Smoke Injection Heights from Forest and Grassland Fires in Southwest China Observed by CALIPSO
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Area
2.2. Data Source
2.2.1. MODIS Data
2.2.2. CALIPSO Data
2.2.3. HYSPLIT
2.3. SIH Data Groups
3. Results and Discussion
3.1. Fire Cases and the SIH
3.2. Dependence of SIH on Fire Characteristics
3.3. Topographical Influences on SIH
3.4. SIH Relative to BLH
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Andreae, M.O. Biomass burning-Its history, use, and distribution and its impact onenvironmental quality and global climate. In Global Biomass Burning: Atmospheric, Climatic, and Biospheric Implications; MIT Press: Cambridge, MA, USA, 1991; pp. 3–21. [Google Scholar]
- O’Neill, S.; Urbanski, S.; Goodrick, S.; Larkin, S. Smoke plumes: Emissions and effects. Fire Manag. Today 2017, 75, 10–15. [Google Scholar]
- Colarco, P.R.; Schoeberl, M.R.; Doddridge, B.G.; Marufu, L.T.; Torres, O.; Welton, E.J. Transport of smoke from Canadian forest fires to the surface near Washington, D.C.: Injection height, entrainment, and optical properties. J. Geophys. Res. Atmos. 2004, 109. [Google Scholar] [CrossRef]
- Paugam, R.; Wooster, M.; Freitas, S.; Martin, M.V. A review of approaches to estimate wildfire plume injection height within large-scale atmospheric chemical transport models. Atmos. Chem. Phys. 2016, 16, 907–925. [Google Scholar] [CrossRef] [Green Version]
- Amiridis, V.; Giannakaki, E.; Balis, D.S.; Gerasopoulos, E.; Pytharoulis, I.; Zanis, P.; Kazadzis, S.; Melas, D.; Zerefos, C. Smoke injection heights from agricultural burning in Eastern Europe as seen by CALIPSO. Atmos. Chem. Phys. 2010, 10, 11567–11576. [Google Scholar] [CrossRef] [Green Version]
- Sofiev, M.; Ermakova, T.; Vankevich, R. Evaluation of the smoke-injection height from wild-land fires using remote-sensing data. Atmos. Chem. Phys. 2012, 12, 1995–2006. [Google Scholar] [CrossRef] [Green Version]
- Kukkonen, J.; Nikmo, J.; Sofiev, M.; Riikonen, K.; Petäjä, T.; Virkkula, A.; Levula, J.; Schobesberger, S.; Webber, D.M. Applicability of an integrated plume rise model for the dispersion from wild-land fires. Geosci. Model Dev. 2014, 7, 2663–2681. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Cohen, J.B.; Lin, C.; Deng, W. Constraining the relationships between aerosol height, aerosol optical depth and total column trace gas measurements using remote sensing and models. Atmos. Chem. Phys. 2020, 20, 15401–15426. [Google Scholar] [CrossRef]
- Liu, Y.; Goodrick, S.L.; Achtemeier, G.L.; Forbus, K.; Combs, D. Smoke plume height measurement of prescribed burns in the south-eastern United States. Int. J. Wildland Fire 2013, 22, 130–147. [Google Scholar] [CrossRef]
- Mardi, A.H.; Dadashazar, H.; MacDonald, A.B.; Braun, R.A.; Crosbie, E.; Xian, P.; Thorsen, T.J.; Coggon, M.M.; Fenn, M.A.; Ferrare, R.A.; et al. Biomass Burning Plumes in the Vicinity of the California Coast: Airborne Characterization of Physicochemical Properties, Heating Rates, and Spatiotemporal Features. J. Geophys. Res. Atmos. 2018, 123, 13560–13582. [Google Scholar] [CrossRef]
- Labonne, M.; Breon, F.-M.; Chevallier, F. Injection height of biomass burning aerosols as seen from a spaceborne lidar. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef]
- Kahn, R.A.; Chen, Y.; Nelson, D.L.; Li, Q.; Diner, D.J.; Logan, J.A.; Leung, F.-Y. Wildfire smoke injection heights: Two perspectives from space. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef] [Green Version]
- Val Martin, M.; Logan, J.A.; Kahn, R.A.; Leung, F.-Y.; Nelson, D.L.; Diner, D.J. Smoke injection heights from fires in North America: Analysis of 5 years of satellite observations. Atmos. Chem. Phys. 2010, 10, 1491–1510. [Google Scholar] [CrossRef] [Green Version]
