Quality of Pellets Obtained from Whole Trees Harvested from Plantations, Coppice Forests and Regular Thinnings
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Physical Parameters
3.2. Chemical Parameters
4. Discussion
4.1. Pellet Quality
4.2. Comparison with Other Similar Studies
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huang, Y.; Finell, M.; Larsson, S.; Wang, X.; Zhang, J.; Wei, R.; Liu, L. Biofuel pellets made at low moisture content—Influence of water in the binding mechanism of densified biomass. Biomass Bioenergy 2017, 98, 8–14. [Google Scholar] [CrossRef]
- Marchi, E.; Chung, W.; Visser, R.; Abbas, D.; Nordfjell, T.; Mederski, P.S.; McEwan, A.; Brink, M.; Laschi, A. Sustainable forest operations (SFO): A new paradigm in a changing world and climate. Sci. Total Environ. 2018, 634, 1385–1397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Picchio, R.; Latterini, F.; Venanzi, R.; Stefanoni, W.; Suardi, A.; Tocci, D.; Pari, L. Pellet production from woody and non-woody feedstocks: A review on biomass quality evaluation. Energies 2020, 13, 2937. [Google Scholar] [CrossRef]
- Van Duren, I.; Voinov, A.; Arodudu, O.; Firrisa, M.T. Where to produce rapeseed biodiesel and why? Mapping European rapeseed energy efficiency. Renew. Energy 2015, 74, 49–59. [Google Scholar] [CrossRef] [Green Version]
- Kizuka, R.; Ishii, K.; Sato, M.; Fujiyama, A. Characteristics of wood pellets mixed with torrefied rice straw as a biomass fuel. Int. J. Energy Environ. Eng. 2019, 10, 357–365. [Google Scholar] [CrossRef] [Green Version]
- Koseki, H. Evaluation of various solid biomass fuels using thermal analysis and gas emission tests. Energies 2011, 4, 616–627. [Google Scholar] [CrossRef] [Green Version]
- Picchio, R.; Spina, R.; Sirna, A.; lo Monaco, A.; Civitarese, V.; del Giudice, A.; Suardi, A.; Pari, L. Characterization of woodchips for energy from forestry and agroforestry production. Energies 2012, 5, 3803–3816. [Google Scholar] [CrossRef]
- Tavankar, F.; Picchio, R.; lo Monaco, A.; Bonyad, A.E. Forest management and snag characteristics in Northern Iran lowland forests. J. For. Sci. 2014, 60, 431–441. [Google Scholar] [CrossRef] [Green Version]
- So, C.L.; Eberhardt, T.L. FTIR-based models for assessment of mass yield and biofuel properties of torrefied wood. Wood Sci. Technol. 2018, 52, 209–227. [Google Scholar] [CrossRef]
- Chen, W.-H.; Peng, J.; Bi, X.T. A state-of-the-art review of biomass torrefaction, densification and applications. Renew. Sustain. Energy Rev. 2015, 44, 847–866. [Google Scholar] [CrossRef]
- Jochem, D.; Weimar, H.; Bösch, M.; Mantau, U.; Dieter, M. Estimation of wood removals and fellings in Germany: A calculation approach based on the amount of used roundwood. Eur. J. For. Res. 2015, 134, 869–888. [Google Scholar] [CrossRef]
- Szewczyk, K.; Polowy, K. Production of fuel wood chips as an example of supply chain reorganisation resulting from socioeconomic changes in Poland. Drewno 2020, 63, 141–154. [Google Scholar] [CrossRef]
