Trends in Forest Fire Occurrence in the Ilmensky Nature Reserve, Southern Urals, Russia, between 1948 and 2014
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Study Region
2.2. The ISR Vegetation Cover
2.3. Nature Protection Inside the ISR
2.4. Fire Data
2.5. Spatial and Statistical Analysis
3. Results
3.1. Spatial Pattern of Fires during 1948–2014
3.2. Spatial Fire Distribution in 1948–1970, 1971–1990, and 1991–2014
3.3. Distribution of Fires within the Reserve
3.4. The Distribution of Fire-Affected Compartments
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Goldammer, J.G.; Furyaev, V. Fire in Ecosystems of Boreal Eurasia: Ecological Impacts and Links to the Global System. In Fire in Ecosystems of Boreal Eurasia; Goldammer, J.G., Furyaev, V., Eds.; Springer: Dordrecht, The Netherlands, 1996; pp. 1–20. [Google Scholar]
- Littell, J.S.; Oneil, E.E.; McKenzie, D.; Hicke, J.A.; Lutz, J.A.; Norheim, R.A.; Elsner, M.M. Forest ecosystems, disturbance, and climatic change in Washington State, USA. Clim. Change 2010, 102, 129–158. [Google Scholar] [CrossRef] [Green Version]
- Silva, J.; Vaz, P.; Moreira, F.; Catry, F.; Rego, F.C. Wildfires as a major driver of landscape dynamics in three fire-prone areas of Portugal. Landsc. Urban Plan. 2011, 101, 349–358. [Google Scholar] [CrossRef] [Green Version]
- Yefremov, D.F.; Shvidenko, A.Z. Long-term environmental impact of catastrophic forest fires in Russia’s Far East and their contribution to global processes. Int. For. Fire News 2004, 32, 43–49. [Google Scholar]
- Drobyshev, I.; Ryzhkova, N.; Eden, J.; Kitenberga, M.; Pinto, G.; Lindberg, H.; Krikken, F.; Yermokhin, M.; Bergeron, Y.; Kryshen, A. Trends and patterns in annually burned forest areas and fire weather across the European boreal zone in the 20th and early 21st centuries. Agric. For. Meteorol. 2021, 306, 108467. [Google Scholar] [CrossRef]
- Drobyshev, I.; Niklasson, M.; Angelstam, P.; Majewski, P. Testing for anthropogenic influence on fire regime for a 600-year period in the Jaksha area, Komi Republic, East European Russia. Can. J. For. Res. 2004, 34, 2027–2036. [Google Scholar] [CrossRef] [Green Version]
- Fauria, M.M.; Johnson, E.A. Large-scale climatic patterns control large lightning fire occurrence in Canada and Alaska forest regions. J. Geophys. Res. 2006, 111, G04008. [Google Scholar] [CrossRef] [Green Version]
- Coops, N.C.; Hermosilla, T.; Wulder, M.A.; White, J.C.; Bolton, D.K. A thirty year, fine-scale, characterization of area burned in Canadian forests shows evidence of regionally increasing trends in the last decade. PLoS ONE 2018, 13, e0197218. [Google Scholar] [CrossRef]
- Hanes, C.C.; Wang, X.; Jain, P.; Parisien, M.A.; Little, J.M.; Flannigan, M.D. Fire-regime changes in Canada over the last half century. Can. J. For. Res. 2019, 49, 256–269. [Google Scholar] [CrossRef]
- Arienti, M.C.; Cumming, S.G.; Krawchuk, M.A.; Boutin, S. Road network density correlated with increased lightning fire incidence in the Canadian western boreal forest. Int. J. Wildland Fire 2009, 18, 970–982. [Google Scholar] [CrossRef]
- Flannigan, M.D.; Krawchuk, M.A.; de Groot, W.J.; Wotton, B.M.; Gowman, L.M. Implications of changing climate for global wildland fire. Int. J. Wildland Fire 2009, 18, 483–507. [Google Scholar] [CrossRef]
- Lovreglio, R.; Leone, V.; Giaquinto, P.; Notarnicola, A. Wildfire cause analysis: Four case-studies in southern Italy. iForest-Biogeosci. For. 2010, 3, 8–15. [Google Scholar] [CrossRef] [Green Version]
- Ganteaume, A.; Camia, A.; Jappiot, M.; San-Miguel-Ayanz, J.; Long-Fournel, M.; Lampin, C. A Review of the Main Driving Factors of Forest Fire Ignition Over Europe. Environ. Manag. 2013, 51, 651–662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Z.; He, H.S.; Yang, J.; Liu, Z.; Liang, Y. Relative effects of climatic and local factors on fire occurrence in boreal forest landscapes of north-eastern China. Sci. Total Environ. 2014, 493, 472–480. [Google Scholar] [CrossRef] [PubMed]
- Shvidenko, A.Z.; Schepaschenko, D.G. Climate change and wildfires in Russia. Contemp. Probl. Ecol. 2013, 6, 683–692. [Google Scholar] [CrossRef]
