, M.J.; Douglass, J.A.; Newbigin, E.J.; Erbas, B. A systematic review of the role of grass pollen and fungi in thunderstorm asthma. Environ. Res. 2020, 181, 108911. [Google Scholar] [CrossRef]
- Davis, A.Y.; Jung, J.; Pijanowski, B.C.; Minor, E.S. Combined vegetation volume and “greenness” affect urban air temperature. Appl. Geogr. 2016, 71, 106–114. [Google Scholar] [CrossRef] [Green Version]
- Crum, S.M.; Shiflett, S.A.; Jenerette, G.D. The influence of vegetation, mesoclimate and meteorology on urban atmospheric microclimates across a coastal to desert climate gradient. J. Environ. Manag. 2017, 200, 295–303. [Google Scholar] [CrossRef]
- Rui, L.; Buccolieri, R.; Gao, Z.; Ding, W.; Shen, J. The Impact of Green Space Layouts on Microclimate and Air Quality in Residential Districts of Nanjing, China. Forests 2018, 9, 224. [Google Scholar] [CrossRef] [Green Version]
- Cowie, S.M.; Knippertz, P.; Marsham, J.H. Are vegetation-related roughness changes the cause of the recent decrease in dust emission from the Sahel? Geophys. Res. Lett. 2013, 40, 1868–1872. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meng, Z.; Dang, X.; Gao, Y.; Ren, X.; Ding, Y.; Wang, M. Interactive effects of wind speed, vegetation coverage and soil moisture in controlling wind erosion in a temperate desert steppe, Inner Mongolia of China. J. Arid Land 2018, 10, 534–547. [Google Scholar] [CrossRef] [Green Version]
- Bo, L.; Chen, L.; Qingshan, Y.; Yuji, T.; Xinxin, Z. Full-scale wind speed spectra of 5 Year time series in urban boundary layer observed on a 325 m meteorological tower. J. Wind. Eng. Ind. Aerodyn. 2021, 218, 104791. [Google Scholar] [CrossRef]
- Wang, M.; Tang, G.; Liu, Y.; Ma, M.; Yu, M.; Hu, B.; Zhang, Y.; Wang, Y.; Wang, Y. The difference in the boundary layer height between urban and suburban areas in Beijing and its implications for air pollution. Atmos. Environ. 2021, 260, 118552. [Google Scholar] [CrossRef]
- Huang, Y.; Guo, B.; Sun, H.; Liu, H.; Chen, S.X. Relative importance of meteorological variables on air quality and role of boundary layer height. Atmos. Environ. 2021, 267, 118737. [Google Scholar] [CrossRef]
- Gómez-Moreno, F.J.; Artíñano, B.; Díaz Ramiro, E.; Barreiro, M.; Núñez, L.; Coz, E.; Dimitroulopoulou, C.; Vardoulakis, S.; Yagüe, C.; Maqueda, G.; et al. Urban vegetation and particle air pollution: Experimental campaigns in a traffic hotspot. Environ. Pollut. 2019, 247, 195–205. [Google Scholar] [CrossRef]
- Santiago, J.L.; Buccolieri, R.; Rivas, E.; Calvete-Sogo, H.; Sanchez, B.; Martilli, A.; Alonso, R.; Elustondo, D.; Santamaría, J.S.; Martín, F. CFD modelling of vegetation barrier effects on the reduction of traffic related pollutant concentration in an avenue of Pamplona, Spain. Sustain. Cities Soc. 2019, 48, 101559. [Google Scholar] [CrossRef]
- Santiago, J.L.; Buccolieri, R.; Rivas, E.; Sanchez, B.; Martilli, A.; Gatto, E.; Martín, F. On the Impact of Trees on Ventilation in a Real Street in Pamplona, Spain. Atmosphere 2019, 10, 697. [Google Scholar] [CrossRef] [Green Version]
- Jeong, N.-R.; Han, S.-W.; Kim, J.-H. Evaluation of Vegetation Configuration Models for Managing Particulate Matter along the Urban Street Environment. Forests 2022, 13, 46. [Google Scholar] [CrossRef]