- Dias, M.F.; Silva, A.C.; Nunes, L.J.R. Transaction cost theory: A case study in the biomass-to-energy sector. Curr. Sustain. Energy Rep. 2021, 8, 57–69. [Google Scholar] [CrossRef]
- Melis, E.; Vincis, A.; Orrù, P.F. An overview of current models and approaches to biomass supply chain design and management. Curr. Sustain. Energy Rep. 2018, 5, 138–149. [Google Scholar] [CrossRef]
- Tauro, R.; García, C.A.; Skutsch, M.; Masera, O. The potential for sustainable biomass pellets in Mexico: An analysis of energy potential, logistic costs and market demand. Renew. Sustain. Energy Rev. 2018, 82, 380–389. [Google Scholar] [CrossRef]
- Rodrigues, A.M.; Costa, M.M.G.; Nunes, L.J.R. Short rotation woody coppices for biomass production: An integrated analysis of the potential as an energy alternative. Curr. Sustain. Energy Rep. 2021, 8, 70–89. [Google Scholar] [CrossRef]
- Liu, Z.; Fei, B.; Jiang, Z.; Cai, Z.; Liu, X. Important properties of bamboo pellets to be used as commercial solid fuel in China. Wood Sci. Technol. 2014, 48, 903–917. [Google Scholar] [CrossRef]
- Mola-Yudego, B.; Selkimäki, M.; González-Olabarria, J.R. Spatial analysis of the wood pellet production for energy in Europe. Renew. Energy 2014, 63, 76–83. [Google Scholar] [CrossRef]
- Sgarbossa, A.; Costa, C.; Menesatti, P.; Antonucci, F.; Pallottino, F.; Zanetti, M.; Grigolato, S.; Cavalli, R. A multivariate SIMCA index as discriminant in wood pellet quality assessment. Renew. Energy 2015, 76, 258–263. [Google Scholar] [CrossRef]
- Spinelli, R.; Lombardini, C.; Aminti, G.; Magagnotti, N. Efficient debarking to increase value recovery in small-scale forestry operations. Small-Scale For. 2018, 17, 377–392. [Google Scholar] [CrossRef]
- De Castro, P.G.S.; de Siqueira, H.F.; de Castro, V.R.; Zanuncio, A.J.V.; Zanuncio, J.C.; da Silva Berger, M.; Martins, F.D.R.; de Carneiro, A.C.O.; Gominho, J.; de Oliveira Araújo, S. Quality of Pinus sp. pellets with kraft lignin and starch addition. Sci. Rep. 2021, 11, 900. [Google Scholar] [CrossRef]
- Civitarese, V.; Acampora, A.; Sperandio, G.; Assirelli, A.; Picchio, R. Production of wood pellets from poplar trees managed as coppices with different harvesting cycles. Energies 2019, 12, 2973. [Google Scholar] [CrossRef] [Green Version]
- Scatolino, M.V.; Neto, L.F.C.; Protásio, T.P.; Carneiro, A.C.O.; Andrade, C.R.; Guimarães Júnior, J.B.; Mendes, L.M. Options for generation of sustainable energy: Production of pellets based on combinations between lignocellulosic biomasses. Waste Biomass Valoriz. 2018, 9, 479–489. [Google Scholar] [CrossRef]
- Santana, D.A.R.; Scatolino, M.V.; Lima, M.D.R.; de Oliveira Barros Junior, U.; Garcia, D.P.; Andrade, C.R.; de Cássia Oliveira Carneiro, A.; Trugilho, P.F.; de Paula Protásio, T. Pelletizing of lignocellulosic wastes as an environmentally friendly solution for the energy supply: Insights on the properties of pellets from Brazilian biomasses. Environ. Sci. Pollut. Res. 2021, 28, 11598–11617. [Google Scholar] [CrossRef]
