Tree-Ring Stable Carbon Isotope as a Proxy for Hydroclimate Variations in Semi-Arid Regions of North-Central China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Site
2.2. Sample Processing and Chronological Assessment
2.3. Climatic Data and Statistical Analyses
3. Results and Discussion
3.1. Climate and Tree-Ring δ13C and δ18O Chronology
3.2. Reconstruction of scPDSI Using Tree-Ring δ13C
3.3. The Spatial Representation of Moisture Changes
3.4. Forcing Factors of Hydroclimate Variability
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, B. The Asian Monsoon; Praxis Publishing Ltd.: Chichester, UK, 2006; pp. 173–194. [Google Scholar]
- Yang, B.; Kang, S.; Ljungqvist, F.C.; He, M.; Yan, Z.; Qin, C. Drought variability at the northern fringe of the Asian summer monsoon region over the past millennia. Clim. Dyn. 2014, 43, 845–859. [Google Scholar] [CrossRef]
- Yang, B.; Qin, C.; Achim, B.; Osborn, T.J.; Trouete, V.; Ljungqvist, F.C.; Esper, J.; Schneider, L.; Grießinger, J.; Büntgen, U.; et al. Long-term decrease in Asian monsoon rainfall and abrupt climate change events over the past 6700 years. Proc. Natl. Acad. Sci. USA 2021, 118, e2102007118. [Google Scholar] [CrossRef]
- Dai, A. Increasing drought under global warming in observations and models. Nat. Clim. Change 2013, 3, 52–58. [Google Scholar] [CrossRef]
- Wang, J.; Yang, B.; Zheng, J.; Zhang, X.; Wang, Z.; Fang, M.; Shi, F.; Liu, J. Evaluation of multidecadal and longer-term temperature changes since 850 CE based on Northern Hemisphere proxy-based reconstructions and model simulations. Sci. China Earth Sci. 2020, 63, 1126–1143. [Google Scholar] [CrossRef]
- Song, M.; Yang, B.; Ljungqvist, F.C.; Shi, F.; Qin, C.; Wang, J. Tree-ring-based winter temperature reconstruction for East Asia over the past 700 years. Sci. China Earth Sci. 2021, 64, 872–889. [Google Scholar] [CrossRef]
- Gou, X.H.; Gao, L.L.; Deng, Y.; Chen, F.H.; Yang, M.X.; Still, C. An 850-year tree-ring-based reconstruction of drought history in the western Qilian Mountains of northwestern China. Int. J. Climatol. 2015, 35, 3308–3319. [Google Scholar] [CrossRef]
- Yang, B.; Wang, J.L.; Liu, J.J.; He, M.H.; Melvin, T.M.; Osborn, T.J.; Briffa, K.R. A 1556 year-long early summer moisture reconstruction for the Hexi Corridor, Northwestern China. Sci. China Earth Sci. 2019, 62, 953–963. [Google Scholar] [CrossRef]
- Liu, X.H.; An, W.L.; Leavitt, S.W.; Wang, W.Z.; Xu, G.B.; Zeng, X.M.; Qin, D.H. Recent strengthening of correlations between tree-ring δ13C and δ18O in mesic western China: Implications to climatic reconstruction and physiological responses. Glob. Planet. Change 2014, 113, 23–33. [Google Scholar] [CrossRef]
- Roden, J.S.; Lin, G.; Ehleringer, J.R. A mechanistic model for interpretation of hydrogen and oxygen isotope ratios in tree-ring cellulose. Geochim. Cosmochim. Acta 2000, 64, 21–35. [Google Scholar] [CrossRef]
- Szymczak, S.; Joachimski, M.M.; Bräuning, A.; Hetzer, T.; Kuhlemann, J. Are pooled tree ring δ13C and δ18O series reliable climate archives?—A case study of Pinus nigra spp. laricio (Corsica/France). Chem. Geol. 2012, 308–309, 40–49. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, R.; Leavitt, S.W.; Song, H.; Linderholm, H.W.; Li, Q.; An, Z.S. Individual and pooled tree-ring stable-carbon isotope series in Chinese pine from the Nan Wutai region, China: Common signal and climate relationships. Chem. Geol. 2012, 330, 17–26. [Google Scholar] [CrossRef]