- Pearce, H.; Levine, J.G.; Cai, X.; MacKenzie, A.R. Introducing the Green Infrastructure for Roadside Air Quality (GI4RAQ) Platform: Estimating Site-Specific Changes in the Dispersion of Vehicular Pollution Close to Source. Forests 2021, 12, 769. [Google Scholar] [CrossRef]
- Alonso, A.; Vivanco, M.G.; González-Fernández, I.; Bermejo, V.; Palomino, I.; Garrido, J.L.; Elvira, S.; Salvador, P.; Artíñano, B. Modelling the influence of peri-urban trees in the air quality of Madrid region (Spain). Environ. Pollut. 2011, 159, 2138–2147. [Google Scholar] [CrossRef] [PubMed]
- Skamarock, W.C.; Klemp, J.B. A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J. Comput. Phys. 2008, 227, 3465–3485. [Google Scholar] [CrossRef]
- Martilli, A.; Clappier, A.; Rotach, M.W. An urban surface exchange parameterisation for mesoscale models. Bound. Layer Meteor. 2002, 104, 261–304. [Google Scholar] [CrossRef]
- Borge, R.; Alexandrov, V.; Del Vas, J.J.; Lumbreras, J.; Rodríguez, E. A comprehensive sensitivity analysis of the WRF model for air quality applications over the Iberian Peninsula. Atmos. Environ. 2008, 42, 8560–8574. [Google Scholar] [CrossRef]
- de la Paz, D.; Borge, R.; Martilli, A. Assessment of a high resolution annual WRF-BEP/CMAQ simulation for the urban area of Madrid (Spain). Atmos. Environ. 2016, 144, 282–296. [Google Scholar] [CrossRef]
- Baek, B.H.; Seppanen, C. Sparse Matrix Operator Kernel Emissions (SMOKE) Modeling System (Version SMOKE User’s Documentation). Zenodo 2018. [Google Scholar] [CrossRef]
- Borge, R.; Lumbreras, J.; Pérez, J.; de la Paz, D.; Vedrenne, M.; de Andrés, J.M.; Rodríguez, M.E. Emission inventories and modeling requirements for the development of air quality plans. Application to Madrid (Spain). Sci. Total Environ. 2014, 466, 809–819. [Google Scholar] [CrossRef] [Green Version]
- Borge, R.; Lumbreras, J.; Rodríguez, E. Development of a high-resolution emission inventory for Spain using the SMOKE modelling system: A case study for the years 2000 and 2010. Environ. Modell. Softw. 2008, 23, 1026–1044. [Google Scholar] [CrossRef]
- Silibello, C.; Baraldi, R.; Rapparini, F.; Facini, O.; Neri, L.; Brilli, F.; Fares, S.; Finardi, S.; Magliulo, E.; Ciccioli, P.; et al. Modelling of biogenic volatile organic compounds emissions over Italy. In Proceedings of the 18th International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes (HARMO), Bologna, Italy, 9–12 October 2017. [Google Scholar]
- Byun, D.; Schere, K.L. Review of the Governing Equations, Computational Algorithms, and Other Components of the Models-3 Community Multiscale Air Quality (CMAQ) Modeling System. Appl. Mech. Rev. 2006, 59, 51–77. [Google Scholar] [CrossRef]
- Ching, J.; Byun, D. Introduction to the Models-3 framework and the Community Multiscale Air Quality model (CMAQ). In Science Algorithms of the EPA Models-3 Community Multiscale Air Quality (CMAQ) Modeling System; 20460. EPA/600/R-99/030; Office of Research and Development: Washington, DC, USA, 1999. [Google Scholar]
- Borge, R.; López, J.; Lumbreras, J.; Narros, A.; Rodríguez, E. Influence of boundary conditions on CMAQ simulations over the Iberian Peninsula. Atmos. Environ. 2010, 44, 2681–2695. [Google Scholar] [CrossRef]