- Gillett, N.P.; Weaver, A.J.; Zwiers, F.W.; Flannigan, M.D. Detecting the effect of climate change on Canadian forest fires. Geophys. Res. Lett. 2004, 31, L18211. [Google Scholar] [CrossRef] [Green Version]
- Westerling, A.L.; Hidalgo, H.G.; Cayan, D.R.; Swetnam, T.W. Warming and Earlier Spring Increase Western U.S. Forest Wildfire Activity. Science 2006, 313, 940–943. [Google Scholar] [CrossRef] [Green Version]
- Seidl, R.; Schelhaas, M.J.; Rammer, W.; Verkerk, P.J. Increasing forest disturbances in Europe and their impact on carbon storage. Nat. Clim. Change 2014, 4, 806–810. [Google Scholar] [CrossRef] [Green Version]
- Gorbatenko, V.P.; Gromnitskaya, A.A.; Konstantinova, D.A.; Ershova, T.V.; Nechepurenko, O.Y. Assessing the role of climatic factors in the formation and spread of forest fires in Tomsk oblast. Tomsk State Univ. J. 2015, 395, 233–240. [Google Scholar] [CrossRef]
- Ponomarev, E.I.; Kharuk, V.I. Wildfire occurrence in forests of the Altai–Sayan region under current climate changes. Contemp. Probl. Ecol. 2016, 9, 29–36. [Google Scholar] [CrossRef]
- Kelly, R.; Chipman, M.; Higuera, P.E.; Stefanova, I.; Brubaker, L.B.; Hu, F.S. Recent burning of boreal forests exceeds fire regime limits of the past 10000 years. Proc. Natl. Acad. Sci. USA 2013, 110, 13055–13060. [Google Scholar] [CrossRef] [Green Version]
- Maingi, J.K.; Henry, M.C. Factors influencing wildfire occurrence and distribution in eastern Kentucky, USA. Int. J. Wildland Fire 2007, 16, 23–33. [Google Scholar] [CrossRef] [Green Version]
- Verdu, F.; Salas, J.; Vega-García, C. A multivariate analysis of biophysical factors and forest fires in Spain, 1991–2005. Int. J. Wildland Fire 2012, 21, 498–509. [Google Scholar] [CrossRef]
- Adab, H. Landfire hazard assessment in the Caspian Hyrcanian forest ecoregion with the long-term MODIS active fire data. Nat. Hazards 2017, 87, 1807–1825. [Google Scholar] [CrossRef]
- Sukhinin, A.I.; French, N.; Kasischke, E.S.; Hewson, J.H.; Soja, A.J.; Csiszar, I.A.; Hyer, E.; Loboda, T.; Conrad, S.; Romasko, V.I.; et al. AVHRR-based mapping of fires in Russia: New products for fire management and carbon cycle studies. Remote Sens. Environ. 2004, 93, 546–564. [Google Scholar] [CrossRef]
- Koba, V.P.; Zhigalova, T.P. Climatic factors and the dynamics of fires in the forests of the Crimean Mountains. Contemp. Probl. Ecol. 2015, 8, 824–829. [Google Scholar] [CrossRef]
- Malenko, A.A.; Malinovskikh, A.A.; Chichkarev, A.S. The dynamics of fire occurrence frequency in the forests of the south of West Siberia. Altai State Agrar. Univ. Bull. 2015, 6, 68–72. (In Russian) [Google Scholar]
- Megalinskaya, I.Z.; Tertitsa, T.K. On the issue of fires in the pine forest area of the Pechora-Ilych Nature Reserve. In Proceedings of the Conservation Management in Russia: Principles, Problems, Priorities, Zhigulevsk, Russia, 4–8 September 2002. (In Russian). [Google Scholar]
- Lisitsyna, O.V.; Aleinikov, A.A.; Vladimirova, N.A.; Krylov, A.M.; Simakin, L.V. The impact of availability territory and terrain characteristics on location of burnt areas in dark coniferous forests Pechora-Ilich Nature Reserve. For. Eng. J. 2017, 7, 49–58. [Google Scholar] [CrossRef] [Green Version]
- Aleinikov, A.A.; Balushta, L.P.; Vladimirova, N.A.; Kvashnina, A.E. Typification of forest damage rates in the burned areas of the "Denezhkin Kamen" Russian Federal Nature Reserve (Ural Mountains). For. Eng. J. 2019, 8, 30–37. [Google Scholar] [CrossRef]
- Fernández-Álvarez, M.; Armesto, J.; Picos, J. LiDAR-Based Wildfire Prevention in WUI: The Automatic Detection, Measurement and Evaluation of Forest Fuels. Forests 2019, 10, 148. [Google Scholar] [CrossRef] [Green Version]
- Skowronski, N.S.; Gallagher, M.R.; Warner, T.A. Decomposing the Interactions between Fire Severity and Canopy Fuel Structure Using Multi-Temporal, Active, and Passive Remote Sensing Approaches. Fire 2020, 3, 7. [Google Scholar] [CrossRef] [Green Version]
- García-Cimarras, A.; Manzanera, J.A.; Valbuena, R. Analysis of Mediterranean Vegetation Fuel Type Changes Using Multitemporal LiDAR. Forests 2021, 12, 335. [Google Scholar] [CrossRef]