- Gravelsins, A.; Muizniece, I.; Blumberga, A.; Blumberga, D. Economic sustainability of pellet production in Latvia. Energy Procedia 2017, 142, 531–537. [Google Scholar] [CrossRef]
- Alsaleh, M.; Abdul-Rahim, A.S. An evaluation of bioenergy industry sustainability impacts on forest degradation: Evidence from European Union economies. Environ. Dev. Sustain. 2021, 24, 1738–1760. [Google Scholar] [CrossRef]
- Gilvari, H.; van Battum, C.H.H.; van Dijk, S.A.; de Jong, W.; Schott, D.L. Large-scale transportation and storage of wood pellets: Investigation of the change in physical properties. Particuology 2021, 57, 146–156. [Google Scholar] [CrossRef]
- Acda, M.N.; Jara, A.A.; Daracan, V.C.; Devera, E.E. Opportunities and barriers to wood pellet trade in the Philippines. Ecosyst. Dev. J. 2016, 6, 27–31. [Google Scholar]
- Dyjakon, A.; den Boer, J.; Gebresenbet, G.; Bosona, T.; Adamczyk, F. Economic analysis of the collection and transportation of pruned branches from orchards for energy production. Drewno 2020, 63, 125–140. [Google Scholar] [CrossRef]
- Paukkunen, S. Opportunities to use thinning wood as raw material for wood pellets. Croat. J. For. Eng. 2014, 35, 23–33. [Google Scholar]
- Dong, L.; Jin, X.; Pukkala, T.; Li, F.; Liu, Z. How to manage mixed secondary forest in a sustainable way? Eur. J. For. Res. 2019, 138, 789–801. [Google Scholar] [CrossRef] [Green Version]
- Mederski, P.S.; Venanzi, R.; Bembenek, M.; Karaszewski, Z.; Rosińska, M.; Pilarek, Z.; Luchenti, I.; Surus, M. Designing thinning operations in 2nd age class pine stands—Economic and environmental implications. Forests 2018, 9, 335. [Google Scholar] [CrossRef] [Green Version]
- Bergström, D. Cost analysis of innovative biomass harvesting systems for young dense thinnings. Croat. J. For. Eng. 2019, 40, 221–230. [Google Scholar] [CrossRef]
- Magagnotti, N.; Spinelli, R.; Kärhä, K.; Mederski, P.S. Multi-tree cut-to-length harvesting of short-rotation poplar plantations. Eur. J. For. Res. 2021, 140, 345–354. [Google Scholar] [CrossRef]
- Mederski, P.S.; Jakubowski, M.; Karaszewski, Z. The Polish landscape changing due to forest policy and forest management. IForest 2009, 2, 140–142. [Google Scholar] [CrossRef]
- Mihelic, M.; Spinelli, R.; Poje, A. Intensifying the management of protection forests in the Alps. Drewno 2018, 61, 23–37. [Google Scholar]
- Picchio, R.; Tavankar, F.; Bonyad, A.; Mederski, P.S.; Venanzi, R.; Nikooy, M. Detailed analysis of residual stand damage due to winching on steep terrains. Small-Scale For. 2019, 18, 255–277. [Google Scholar] [CrossRef] [Green Version]
- Scheidl, C.; Heiser, M.; Vospernik, S.; Lauss, E.; Perzl, F.; Kofler, A.; Kleemayr, K.; Bettella, F.; Lingua, E.; Garbarino, M. Assessing the protective role of alpine forests against rockfall at regional scale. Eur. J. For. Res. 2020, 139, 969–980. [Google Scholar] [CrossRef]