- Yarwood, G.; Jung, J.; Whitten, G.; Heo, G.J.M.; Estes, M. Updates to the Carbon Bond Mechanism for Version 6 (CB6). In Proceedings of the 9th Annual CMAS Conference, Chapel Hill, NC, USA, 11–13 October 2010; pp. 1–4. [Google Scholar]
- Appel, K.W.; Pouliot, G.A.; Simon, H.; Sarwar, G.; Pye, H.O.T.; Napelenok, S.L.; Akhtar, F.; Roselle, S.J. Evaluation of dust and trace metal estimates from the Community Multiscale Air Quality (CMAQ) model version 5.0. Geosci. Model Dev. 2013, 6, 883–899. [Google Scholar] [CrossRef] [Green Version]
- Izquierdo, R.; Dos Santos, S.G.; Borge, R.; de la Paz, D.; Sarigiannis, D.; Gotti, A.; Boldo, E. Health impact assessment by the implementation of Madrid City air-quality plan in 2020. Environ. Res. 2020, 183, 109021. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, F.; Warner, T.; Basara, J. Verification of a mesoscale data-assimilation and forecasting system for the Oklahoma City area during the Joint Urban 2003 field project. J. Appl. Meteorol. Climatol. 2006, 45, 912–929. [Google Scholar] [CrossRef]
- Borge, R.; Requia, W.J.; Yagüe, C.; Jhun, I.; Koutrakis, P. Impact of weather changes on air quality and related mortality in Spain over a 25-year period [1993–2017]. Environ. Int. 2019, 133, 105272. [Google Scholar] [CrossRef]
- Borge, R.; Artíñano, B.; Yagüe, C.; Gomez-Moreno, F.J.; Saiz-Lopez, A.; Sastre, M.; Narros, A.; García-Nieto, D.; Benavent, N.; Maqueda, G.; et al. Application of a short term air quality action plan in Madrid (Spain) under a high-pollution episode-Part I: Diagnostic and analysis from observations. Sci. Total Environ. 2018, 635, 1561–1573. [Google Scholar] [CrossRef]
- Castelli, F.; Entekhabi, D.; Caporali, E. Estimation of surface heat flux and an index of soil moisture using adjoint-state surface energy balance. Water Resour. Res. 1999, 35, 3115–3125. [Google Scholar] [CrossRef] [Green Version]
- Chen, F. The Noah land surface model in WRF: A short tutorial. LSM Group Meeting. 17 April 2007. Available online: https://www.atmos.illinois.edu/~snesbitt/ATMS597R/notes/noahLSM-tutorial.pdf (accessed on 10 January 2022).
- Li, Y.; Zhao, M.; Motesharrei, S.; Mu, Q.; Kalnay, E.; Li, S. Local cooling and warming effects of forests based on satellite observations. Nat. Commun. 2015, 6, 6603. [Google Scholar] [CrossRef] [Green Version]
- Yan, K.; Park, T.; Yan, G.; Liu, Z.; Yang, B.; Chen, C.; Nemani, R.R.; Knyazikhin, Y.; Myneni, R.B. Evaluation of MODIS LAI/FPAR product collection 6. Part 2: Validation and intercomparison. Remote Sens. 2016, 8, 460. [Google Scholar] [CrossRef] [Green Version]
- Hegarty, J.D.; Lewis, J.; McGrath-Spangler, E.L.; Henderson, J.; Scarino, A.J.; DeCola, P.; Ferrare, R.; Hicks, M.; Adams-Selin, R.D.; Welton, E.J. Analysis of the planetary boundary layer height during DISCOVER-AQ Baltimore–Washington, DC, with lidar and high-resolution WRF modeling. J. Appl. Meteorol. Climatol. 2018, 57, 2679–2696. [Google Scholar] [CrossRef]
- Borge, R.; Santiago, J.L.; de la Paz, D.; Martín, F.; Domingo, J.; Valdés, C.; Sanchez, B.; Rivas, E.; Rozas, M.T.; Lázaro, S.; et al. Application of a short term air quality action plan in Madrid (Spain) under a high-pollution episode-part II: Assess-ment from multi-scale modelling. Sci. Total Environ. 2018, 635, 1574–1584. [Google Scholar] [CrossRef] [PubMed]