- Liu, X.H.; Zeng, X.M.; Leavitt, S.W.; Wang, W.; An, W.; Xu, G.; Sun, W.; Yang, Y.; Qin, D.; Ren, J. A 400-year tree-ring δ18O chronology for the southeastern Tibetan Plateau: Implications for inferring variations of the regional hydroclimate. Glob. Planet. Change 2013, 104, 23–33. [Google Scholar] [CrossRef]
- Schollaen, K.; Heinrich, I.; Neuwirth, B.; Krusic, P.J.; D’Arrigo, R.D.; Karyanto, O.; Helle, G. Multiple tree-ring chronologies (ring width, δ13C and δ18O) reveal dry and rainy season signals of rainfall in Indonesia. Quat. Sci. Rev. 2013, 73, 170–181. [Google Scholar] [CrossRef] [Green Version]
- Poussart, P.F.; Evans, M.N.; Schrag, D.P. Resolving seasonality in tropical trees: Multi-decade, high-resolution oxygen and carbon isotope records from Indonesia and Thailand. Earth Planet. Sci. Lett. 2004, 218, 301–316. [Google Scholar] [CrossRef]
- Qin, C.; Yang, B.; Brauning, A.; Griessginger, J.; Wernicke, J. Drought signals in tree-ring stable oxygen isotope series of Qilian juniper from the arid north-eastern Tibetan Plateau. Glob. Planet. Change 2015, 125, 48–59. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, L.; Li, Q.; Cai, Q.F.; Song, H.M.; Sun, C.F.; Liu, R.S.; Mei, R.C. Asian summer monsoon-related relative humidity recorded by tree ring δ18O during last 205 years. J. Geophys. Res. Atmos. 2019, 124, 9824–9838. [Google Scholar] [CrossRef]
- Liu, Y.; Ren, M.; Li, Q.; Song, H.M.; Liu, R.S. Tree-ring δ18O-based July-August relative humidity reconstruction on Mt.Shimen, China, for the last 400 years. Atmos. Res. 2020, 243, 105024. [Google Scholar] [CrossRef]
- Li, Q.; Liu, Y.; Nakatsuka, T.; Fang, K.Y.; Song, H.M.; Liu, R.S.; Sun, C.F.; Li, G.; Wang, K. East Asian Summer Monsoon moisture sustains summer relative humidity in the southwestern Gobi Desert, China: Evidence from δ18O of tree rings. Clim. Dyn. 2019, 52, 6321–6337. [Google Scholar] [CrossRef]
- An, W.l.; Xu, C.X.; Liu, X.H.; Tan, N.; Sano, M.; Li, M.Q.; Shao, X.M.; Nakatsuka, T.; Guo, Z.T. Specific response of earlywood and latewood δ18O from the east and west of Mt. Qomolangma to the Indian summer monsoon. Sci. Total Environ. 2019, 689, 99–108. [Google Scholar] [CrossRef]
- Xu, C.X.; Shi, J.F.; Zhao, Y.; Nakatsuka, T.; Sano, M.; Shi, S.Y.; Guo, Z.T. Early summer precipitation in the lower Yangtze River basin for AD 1845-2011 based on tree-ring cellulose oxygen isotopes. Clim. Dyn. 2019, 52, 1583–1594. [Google Scholar] [CrossRef]
- Xu, G.B.; Liu, X.H.; Trouet, V.; Treydte, K.; Wu, G.J.; Chen, T.; Sun, W.Z.; An, W.L.; Wang, W.Z.; Zeng, X.M.; et al. Regional drought shifts (1710–2010) in East Central Asia and linkages with atmospheric circulation recorded in tree-ring δ18O. Clim. Dyn. 2019, 52, 713–727. [Google Scholar] [CrossRef] [Green Version]
- McCarroll, D.; Loader, N.J. Stable isotopes in tree rings. Quat. Sci. Rev. 2004, 23, 771–801. [Google Scholar] [CrossRef]
- Loader, N.J.; Young, G.H.F.; Grudd, H.; McCarroll, D. Stable carbon isotopes from Torneträsk, northern Sweden provide a millennial length reconstruction of summer sunshine and its relationship to Arctic circulation. Quat. Sci. Rev. 2013, 62, 97–113. [Google Scholar] [CrossRef]
- Wang, W.Z.; Liu, X.H.; Xu, G.B.; Zeng, X.M.; Wu, G.J.; Zhang, X.W.; Qin, D.H. Temperature signal instability of tree-ring δ13C chronology in the north-eastern Qinghai-Tibetan Plateau. Glob. Planet. Change 2016, 139, 165–172. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Y.C.; Li, Q.; Song, H.M.; Hans, W.L.; Steven, W.L.; Wang, R.Y.; An, Z.S. Tree-ring stable carbon isotope-based May-July temperature reconstruction over Nanwutai, China, for the past century and its record of 20th century warming. Quat. Sci. Rev. 2014, 93, 67–76. [Google Scholar] [CrossRef]