- Chibilev, A.A.; Veselkin, D.V.; Kuyantseva, N.B.; Chashchina, O.E.; Dubinin, A.E. Dynamics of forest fires and climate in Ilmen nature reserve, 1948–2013. Dokl. Earth Sci. 2016, 468, 619–622. [Google Scholar] [CrossRef]
- Gribova, S.A.; Isachenko, T.I.; Lavrenko, E.M. Vegetation of the European Part of the USSR; Nauka: Leningrad, Russia, 1980. (In Russian) [Google Scholar]
- A Manual on Acoustic Surveys: Sampling Methods for Acoustic Surveys. 1981. Available online: http://www.fao.org/docrep/003/x6602e/x6602e0d.htm (accessed on 15 November 2021).
- Montiel-Molina, C.; Vilar, L.; Romao-Sequeira, C.; Karlsson, O.; Galiana-Martin, L.; de Lomana, G.M.; Palacios-Estremera, M.T. Have historical land use/land cover changes triggered a fire regime shift in Central Spain? Fire 2019, 2, 44. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, M.; Jimenez-Ruano, A.; de la Riva, J. Fire regime dynamics in mainland Spain. Part 1: Drivers of change. Sci. Total Environ. 2020, 721, 135841. [Google Scholar] [CrossRef]
- Carlucci, M.; Zambon, I.; Colantoni, A.; Salvati, L. Socioeconomic development, demographic dynamics and forest fires in Italy, 1961-2017: A time-series analysis. Sustainability 2019, 11, 1305. [Google Scholar] [CrossRef] [Green Version]
- Lefort, P.; Gauthier, S.; Bergeron, Y. The influence of fire weather and land use on the fire activity of the Lake Abitibi Area, Eastern Canada. For. Sci. 2003, 49, 509–521. Available online: https://www.researchgate.net/publication/233706261 (accessed on 15 March 2022).
- Aleinikov, A.A. The fire history in pine forests of the plain area in the Pechora-Ilych Nature Biosphere Reserve (Russia) before 1942: Possible anthropogenic causes and long-term effects. Nat. Conserv. Res. 2019, 4, 21–34. [Google Scholar] [CrossRef] [Green Version]
- Belyaeva, N.V. Reaction of plant species belonging to different ecological and biological groups to a fire in the forests of the Visimsky Nature Reserve. In Proceedings of the Problems of specially protected natural territories of the European North, Syktyvkar, Russia, 25–29 October 2004. (In Russian). [Google Scholar]
- Chashchina, O.E.; Kuyantseva, N.B.; Mumber, A.G.; Potapkin, A.B.; Veselkin, D.V. Ground vegetation of the pine forest affected by forest fires in the gradient of emissions of the Karabash Copper Smelter. Vestn. Orenbg. State Pedagog. Univ. Electron. Sci. J. 2017, 4, 44–53, (In Russian with English abstract). [Google Scholar]
- Granstrom, A.; Niklasson, M. Potentials and limitations for human control over historic fire regimes in the boreal forest. Philos. Trans. R. Soc. B 2008, 363, 2353–2358. [Google Scholar] [CrossRef] [Green Version]
- Gimmi, U.; Wohlgemuth, T.; Rigling, A.; Hoffmann, C.W.; Burgi, M. Land-use and climate change effects in forest compositional trajectories in a dry Central-Alpine valley. Ann. For. Sci. 2010, 67, 701. [Google Scholar] [CrossRef]
- Mollicone, D.; Eva, H.D.; Achard, F. Human role in Russian wildfires. Nature 2006, 440, 436–437. [Google Scholar] [CrossRef] [PubMed]
- Zamolodchikov, D.G.; Grabovsky, V.I.; Shulyak, P.P.; Chestnykh, O.V. The impacts of fires and clear-cuts on the carbon balance of Russian forests. Contemp. Probl. Ecol. 2013, 6, 714–726. [Google Scholar] [CrossRef]
- Ganteaume A, Long-Fournel M Driving factors of fire density can spatially vary at the local scale in south-eastern France. Int. J. Wildland Fire 2015, 24, 650–664. [CrossRef]
- Shvetsov, E.G.; Kukavskaya, E.A.; Shestakova, T.A.; Laflamme, J.; Rogers, B.M. Increasing fire and logging disturbances in Siberian boreal forests: A case study of the Angara region. Environ. Res. Lett. 2021, 16, 115007. [Google Scholar] [CrossRef]
- Pustovalova, L.A.; Chashchina, O.E.; Kuyantseva, N.B.; Mumber, A.G.; Veselkin, D.V. Dependence of frequency of fires in the Ilmensky Reserve on the forest type and accessibility of the territory. In Proceedings of the Aerospace methods and GIS-technologies in forestry, forest management and ecology, Moscow, Russia, 22–24 April 2019; Available online: http://www.cepl.rssi.ru/confs/ASGIS2019/files/ASGIS2019_Abstract_book.pdf (accessed on 15 March 2022). (In Russian with English abstract).