- Val Martin, M.; Kahn, R.A.; Tosca, M.G. A Global Analysis of Wildfire Smoke Injection Heights Derived from Space-Based Multi-Angle Imaging. Remote Sens. 2018, 10, 1609. [Google Scholar] [CrossRef] [Green Version]
- Peterson, D.; Hyer, E.; Wang, J. Quantifying the potential for high-altitude smoke injection in the North American boreal forest using the standard MODIS fire products and subpixel-based methods. J. Geophys. Res. Atmos. 2014, 119, 3401–3419. [Google Scholar] [CrossRef]
- Gonzalez-Alonso, L.; Martin, M.V.; Kahn, R.A. Biomass-burning smoke heights over the Amazon observed from space. Atmos. Chem. Phys. 2019, 19, 1685–1702. [Google Scholar] [CrossRef] [Green Version]
- Raffuse, S.M.; Craig, K.J.; Larkin, N.K.; Strand, T.T.; Sullivan, D.C.; Wheeler, N.J.M.; Solomon, R. An Evaluation of Modeled Plume Injection Height with Satellite-Derived Observed Plume Height. Atmosphere 2012, 3, 103–123. [Google Scholar] [CrossRef] [Green Version]
- Yu, P.; Toon, O.B.; Bardeen, C.G.; Zhu, Y.; Rosenlof, K.H.; Portmann, R.W.; Thornberry, T.D.; Gao, R.-S.; Davis, S.M.; Wolf, E.T.; et al. Black carbon lofts wildfire smoke high into the stratosphere to form a persistent plume. Science 2019, 365, 587–590. [Google Scholar] [CrossRef]
- Yao, J.; Raffuse, S.M.; Brauer, M.; Williamson, G.J.; Bowman, D.M.; Johnston, F.H.; Henderson, S.B. Predicting the minimum height of forest fire smoke within the atmosphere using machine learning and data from the CALIPSO satellite. Remote Sens. Environ. 2018, 206, 98–106. [Google Scholar] [CrossRef]
- Liao, T.; Gui, K.; Li, Y.; Wang, X.; Sun, Y. Seasonal distribution and vertical structure of different types of aerosols in southwest China observed from CALIOP. Atmos. Environ. 2021, 246, 118145. [Google Scholar] [CrossRef]
- Zhu, J.; Xia, X.; Wang, J.; Zhang, J.; Wiedinmyer, C.; Fisher, J.A.; Keller, C.A. Impact of Southeast Asian smoke on aerosol properties in Southwest China: First comparison of model simulations with satellite and ground observations. J. Geophys. Res. Atmos. 2017, 122, 3904–3919. [Google Scholar] [CrossRef]
- Zhao, F.; Liu, Y.; Shu, L.; Zhang, Q. Wildfire Smoke Transport and Air Quality Impacts in Different Regions of China. Atmosphere 2020, 11, 941. [Google Scholar]
- Tian, X.; Zhao, F.; Shu, L.; Wang, M. Hotspots from satellite monitoring and Forest Fire Weather Index analysis for Southwest China. For. Res. 2010, 23, 523–529. [Google Scholar]
- Xiong, Q.; He, Y.; Li, T.; Yu, L. Spatiotemporal Patterns of Vegetation Coverage and Response to Climatic and Topographic Factors in Growth Season in Southwest China. Res. Soiland Water Conserv. 2019, 26, 259–266. [Google Scholar]
- Tian, X.; Zhao, F.; Shu, L.; Wang, M. Distribution characteristics and the influence factors of forest fires in China. For. Ecol. Manag. 2013, 310, 460–467. [Google Scholar] [CrossRef]
- Zhao, F.; Liu, Y. Atmospheric Circulation Patterns Associated With Wildfires in the Monsoon Regions of China. Geophys. Res. Lett. 2019, 46, 4873–4882. [Google Scholar] [CrossRef] [Green Version]
- Tian, X.-R.; Zhao, F.-J.; Shu, L.-F.; Wang, M.-Y. Changes in forest fire danger for south-western China in the 21st century. Int. J. Wildland Fire 2014, 23, 185–195. [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Ichoku, C.; Giglio, L.; Korontzi, S.; Chu, D.A.; Hao, W.M.; Li, R.-R.; Justice, C.O. Fire and smoke observed from the Earth Observing System MODIS instrument--products, validation, and operational use. Int. J. Remote Sens. 2003, 24, 1765–1781. [Google Scholar] [CrossRef]
- Wooster, M.J.; Zhang, Y.H. Boreal forest fires burn less intensely in Russia than in North America. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef] [Green Version]
- Giglio, L.; Descloitres, J.; Justice, C.O.; Kaufman, Y.J. An Enhanced Contextual Fire Detection Algorithm for MODIS. Remote Sens. Environ. 2003, 87, 273–282. [Google Scholar] [CrossRef]