- Kang, S.Y.; Yang, B.; Qin, C. Recent tree-growth reduction in north central China as a combined result of a weakened monsoon and atmospheric oscillations. Clim. Change 2012, 115, 519–536. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Y.; Li, Q.; Song, H.M.; Sun, C.F.; Fang, C.X. An Asian Summer Monsoon-Related Relative Humidity Record from Tree-Ring δ18O in Gansu Province, North China. Atmosphere 2020, 11, 984. [Google Scholar] [CrossRef]
- Kang, S.Y.; Yang, B. Precipitation variability at the northern fringe of the Asian summer monsoon in northern China and its possible mechanism over the past 530 years. Quat. Sci. 2015, 35, 1185–1193. (In Chinese) [Google Scholar]
- Yang, B.; Qin, C.; Wang, J.; He, M.; Melvin, T.M.; Osborn, T.J.; Briffa, K.R. A 3500-year tree-ring record of annual precipitation on the north-eastern Tibetan Plateau. Proc. Natl. Acad. Sci. USA 2014, 111, 2903–2908. [Google Scholar] [CrossRef] [Green Version]
- Fritts, H.C. Tree Rings and Climate; Cambridge University Press: Cambridge, UK, 1976; p. 567. [Google Scholar]
- Speer, J.H. Fundamentals of Tree Ring Research; The University of Arizona Press: Tucson, AZ, USA, 2010. [Google Scholar]
- Loader, N.J.; Robertson, I.; Barker, A.C.; Switsur, V.R.; Waterhouse, J.S. An improved technique for the batch processing of small wholewood samples to α-cellulose. Chem.Geol. 1997, 136, 313–317. [Google Scholar] [CrossRef]
- Rinne, K.T.; Loader, N.J.; Switsur, V.R.; Waterhouse, J.S. 400-year May-August precipitation reconstruction for Southern England using isotopes in tree rings. Quat. Sci. Rev. 2013, 60, 13–25. [Google Scholar] [CrossRef]
- Young, G.H.F.; Loader, N.J.; McCarroll, D. A large scale comparative study of stable carbon isotope ratios determined using on-line combustion and low-temperature pyrolysis techniques. Palaeogeogr. Palaeocl. 2011, 300, 23–28. [Google Scholar] [CrossRef]
- Young, G.H.F.; Loader, N.J.; McCarroll, D.; Bale, R.J.; Demmler, J.C.; Miles, D.; Nayling, N.T.; Rinne, K.T.; Robertson, I.; Watts, C.; et al. Oxygen stable isotope ratios from British oak tree rings provide a strong and consistent record of past changes in summer rainfall. Clim. Dyn. 2015, 45, 3609–3622. [Google Scholar] [CrossRef]
- McCarroll, D.; Gagen, M.H.; Loader, N.J.; Robertson, I.; Anchukaitis, K.J.; Los, S.; Young, G.H.F.; Jalkanen, R.; Kirchhefer, A.; Waterhouse, J.S. Correction of tree ring stable carbon isotope chronologies for changes in the carbon dioxide content of the atmosphere. Geochim. Cosmochim. Acta 2009, 73, 1539–1547. [Google Scholar] [CrossRef]
- Esper, J.; Frank, D.C.; Battipalagia, G.; Büntgen, U.; Holert, C.; Treydte, K.S.; Siegwolf, R.; Saurer, M. Low-frequency noise in δ13C and δ18O tree ring data: A case study of Pinus uncinata in the Spanish Pyrenees. Glob. Biogeochem. Cycles 2010, 24, GB4018. [Google Scholar] [CrossRef] [Green Version]
- Wigley, T.; Briffa, K.R.; Jones, P.D. On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. J. Appl. Meteorol. Climatol. 1984, 23, 201–213. [Google Scholar] [CrossRef]
- Wells, N.; Goddard, S.; Hayes, M.J. A self-calibrating Palmer Drought Severity Index. J. Clim. 2004, 17, 2335–2351. [Google Scholar] [CrossRef]