- Lo Monaco, A.; Todaro, L.; Sarlatto, M.; Spina, R.; Calienno, L.; Picchio, R. Effect of moisture on physical parameters of timber from Turkey oak (Quercus cerris L.) coppice in Central Italy. For. Stud. China 2011, 13, 276–284. [Google Scholar] [CrossRef]
- Ruiz, D.; San Miguel, G.; Corona, B.; López, F.R. LCA of a multifunctional bioenergy chain based on pellet production. Fuel 2018, 215, 601–611. [Google Scholar] [CrossRef]
- Mitchual, S.J.; Frimpong-Mensah, K.; Darkwa, N.A. Effect of species, particle size and compacting pressure on relaxed density and compressive strength of fuel briquettes. Int. J. Energy Environ. Eng. 2013, 4, 30. [Google Scholar] [CrossRef] [Green Version]
- Goh, C.S.; Aikawa, T.; Ahl, A.; Ito, K.; Kayo, C.; Kikuchi, Y.; Takahashi, Y.; Furubayashi, T.; Nakata, T.; Kanematsu, Y. Rethinking sustainable bioenergy development in Japan: Decentralised system supported by local forestry biomass. Sustain. Sci. 2020, 15, 1461–1471. [Google Scholar] [CrossRef]
- Valverde, J.C.; Arias, D.; Campos, R.; Jiménez, M.F.; Brenes, L. Forest and agro-industrial residues and bioeconomy: Perception of use in the energy market in Costa Rica. Energy Ecol. Environ. 2021, 6, 232–242. [Google Scholar] [CrossRef]
- De Souza, P.L.H.J.; Muñoz, F.; Mendonça, R.T.; Sáez, K.; Olave, R.; Segura, C.; de Souza, D.P.L.; de Paula Protásio, T.; Rodríguez-Soalleiro, R. Influence of lignin distribution, physicochemical characteristics and microstructure on the quality of biofuel pellets made from four different types of biomass. Renew. Energy 2021, 163, 1802–1816. [Google Scholar] [CrossRef]
- Nosek, R.; Holubcik, M.; Jandacka, J. The impact of bark content of wood biomass on biofuel properties. BioResources 2016, 11, 44–53. [Google Scholar] [CrossRef] [Green Version]
- Lerma-Arce, V.; Oliver-Villanueva, J.V.; Segura-Orenga, G.; Urchueguia-Schölzel, J.F. Comparison of alternative harvesting systems for selective thinning in a mediterranean pine afforestation (Pinus halepensis mill.) for bioenergy use. IForest 2021, 14, 465–472. [Google Scholar] [CrossRef]
- Toscano, A.; Hellio, C.; Marzo, A.; Milani, M.; Lebret, K.; Cirelli, G.L.; Langergraber, G. Removal efficiency of a constructed wetland combined with ultrasound and UV devices for wastewater reuse in agriculture. Environ. Technol. 2013, 34, 2327–2336. [Google Scholar] [CrossRef]
- Arranz, J.I.; Miranda, M.T.; Montero, I.; Sepúlveda, F.J.; Rojas, C. V Characterization and combustion behaviour of commercial and experimental wood pellets in South West Europe. Fuel 2015, 142, 199–207. [Google Scholar] [CrossRef]
- Todorović, N.; Popović, Z.; Milić, G. Estimation of quality of thermally modified beech wood with red heartwood by FT-NIR spectroscopy. Wood Sci. Technol. 2015, 49, 527–549. [Google Scholar] [CrossRef]