- Friedl, M.; Sulla-Menashe, D. MCD12Q1 MODIS/Terra+Aqua Land Cover Type Yearly L3 Global 500m SIN Grid V006; NASA EOSDIS Land Processes DAAC: San Diego, CA, USA, 2019. [Google Scholar]
- Sulla-Menashe, D.; Gray, J.; Abercrombie, S.P.; Friedl, M.A. Hierarchical mapping of annual global land cover 2001 to present: The MODIS Collection 6 Land Cover product. Remote Sens. Environ. 2019, 222, 183–194. [Google Scholar]
- Vaughan, M.; Young, S.A.; Winker, D.M.; Powell, K.A.; Omar, A.H.; Liu, Z.; Hu, Y.; Hostetler, C.A. Fully automated analysis of space-based lidar data: An overview of the CALIPSO retrieval algorithms and data products. In Laser Radar Techniques for Atmospheric Sensing; SPIE: Bellingham, WA, USA, 2004; Volume 5575, pp. 16–30. [Google Scholar]
- Omar, A.H.; Winker, D.M.; Vaughan, M.A.; Hu, Y.; Trepte, C.R.; Ferrare, R.A.; Lee, K.-P.; Hostetler, C.A.; Kittaka, C.; Rogers, R.R.; et al. The CALIPSO Automated Aerosol Classification and Lidar Ratio Selection Algorithm. J. Atmos. Ocean. Technol. 2009, 26, 1994–2014. [Google Scholar] [CrossRef]
- Kim, M.-H.; Omar, A.H.; Tackett, J.L.; Vaughan, M.A.; Winker, D.M.; Trepte, C.R.; Hu, Y.; Liu, Z.; Poole, L.R.; Pitts, M.C.; et al. The CALIPSO Version 4 Automated Aerosol Classification and Lidar Ratio Selection Algorithm. Atmos. Meas. Tech. 2018, 11, 6107–6135. [Google Scholar] [CrossRef] [Green Version]
- Stein, A.F.; Draxler, R.R.; Rolph, G.D.; Stunder, B.J.B.; Cohen, M.D.; Ngan, F. NOAA’s HYSPLIT Atmospheric Transport and Dispersion Modeling System. Bull. Am. Meteorol. Soc. 2015, 96, 2059–2077. [Google Scholar] [CrossRef]
- Soja, A.J.; Fairlie, T.D.; Westberg, M.D.J.; Pouliot, G. Biomass burning plume injection height using CALIOP, MODIS and the NASA Langley Trajectory Model. In Proceedings of the 2012 International Emission Inventory Conference, Tampa, FL, USA, 13–16 August 2012. [Google Scholar]
- Heward, H.; Smith, A.M.S.; Roy, D.P.; Tinkham, W.T.; Hoffman, C.; Morgan, P.; Lannom, K.O. Is burn severity related to fire intensity? Observations from landscape scale remote sensing. Int. J. Wildland Fire 2013, 22, 910–918. [Google Scholar] [CrossRef]
- Laurent, P.; Mouillot, F.; Moreno, M.V.; Yue, C.; Ciais, P. Varying relationships between fire radiative power and fire size at a global scale. Biogeosciences 2019, 16, 275–288. [Google Scholar] [CrossRef] [Green Version]
- Linn, R.; Winterkamp, J.; Edminster, C.; Colman, J.J.; Smith, W.S. Coupled influences of topography and wind on wildland fire behaviour. Int. J. Wildland Fire 2007, 16, 183–195. [Google Scholar] [CrossRef]
- Miliaresis, G.C.; Argialas, D.P. Segmentation of physiographic features from the global digital elevation model/GTOPO30. Comput. Geosci. 1999, 25, 715–728. [Google Scholar] [CrossRef]
- Fang, L.; Yang, J.; Zu, J.; Li, G.; Zhang, J. Quantifying influences and relative importance of fire weather, topography, and vegetation on fire size and fire severity in a Chinese boreal forest landscape. For. Ecol. Manag. 2015, 356, 2–12. [Google Scholar] [CrossRef]
- Garratt, J.R. The Atmospheric Boundary-Layer—Review. Earth-Sci. Rev. 1994, 37, 89–134. [Google Scholar] [CrossRef]
- Seibert, P.; Beyrich, F.; Gryning, S.-E.; Joffre, S.; Rasmussen, A.; Tercier, P. Review and intercomparison of operational methods for the determination of the mixing height. Atmos. Environ. 2000, 34, 1001–1027. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Biavati, G.; Horányi, A.; Muñoz Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Rozum, I.; et al. ERA5 hourly data on single levels from 1979 to present. In Copernicus Climate Change Service (C3S) Climate Data Store (CDS); ECMWF: Reading, UK, 2018. [Google Scholar]