- Biondi, F.; Waikul, K. DENDROCLIM2002: A C++ program for statistical calibration of climate signals in tree-ring chronologies. Comput. Geosci. 2004, 30, 303–331. [Google Scholar] [CrossRef]
- Mann, M.E.; Lees, J. Robust estimation of background noise and signal detection in climatic time series. Clim. Change 1996, 33, 409–445. [Google Scholar] [CrossRef]
- Cook, E.R.; Meko, D.M.; Stahle, D.W.; Cleaveland, M.K. Drought reconstructions for the continental United States. J. Clim. 1999, 12, 1145–1162. [Google Scholar] [CrossRef] [Green Version]
- Van der Schrier, G.; Barichivich, J.; Briffa, K.R.; Jones, P.D. A scPDSI-based global data set of dry and wet spells for 1901–2009. J. Geophys. Res. Atmos. 2013, 118, 4025–4048. [Google Scholar] [CrossRef]
- Xiao, S.; Peng, X.; Tian, Q.; Ding, A. Drought variation recorded by growth rings of the shrub Sabina vulgaris in the middle Qilian Mountains, northwest China. Dendrochronologia 2021, 66, 125813. [Google Scholar] [CrossRef]
- Sun, M.F.; Wang, H.J. Relationship and its instability of ENSO-Chinese variations in droughts and wet spells. Sci. China Ser. D Earth. Sci. 2007, 50, 145–152. [Google Scholar] [CrossRef]
- Tourre, Y.M.; Rajagopalan, B.; Kushnir, Y. Patterns of coherent decadal and interdecadal climate signals in the Pacific Basin during the 20th Century. Geophys. Res. Lett. 2001, 28, 2069–2072. [Google Scholar] [CrossRef] [Green Version]
- Attolini, M.R.; Cecchini, S.; Galli, M.; Kocharov, G.E.; Nanni, T. 400 Year record of Δ14C in tree rings: The solar-activity cycle before, during and after maunder minimum and the longer cycles in tree rings: The solar-activity cycle before, during and after maunder minimum and the longer cycles. IL Nuovo Cim. C 1993, 16, 419–436. [Google Scholar] [CrossRef]
- Pumijumnong, N.; Muangsong, C.; Buajan, S.; Cai, B.G.; Kunkoon, T.; Malimart, K. Effects of the Pacific Decadal Oscillation on Thailand monsoon rainfall derived from a 194-year tree ring width chronology of teak trees from northwestern Thailand. Int. J. Biometeorol. 2020, 64, 1481–1495. [Google Scholar] [CrossRef]
- Hurrell, J.W.; Van, L.H. Decadal variations in climate associated with the North Atlantic Oscillation. Clim. Change 1997, 36, 301–326. [Google Scholar] [CrossRef]
- Chen, W.; Zhou, Q.; Xue, X. Solar cycle modulation of the relationship between the boreal pring Northern Atlantic Oscillation and the East and Southeast Asian summer climate. Meteorol. Atmos. Phys. 2020, 132, 287–295. [Google Scholar] [CrossRef]
- Shi, F.; Li, J.; Wilson, R. A tree-ring reconstruction of the South Asian summer monsoon index over the past millennium. Sci. Rep. 2014, 4, 6739. [Google Scholar] [CrossRef] [Green Version]
- Guo, Q.Y.; Cai, J.N.; Shao, X.M.; Sha, W.Y. Studies on the Variations of East-Asian Summer Monsoon during AD 1873–2000. Chin. J. Atmos. Sci. 2004, 28, 206–215. (In Chinese) [Google Scholar]
- Huang, B.Y.; Thorne, P.W.; Banzon, V.F.; Boyer, T.; Chepurin, G.; Lawrimore, J.H.; Menne, M.J.; Smith, T.M.; Vose, R.S.; Zhang, H.M. Extended Reconstructed Sea Surface Temperatures Version 5 (ERSSTv5): Upgrades, Validations, and Intercomparisons. J. Clim. 2017, 30, 8179–8205. [Google Scholar] [CrossRef]
- Tan, M. Circulation effect: Climatic significance of the short term variability of the oxygen isotopes in stalagmites from monsoonal China-dialogue between paleoclimate records and modern climate research. Quat. Sci. 2009, 29, 851–862. [Google Scholar]