- Pretzsch, H.; Rais, A. Wood quality in complex forests versus even-aged monocultures: Review and perspectives. Wood Sci. Technol. 2016, 50, 845–880. [Google Scholar] [CrossRef]
- Lo Monaco, A.; Calienno, L.; Pelosi, C.; Balletti, F.; Agresti, G.; Picchio, R. Technical properties of beech wood from aged coppices in central Italy. IForest 2015, 8, 82–88. [Google Scholar] [CrossRef] [Green Version]
- European Union. New European Forest Strategy for 2030. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52021DC0572 (accessed on 15 August 2021).
- Mederski, P.S.; Bembenek, M.; Karaszewski, Z.; Pilarek, Z.; Łacka, A. Investigation of log length accuracy and harvester efficiency in processing of oak trees. Croat. J. For. Eng. 2018, 39, 173–181. [Google Scholar]
- Rosińska, M.; Bembenek, M.; Picchio, R.; Karazzewski, Z.; Đuka, A.; Mederski, P.S. Determining harvester productivity curves of thinning operations in birch stands of Central Europe. Croat. J. For. Eng. 2022, 43, 1–12. [Google Scholar] [CrossRef]
- Pari, L.; Civitarese, V.; del Giudice, A.; Assirelli, A.; Spinelli, R.; Santangelo, E. Influence of chipping device and storage method on the quality of SRC poplar biomass. Biomass Bioenergy 2013, 51, 169–176. [Google Scholar] [CrossRef]
- Ceulemans, R.; McDonald, A.J.S.; Pereira, J.S. A comparison among eucalypt, poplar and willow characteristics with particular reference to a coppice, growth-modelling approach. Biomass Bioenergy 1996, 11, 215–231. [Google Scholar] [CrossRef]
- Giungato, P.; Barbieri, P.; Cozzutto, S.; Licen, S. Sustainable domestic burning of residual biomasses from the Friuli Venezia Giulia region. J. Clean. Prod. 2018, 172, 3841–3850. [Google Scholar] [CrossRef]
- Maesano, M.; Picchio, R.; lo Monaco, A.; Neri, F.; Lasserre, B.; Marchetti, M. Productivity and energy consumption in logging operation in a Cameroonian tropical forest. Ecol. Eng. 2013, 57, 149–153. [Google Scholar] [CrossRef]
- Garcia, D.P.; Caraschi, J.C.; Ventorim, G.; Vieira, F.H.A.; de Paula Protásio, T. Comparative energy properties of torrefied pellets in relation to pine and elephant grass pellets. BioResources 2018, 13, 2898–2906. [Google Scholar] [CrossRef] [Green Version]
- Royo, J.; Canalís, P.; Quintana, D.; Díaz-Ramírez, M.; Sin, A.; Rezeau, A. Experimental study on the ash behaviour in combustion of pelletized residual agricultural biomass. Fuel 2019, 239, 991–1000. [Google Scholar] [CrossRef] [Green Version]
- De Souza, H.J.P.L.; Arantes, M.D.C.; Vidaurre, G.B.; Andrade, C.R.; de Carneiro, A.C.O.; de Souza, D.P.L.; de Protásio, T.P. Pelletization of eucalyptus wood and coffee growing wastes: Strategies for biomass valorization and sustainable bioenergy production. Renew. Energy 2020, 149, 128–140. [Google Scholar] [CrossRef]
Acronym | Species | Age | Management |
---|---|---|---|
CP1 | Commercial pellet 1 (Picea abies (L.) Karst) | - | - |
CP2 | Commercial pellet 2 (Pinus nigra Arn.) | - | - |
ES18C | Eucalyptus spp. | 18 years | Coppice |
ES3SRF | Eucalyptus spp. | 3 years | Short rotation forestry |