Parameter | Years | |||
---|---|---|---|---|
1948–1970 | 1971–1990 | 1991–2014 | ||
Number of years | 23 | 20 | 24 | |
The sum of fires for the period | 261 | 316 | 506 | |
The number of fires per compartment per 10 years: | ||||
Minimal | 0.00 | 0.00 | 0.00 | |
Maximal | 4.80 | 7.00 | 17.50 | |
Median | 0.00 | 0.00 | 0.40 | |
Mean | 0.41 | 0.58 | 0.77 | |
Dispersion | 0.47 | 0.86 | 2.98 | |
The correspondence of the distribution of the fire frequencies per compartment to the distributions of (in all cases dF = 5): | ||||
Poisson | χ2 | 347.39 | 337.24 | 449.64 |
p | <0.0001 | <0.0001 | <0.0001 | |
Inverse Binomial | χ2 | 3.94 | 7.64 | 4.59 |
p | 0.5586 | 0.1774 | 0.4674 |
Spatial Zones | Years | ||
---|---|---|---|
1948–1970 | 1971–1990 | 1991–2014 | |
Boundary | 0.46 (0.00–0.40) | 0.74 (0.00–1.00) | 1.33 (0.00–1.70) |
Buffer | 0.37 (0.00–0.40) | 0.49 (0.00–0.50) | 0.56 (0.00–0.80) |
Core | 0.38 (0.00–0.40) | 0.48 (0.00–1.00) | 0.31 (0.00–0.40) |
Spatial Zones | Total Compartment Number | Compartment Burning Mode | |||
---|---|---|---|---|---|
No Fires | The Number of Fires Has Increased | The Number of Fires has Decreased | The Number of Fires Did Not Vary Directionally | ||
Boundary | 99 | 18.2 (11.7–27.0) | 18.2 (11.7–27.0) | 2.0 (0.1–7.5) | 61.6 (51.8–70.6) |
Buffer | 99 | 17.2 (10.9–25.9) | 12.1 (6.9–20.2) | 4.0 (1.3–10.3) | 66.7 (56.9–75.2) |
Core | 75 | 22.7 (14.6–33.4) | 5.3 (1.7–13.3) | 9.3 (4.3–18.3) | 62.7 (51.3–72.8) |
All compartments | 273 | 19.1 (14.8–24.1) | 12.5 (9.0–16.9) | 4.7 (2.7–8.1) | 63.7 (57.9–69.2) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Veselkin, D.; Kuyantseva, N.; Pustovalova, L.; Mumber, A. Trends in Forest Fire Occurrence in the Ilmensky Nature Reserve, Southern Urals, Russia, between 1948 and 2014. Forests 2022, 13, 528. https://doi.org/10.3390/f13040528
Veselkin D, Kuyantseva N, Pustovalova L, Mumber A. Trends in Forest Fire Occurrence in the Ilmensky Nature Reserve, Southern Urals, Russia, between 1948 and 2014. Forests. 2022; 13(4):528. https://doi.org/10.3390/f13040528
Chicago/Turabian StyleVeselkin, Denis, Nadezhda Kuyantseva, Liliya Pustovalova, and Aleksandr Mumber. 2022. "Trends in Forest Fire Occurrence in the Ilmensky Nature Reserve, Southern Urals, Russia, between 1948 and 2014" Forests 13, no. 4: 528. https://doi.org/10.3390/f13040528
APA StyleVeselkin, D., Kuyantseva, N., Pustovalova, L., & Mumber, A. (2022). Trends in Forest Fire Occurrence in the Ilmensky Nature Reserve, Southern Urals, Russia, between 1948 and 2014. Forests, 13(4), 528. https://doi.org/10.3390/f13040528