- Ma, Z. The interdecadal trend and shift of dry/wet over the central part of North China and their relationship to the Pacific Decadal Oscillation (PDO). Chin. Sci. Bull. 2007, 52, 2130–2139. [Google Scholar] [CrossRef]
- Quinn, W.H.; Neal, V.T. The Historical Record of El Nino Events. In Climate Since AD 1500; Bradley, R.S., Jones, P.D., Eds.; Routledge: London, UK, 1992; pp. 623–648. [Google Scholar]
- Pinto, J.G.; Raible, C.C. Past and recent changes in the North Atlantic oscillation. Wiley Interdiscip. Rev. Clim.Change 2012, 3, 79–90. [Google Scholar] [CrossRef] [Green Version]
- Linderholm, H.W.; Ou, T.H.; Jeong, J.H.; Folland, C.K.; Gong, D.Y.; Liu, H.B.; Liu, Y.; Chen, D.L. Interannual teleconnections between the summer North Atlantic Oscillation and the East Asian summer monsoon. J. Geophys. Res. Atmos. 2011, 116, D13107. [Google Scholar] [CrossRef]
- Linderholm, H.W.; Seima, A.; Ou, T.H.; Jeong, J.H.; Liu, Y.; Wang, X.C.; Bao, G.; Folland, C. Exploring teleconnections between the summer NAO (SNAO) and climate in East Asia over the last four centuries-A tree-ring perspective. Dendrochronologia 2013, 31, 297–331. [Google Scholar] [CrossRef]
Samples | Tree-Ring δ13C | Tree-Ring δ18O | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
1 | 0.48 | 0.26 | 0.71 | 0.57 | 0.51 | 0.33 | 0.41 | 0.31 | 0.06 | −0.04 | 0.54 | 0.33 | 0.15 | 0.39 | 0.16 | 0.00 |
2 | 0.40 | 0.79 | 0.63 | 0.60 | 0.30 | 0.58 | 0.10 | 0.40 | 0.38 | 0.43 | 0.18 | −0.12 | 0.13 | 0.25 | ||
3 | 0.56 | 0.34 | 0.55 | 0.45 | 0.28 | 0.49 | 0.26 | 0.49 | 0.13 | −0.07 | 0.23 | 0.25 | ||||
4 | 0.66 | 0.75 | 0.48 | 0.52 | 0.34 | 0.56 | 0.47 | 0.47 | 0.36 | 0.27 | ||||||
5 | 0.55 | 0.50 | 0.43 | 0.31 | 0.26 | 0.25 | 0.51 | 0.35 | ||||||||
6 | 0.63 | 0.59 | 0.49 | 0.50 | 0.20 | 0.27 | ||||||||||
7 | 0.29 | 0.66 | 0.13 | 0.03 | ||||||||||||
8 | 0.26 | 0.36 |
Tree-Ring δ13C | Tree-Ring δ18O | |
---|---|---|
Time span (CE) | 1750–2015 | 1750–2015 |
Mean (‰) | −21.87 | 32.61 |
Minimun (‰) | −23.65 | 29.18 |
Maximun (‰) | −19.90 | 36.63 |
Mean EPS | 0.89 | 0.76 |
Mean Rbar | 0.48 | 0.27 |
Calibration (1951–1980) | Verification (1981–2015) | Calibration (1984–2015) | Verification (1951–1983) | Full Calibration (1951–2015) | |
---|---|---|---|---|---|
R | 0.69 | 0.41 | 0.74 | 0.41 | 0.66 |
R2 | 0.48 | 0.17 | 0.55 | 0.17 | 42.6% |
R2adj | 0.46 | 0.14 | 0.54 | 0.14 | - |
RE | 0.56 | - | 0.49 | - | 0.40 L |
CE | - | 0.53 | - | 0.47 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, S.; Loader, N.J.; Wang, J.; Qin, C.; Liu, J.; Song, M. Tree-Ring Stable Carbon Isotope as a Proxy for Hydroclimate Variations in Semi-Arid Regions of North-Central China. Forests 2022, 13, 492. https://doi.org/10.3390/f13040492
Kang S, Loader NJ, Wang J, Qin C, Liu J, Song M. Tree-Ring Stable Carbon Isotope as a Proxy for Hydroclimate Variations in Semi-Arid Regions of North-Central China. Forests. 2022; 13(4):492. https://doi.org/10.3390/f13040492
Chicago/Turabian StyleKang, Shuyuan, Neil J. Loader, Jianglin Wang, Chun Qin, Jingjing Liu, and Miao Song. 2022. "Tree-Ring Stable Carbon Isotope as a Proxy for Hydroclimate Variations in Semi-Arid Regions of North-Central China" Forests 13, no. 4: 492. https://doi.org/10.3390/f13040492
APA StyleKang, S., Loader, N. J., Wang, J., Qin, C., Liu, J., & Song, M. (2022). Tree-Ring Stable Carbon Isotope as a Proxy for Hydroclimate Variations in Semi-Arid Regions of North-Central China. Forests, 13(4), 492. https://doi.org/10.3390/f13040492