ES6SRF | Eucalyptus spp. | 6 years | Short rotation forestry |
FS30CST | Fagus sylavtica L. | 30 years | Coppice with standards |
FS70TH | Fagus sylavtica L. | 70 years | Thinning in even-aged high forest |
PE18TH | Pinus eldarica Medw | 18 years | Thinning in even-aged high forest |
PE40TH | Pinus eldarica Medw | 40 years | Thinning in even-aged high forest |
PR18TH | Pinus radiata D.Don | 18 years | Thinning in even-aged high forest |
PR50TH | Pinus radiata D.Don | 50 years | Thinning in even-aged high forest |
RP3SRF | Robinia pseudoacacia L. | 3 years | Short rotation forestry |
RP6SRF | Robinia pseudoacacia L. | 6 years | Short rotation forestry |
Parameter | Influence on Pellet Quality (+, − or //) |
---|---|
Bulk density [g/cm3] | + |
Moisture [%] | − |
Pellet size (length and diameter) [mm] | + |
Shear resistance [N/mm2] | + |
Particle density [g/cm3] | + |
Mechanical durability [%] | + |
Heavy metal content [mg/kg] | − |
Carbon content [%] | + |
Oxygen content [%] | − |
Nitrogen content [%] | − |
Hydrogen content [%] | − |
Higher Heating Value [MJ/kg] | + |
Lower Heating Value [MJ/kg] | + |
Ash content [%] | − |
Ash melting point [°C] | + |
pH | // |
Pellet Type | Bulk Densityd.m. (g/cm3) | Moisture (%) | Length (mm) | Diameter (mm) | Shear Resistance (N/mm2) |
---|---|---|---|---|---|
CP1 | 0.583 ± 0.024 a | 7.08 ± 0.06 a | 17.02 ± 5.59 a | 6.59 ± 0.20 a | 6.52 ± 0.39 a |
CP2 | 0.587 ± 0.011 a | 7.25 ± 0.04 a | 14.01 ± 5.01 b | 6.64 ± 0.09 a | 6.54 ± 0.45 a |
ES18C | 0.560 ± 0.024 a | 4.81 ± 0.19 b | 9.04 ± 3.17 c | 6.04 ± 0.10 a,b | 5.55 ± 0.19 b |
ES3SRF | 0.566 ± 0.014 a | 5.20 ± 0.05 b | 11.68 ± 4.71 d | 6.06 ± 0.17 a,b | 6.65 ± 0.24 a |
ES6SRF | 0.640 ± 0.027 b | 7.51 ± 0.04 a | 18.83 ± 7.21 a | 6.08 ± 0.06 a,b | 7.13 ± 0.64 a |
FS30CST | 0.592 ± 0.017 a | 7.24 ± 0.08 a | 11.84 ± 3.80 d | 5.99 ± 0.27 a,b | 6.67 ± 0.35 a |
FS70TH | 0.601 ± 0.011 a,b | 7.02 ± 0.06 a | 12.08 ± 2.50 d | 6.02 ± 0.32 a,b | 6.99 ± 0.22 a |
PE18TH | 0.528 ± 0.024 a,c | 8.34 ± 0.28 c | 13.26 ± 3.61 b,d | 6.29 ± 0.21 a | 4.33 ± 0.28 c |
PE40TH | 0.565 ± 0.031 a | 8.21 ± 0.12 c | 13.01 ± 2.55 d | 6.31 ± 0.25 a | 4.41 ± 0.18 c |
PR18TH | 0.521 ± 0.027 a,c | 7.88 ± 0.01 a,c | 11.29 ± 3.34 d | 6.24 ± 0.24 a | 3.87 ± 0.44 c |
PR50TH | 0.585 ± 0.033 a | 7.67 ± 0.02 a | 12.02 ± 1.64 d | 6.23 ± 0.25 a | 3.95 ± 0.23 c |
RP3SRF | 0.438 ± 0.013 c | 7.95 ± 0.09 a,c | 8.72 ± 2.78 c | 6.29 ± 0.39 a | 3.93 ± 0.16 c |
RP6SRF | 0.557 ± 0.028 a | 7.09 ± 0.08 a | 9.67 ± 1.67 c,d | 6.32 ± 0.41 a | 4.04 ± 0.11 c |
ANOVA/MANOVA p value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Pellet Type | Particle Densityd.m. (g/cm3) | Mechanical Durability (%) | HHVd.m. (MJ/kg) | LHVd.m. (MJ/kg) | Ash Contentd.b. (%) | Ash Melting Point (FT) (°C) |
---|---|---|---|---|---|---|
CP1 | 1.31 ± 0.04 a | 96.47 ± 0.35 a | 18.650 ± 0.450 a | 15.750 ± 0.650 a | 0.83 ± 0.10 a | 1427.856 ± 42.452 |