- Saiz-Lopez, A.; Borge, R.; Notario, A.; Adame, J.A.; de la Paz, D.; Querol, X.; Artíñano, B.; Gómez-Moreno, F.J.; Cuevas, C.A. Unexpected increase in the oxidation capac-ity of the urban atmosphere of Madrid, Spain. Sci. Rep. 2017, 7, 45956. [Google Scholar] [CrossRef]
- Qu, Y.; Han, Y.; Wu, Y.; Gao, P.; Wang, T. Study of PBLH and its correlation with particulate matter from one-year observation over Nanjing, Southeast China. Remote Sens. 2017, 9, 668. [Google Scholar] [CrossRef] [Green Version]
- Jung, D.; de la Paz, D.; Notario, A.; Borge, R. Analysis of emissions-driven changes in the oxidation capacity of the atmosphere in Europe. Sci. Total Environ. 2022, 827, 154126. [Google Scholar] [CrossRef] [PubMed]
Option | Setup |
---|---|
Initialization | ERA5 |
Shortwave radiation | MM5 |
Longwave radiation | GFDL |
Land-surface model | Noah LSM |
Microphysics scheme | WSM6 |
PBL scheme | Boulac |
Surface layer option | Monin–Obukhov |
Cumulus parametrization | No |
Urban physics | BEP (building energy parameterization) |
Nudging | No |
Statistic | T (2 m) (°C) | WS (10 m) (m s−1) | PBL Height (m) |
---|---|---|---|
Maximun | 0.20, (0.9%) | 0.25, (17.3%) | 43.4, (7.1%) |
Minimun | −0.32, (−2.0%) | −0.40, (−17.2%) | −65.5, (−10.9%) |
Average | −0.03, (−0.2%) | −0.03, (−1.0%) | −5.6, (−1.0%) |
Statistic | NO2 (µg m−3) | O3 (µg m−3) | PM10 (µg m−3) | PM2.5 (µg m−3) | |||
---|---|---|---|---|---|---|---|
Annual Mean | P99.8 | Annual Mean | P93.2 | Annual Mean | P90.4 | Annual Mean | |
Maximun | 1.6, (4.7%) | 10.6, (14.1%) | 1.5, (3.2%) | 3.6, (2.9%) | 0.28, (2.0%) | 1.0, (6.0%) | 0.24, (3.4%) |
Minimun | −1.5, (−4.1%) | −10.8, (−14.0%) | −1.7, (−4.3%) | −2.4, (−2.5%) | −0.30, (−1.7%) | −1.0, (−4.4%) | −0.25, (−2.4%) |
Average | 0.1, (0.8%) | 0.4, (0.6%) | −0.04, (−0.1%) | 0.6, (0.5%) | 0.04, (0.3%) | 0.05, (0.3%) | 0.04, (0.7%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de la Paz, D.; de Andrés, J.M.; Narros, A.; Silibello, C.; Finardi, S.; Fares, S.; Tejero, L.; Borge, R.; Mircea, M. Assessment of Air Quality and Meteorological Changes Induced by Future Vegetation in Madrid. Forests 2022, 13, 690. https://doi.org/10.3390/f13050690
de la Paz D, de Andrés JM, Narros A, Silibello C, Finardi S, Fares S, Tejero L, Borge R, Mircea M. Assessment of Air Quality and Meteorological Changes Induced by Future Vegetation in Madrid. Forests. 2022; 13(5):690. https://doi.org/10.3390/f13050690
Chicago/Turabian Stylede la Paz, David, Juan Manuel de Andrés, Adolfo Narros, Camillo Silibello, Sandro Finardi, Silvano Fares, Luis Tejero, Rafael Borge, and Mihaela Mircea. 2022. "Assessment of Air Quality and Meteorological Changes Induced by Future Vegetation in Madrid" Forests 13, no. 5: 690. https://doi.org/10.3390/f13050690
APA Stylede la Paz, D., de Andrés, J. M., Narros, A., Silibello, C., Finardi, S., Fares, S., Tejero, L., Borge, R., & Mircea, M. (2022). Assessment of Air Quality and Meteorological Changes Induced by Future Vegetation in Madrid. Forests, 13(5), 690. https://doi.org/10.3390/f13050690