- Zhao, H.; Che, H.; Xia, X.; Wang, Y.; Wang, H.; Wang, P.; Ma, Y.; Yang, H.; Liu, Y.; Wang, Y.; et al. Climatology of mixing layer height in China based on multi-year meteorological data from 2000 to 2013. Atmos. Environ. 2019, 213, 90–103. [Google Scholar] [CrossRef]
- Che, J.; Zhao, P.; Shi, Q.; Yang, Q. Research progress in atmospheric boundary layer. Chin. J. Geophys. 2021, 64, 735–751. [Google Scholar]
- Guo, J.; Miao, Y.; Zhang, Y.; Liu, H.; Li, Z.; Zhang, W.; He, J.; Lou, M.; Yan, Y.; Bian, L.; et al. The climatology of planetary boundary layer height in China derived from radiosonde and reanalysis data. Atmos. Chem. Phys. 2016, 16, 13309–13319. [Google Scholar] [CrossRef] [Green Version]
Case Number | Detection Data (UTC) | Detection Time (UTC) | FRP (MW) | Dominant Land Cover |
---|---|---|---|---|
Case 1 | 1 April 2012 | 06:13 | 22.3 | Grassland |
Case 2 | 29 April 2012 | 06:37 | 31.5 | Grassland |
Case 3 | 11 March 2013 | 19:10 | 13.1 | Forest |
Case 4 | 12 April 2014 | 06:32 | 13.5 | Grassland |
Case 5 | 15 April 2014 | 19:10 | 12.7 | Forest |
Case 6 | 15 March 2015 | 19:23 | 22.7 | Grassland |
Case 7 | 29 April 2015 | 06:44 | 17.6 | Forest |
Case 8 | 15 April 2016 | 06:44 | 37 | Forest |
Case Number | Detection Date (UTC) | Detection Time (UTC) | Altitude (m) | SIH (m) |
---|---|---|---|---|
Case 1 | 1 April 2012 | 05:43:52 | 3580 | 2833 |
Case 2 | 29 April 2012 | 06:11:56 | 4120 | 2878 |
Case 3 | 11 March 2013 | 18:56:00 | 4750 | 2711 |
Case 4 | 12 April 2014 | 06:04:17 | 4030 | 2500 |
Case 5 | 15 April 2014 | 19:00:13 | 4780 | 2890 |
Case 6 | 15 March 2015 | 19:09:13 | 3340 | 2562 |
Case 7 | 29 April 2015 | 06:18:40 | 4090 | 2745 |
Case 8 | 15 April 2016 | 06:16:34 | 4300 | 2533 |
Literature Cited | Period | Fire Type | Study Area | Satellite Sensor | SIH | Relationship with BLH |
---|---|---|---|---|---|---|
Amiridis et al. [5] | 2006–2008 July and August | Agricultural | SW Russia and Eastern Europe | CALIOP | 1677 m–5940 m | 48.5% injected into the free troposphere |
Peterson et al. [15] | 2004–2005 May to September | Boreal forest | North American | MISR | 0.28 km–5.01 km | 21% injected into the free troposphere |
Kahn et al. [12] | 2004 Summer | Wildfire | Alaska Yukon | MISR | A few hundred metres to 4.5 km | 17.6% injected into the free troposphere |
Gonzalez-Alonso et al. [16] | 2006–2012 July to November | Biomass burning | Amazon | CALIOP | 1.8 km–5.8 km | - |
This study | 2012–2017 February to April | Forest and grassland | Southwest China | CALIOP | 2500 m–2890 m | 75% injected into the free troposphere |
Case Number | Slope (°) | Aspect | Elevation |
---|---|---|---|
Case 1 | 0.43 | Southeast | 575 |
Case 2 | 20.65 | Northwest | 1092 |
Case 3 | 4.98 | East | 2218 |
Case 4 | 9.28 | South | 1017 |
Case 5 | 12.39 | North | 2690 |
Case 6 | 15.11 | South | 1450 |
Case 7 | 9.21 | Southwest | 1384 |
Case 8 | 4.07 | North | 947 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Zhang, Q.; Zhao, R.; Luo, J.; Zhang, Y. Smoke Injection Heights from Forest and Grassland Fires in Southwest China Observed by CALIPSO. Forests 2022, 13, 390. https://doi.org/10.3390/f13030390
Wang W, Zhang Q, Zhao R, Luo J, Zhang Y. Smoke Injection Heights from Forest and Grassland Fires in Southwest China Observed by CALIPSO. Forests. 2022; 13(3):390. https://doi.org/10.3390/f13030390
Chicago/Turabian StyleWang, Wenjia, Qixing Zhang, Ranran Zhao, Jie Luo, and Yongming Zhang. 2022. "Smoke Injection Heights from Forest and Grassland Fires in Southwest China Observed by CALIPSO" Forests 13, no. 3: 390. https://doi.org/10.3390/f13030390
APA StyleWang, W., Zhang, Q., Zhao, R., Luo, J., & Zhang, Y. (2022). Smoke Injection Heights from Forest and Grassland Fires in Southwest China Observed by CALIPSO. Forests, 13(3), 390. https://doi.org/10.3390/f13030390