CP2 | 1.31 ± 0.03 a | 97.20 ± 0.87 b | 17.907 ± 0.866 b | 14.698 ± 0.852 a,b | 0.76 ± 0.03 a | 1413.914 ± 44.035 |
ES18C | 1.30 ± 0.02 a | 96.67 ± 0.38 a | 18.549 ± 0.525 a | 15.419 ± 0.593 a | 1.21 ± 0.08 b | 1428.929 ± 41.96 |
ES3SRF | 1.34 ± 0.01 a | 98.17 ± 0.31 b | 17.656 ± 0.190 b | 14.290 ± 0.329 b | 1.11 ± 0.13 b | 1480.771 ± 13.552 |
ES6SRF | 1.36 ± 0.04 a | 98.10 ± 0.50 b | 17.867 ± 0.208 b | 14.670 ± 0.271 a,b | 1.51 ± 0.05 c | 1414.607 ± 50.782 |
FS30CST | 1.32 ± 0.03 a | 97.13 ± 0.85 b | 19.107 ± 0.146 a | 15.707 ± 0.461 a | 0.70 ± 0.05 a | 1377.298 ± 26.746 |
FS70TH | 1.39 ± 0.05 a | 97.87 ± 0.54 b | 19.801 ± 0.201 a,c | 16.202 ± 0.314 a,c | 0.64 ± 0.04 a | 1395.104 ± 12.721 |
PE18TH | 1.26 ± 0.01 a,b | 95.53 ± 0.49 a | 20.235 ± 0.415 c | 17.175 ± 0.375 c | 0.97 ± 0.4 a,b | 1414.209 ± 18.743 |
PE40TH | 1.32 ± 0.03 a | 96.95 ± 0.29 a,b | 20.302 ± 0.245 c | 17.415 ± 0.301 c | 0.95 ± 0.3 a,b | 1421.120 ± 14.722 |
PR18TH | 1.27 ± 0.03 a,b | 95.50 ± 0.70 a | 20.135 ± 0.323 c | 16.767 ± 0.196 c | 0.86 ± 0.42 a | 1438.443 ± 6.138 |
PR50TH | 1.30 ± 0.04 a | 96.25 ± 0.67 a,b | 20.286 ± 0.133 c | 16.998 ± 0.106 c | 0.82 ± 0.24 a | 1409.127 ± 4.218 |
RP3SRF | 1.30 ± 0.02 a | 95.37 ± 0.74 a,c | 19.190 ± 0.645 a | 16.053 ± 0.384 c | 1.30 ± 0.13 b,c | 1429.437 ± 10.069 |
RP6SRF | 1.35 ± 0.04 a | 94.95 ± 0.67 a,c | 19.678 ± 0.565 a,c | 16.705 ± 0.318 c | 1.00 ± 0.10 a,b | 1401.401 ± 8.706 |
ANOVA/MANOVA p value | <0.001 | <0.001 | <0.001 | <0.001 | <0.01 | >0.05 |
Pellet Type | As (mg/kg) | Cd (mg/kg) | Cr (mg/kg) | Cu (mg/kg) | Pb (mg/kg) | Ni (mg/kg) |
---|---|---|---|---|---|---|
CP1 | 0.006 ± 0.002 | 0.199 ± 0.002 | 0.245 ± 0.006 | 0.931 ± 0.014 | 0.074 ± 0.006 | 1.687 ± 0.014 |
CP2 | 0.005 ± 0.002 | 0.202 ± 0.004 | 0.246 ± 0.008 | 0.955 ± 0.019 | 0.076 ± 0.003 | 1.694 ± 0.012 |
ES18C | 0.005 ± 0.002 | 0.202 ± 0.004 | 0.246 ± 0.008 | 0.955 ± 0.019 | 0.076 ± 0.003 | 1.694 ± 0.012 |
ES3SRF | 0.008 ± 0.002 | 0.203 ± 0.002 | 0.242 ± 0.008 | 0.959 ± 0.018 | 0.069 ± 0.001 | 1.695 ± 0.006 |
ES6SRF | 0.007 ± 0.001 | 0.202 ± 0.003 | 0.242 ± 0.006 | 0.926 ± 0.047 | 0.075 ± 0.004 | 1.691 ± 0.004 |
FS30CST | 0.009 ± 0.002 | 0.200 ± 0.002 | 0.252 ± 0.002 | 0.927 ± 0.037 | 0.072 ± 0.006 | 1.679 ± 0.002 |
FS70TH | 0.009 ± 0.001 | 0.202 ± 0.003 | 0.250 ± 0.003 | 0.930 ± 0.041 | 0.070 ± 0.005 | 1.685 ± 0.003 |
PE18TH | 0.009 ± 0.001 | 0.203 ± 0.003 | 0.254 ± 0.006 | 0.919 ± 0.02 | 0.069 ± 0.003 | 1.684 ± 0.005 |
PE40TH | 0.009 ± 0.003 | 0.202 ± 0.002 | 0.252 ± 0.008 | 0.911 ± 0.02 | 0.070 ± 0.003 | 1.686 ± 0.006 |
PR18TH | 0.009 ± 0.002 | 0.200 ± 0.002 | 0.252 ± 0.002 | 0.927 ± 0.037 | 0.072 ± 0.006 | 1.679 ± 0.002 |
PR50TH | 0.009 ± 0.006 | 0.202 ± 0.005 | 0.250 ± 0.004 | 0.922 ± 0.023 | 0.070 ± 0.004 | 1.682 ± 0.005 |
RP3SRF | 0.009 ± 0.001 | 0.204 ± 0.002 | 0.253 ± 0.002 | 0.953 ± 0.018 | 0.079 ± 0.002 | 1.705 ± 0.003 |
RP6SRF | 0.009 ± 0.003 | 0.203 ± 0.003 | 0.255 ± 0.006 | 0.948 ± 0.021 | 0.077 ± 0.005 | 1.701 ± 0.010 |
ANOVA/MANOVA p value | >0.05 | >0.05 | >0.05 | >0.05 | >0.05 | >0.05 |
Pellet Type | Zn (mg/kg) | C (%) | O (%) | H (%) | N (%) | pH |
---|---|---|---|---|---|---|
CP1 | 14.875 ± 0.535 | 49.81 ± 0.39 a | 42.85 ± 1.45 a | 5.86 ± 0.34 a | 0.50 ± 0.10 a | 4.30 ± 0.17 a |
CP2 | 14.687 ± 0.317 | 49.09 ± 0.43 a | 43.83 ± 0.29 a,b | 6.02 ± 0.46 a | 0.33 ± 0.11 b | 4.37 ± 0.21 a |
ES18C | 14.687 ± 0.317 | 48.43 ± 0.54 b | 45.53 ± 0.29 c | 5.29 ± 0.27 b | 0.41 ± 0.25 a,b | 4.70 ± 0.17 b |
ES3SRF | 14.576 ± 0.379 | 48.90 ± 0.26 a,b | 45.57 ± 0.41 c | 5.18 ± 0.19 b | 0.25 ± 0.04 b | 4.23 ± 0.15 a |
ES6SRF | 14.813 ± 0.400 | 48.70 ± 0.50 a,b | 45.88 ± 0.36 c | 5.03 ± 0.15 b | 0.22 ± 0.07 b | 4.53 ± 0.06 a,b |
FS30CST | 14.891 ± 0.512 | 48.65 ± 0.35 a,b | 45.45 ± 0.35 c | 5.20 ± 0.70 b | 0.65 ± 0.05 c | 4.47 ± 0.15 a,b |
FS70TH | 14.886 ± 0.471 | 48.97 ± 0.13 a,b | 44.85 ± 0.21 c,b | 5.22 ± 0.41 b | 0.63 ± 0.04 c | 4.51 ± 0.36 a,b |
PE18TH | 14.788 ± 0.199 | 50.70 ± 0.72 c | 42.00 ± 0.50 a | 6.17 ± 0.12 a | 0.33 ± 0.32 b | 4.47 ± 0.15 a,b |
PE40TH | 14.795 ± 0.187 | 50.11 ± 0.54 a,c | 42.22 ± 0.47 a | 6.01 ± 0.10 a | 0.31 ± 0.18 b | 4.42 ± 0.11 a |
PR18TH | 14.891 ± 0.512 | 50.25 ± 0.55 c | 42.65 ± 0.55 a | 6.40 ± 0.40 c,a | 0.57 ± 0.25 a | 4.20 ± 0.10 a |
PR50TH | 14.878 ± 0.250 | 50.33 ± 0.21 c | 42.05 ± 0.64 a | 6.28 ± 0.37 a | 0.55 ± 0.12 a | 4.20 ± 0.24 a |
RP3SRF | 14.834 ± 0.425 | 50.07 ± 0.57 a,c | 43.47 ± 0.10 a | 5.27 ± 0.40 b | 0.47 ± 0.06 a,b | 4.90 ± 0.10 b |
RP6SRF | 14.801 ± 0.245 | 50.18 ± 0.41 c | 43.68 ± 0.21 a,b | 5.29 ± 0.24 b | 0.48 ± 0.05 a | 4.79 ± 0.71 b |
ANOVA/MANOVA p value | >0.05 | <0.001 | <0.001 | <0.01 | <0.01 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Latterini, F.; Civitarese, V.; Walkowiak, M.; Picchio, R.; Karaszewski, Z.; Venanzi, R.; Bembenek, M.; Mederski, P.S. Quality of Pellets Obtained from Whole Trees Harvested from Plantations, Coppice Forests and Regular Thinnings. Forests 2022, 13, 502. https://doi.org/10.3390/f13040502
Latterini F, Civitarese V, Walkowiak M, Picchio R, Karaszewski Z, Venanzi R, Bembenek M, Mederski PS. Quality of Pellets Obtained from Whole Trees Harvested from Plantations, Coppice Forests and Regular Thinnings. Forests. 2022; 13(4):502. https://doi.org/10.3390/f13040502
Chicago/Turabian StyleLatterini, Francesco, Vincenzo Civitarese, Małgorzata Walkowiak, Rodolfo Picchio, Zbigniew Karaszewski, Rachele Venanzi, Mariusz Bembenek, and Piotr S. Mederski. 2022. "Quality of Pellets Obtained from Whole Trees Harvested from Plantations, Coppice Forests and Regular Thinnings" Forests 13, no. 4: 502. https://doi.org/10.3390/f13040502
APA StyleLatterini, F., Civitarese, V., Walkowiak, M., Picchio, R., Karaszewski, Z., Venanzi, R., Bembenek, M., & Mederski, P. S. (2022). Quality of Pellets Obtained from Whole Trees Harvested from Plantations, Coppice Forests and Regular Thinnings. Forests, 13(4), 502. https://doi.org/10.3390/f13040502