A Vision-Based Detection and Spatial Localization Scheme for Forest Fire Inspection from UAV
Abstract
:1. Introduction
- We propose a visual-based forest fire detection and fire area spatial localization scheme in real-time inspection from UAVs. During the high incidence of forest fires, UAVs equipped with this system are deployed to patrol the forest. When a fire is detected, the controller sends an alarm to the ground control center, along with the longitude and latitude data of fire area, which helps prevent and rescue fires in forests;
- To leverage the advantages of edge computing that bring computation closer to the data source and reduce latency, we deploy a lightweight object detection network (NanoDet) to edge devices. Furthermore, a variety of training tricks are used to further boost precision and execution efficiency;
- We propose a spatial localization method based on a multi-sensor fusion, including an RGB camera, binocular cameras, GPS module, and IMU module. The fire area’s longitude, latitude, and altitude can be acquired through space coordinate transformation.
2. Materials
2.1. Dataset and Annotations
- (1)
- Only fire targets are marked. Non-fire and fire-like targets are not marked;
- (2)
- The annotation boundary must be close to the fire target within 2 pixels;
- (3)
- Adopt a large area labeling method for scattered fire targets with very short distances;
- (4)
- Adopt a small area labeling method when there are fire-like targets in a large area.
2.2. Overview of Hardware Device
3. Methods
3.1. Forest Fire Detection
3.1.1. NanoDet
3.1.2. Loss Function
3.2. Binocular Stereo Vision
3.2.1. Geometric Model
3.2.2. Stereo Matching
3.3. Forest Fire Localization
3.3.1. HSV-Mask Filter
3.3.2. Coordinate Transformation
4. Results
4.1. Detector Training
4.2. Recognition Performance and Accuracy
4.3. Experiment
5. Conclusions and Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yuan, C.; Zhang, Y.; Liu, Z. A survey on technologies for automatic forest fire monitoring, detection, and fighting using unmanned aerial vehicles and remote sensing techniques. Can. J. For. Res. 2015, 45, 783–792. [Google Scholar] [CrossRef]
- Dios, J.M.-D.; Arrue, B.; Ollero, A.; Merino, L.; Gómez-Rodríguez, F. Computer vision techniques for forest fire perception. Image Vis. Comput. 2008, 26, 550–562. [Google Scholar] [CrossRef]
- Lee, W.; Kim, S.; Lee, Y.-T.; Lee, H.-W.; Choi, M. Deep neural networks for wild fire detection with unmanned aerial vehicle. In Proceedings of the 2017 IEEE International Conference on Consumer Electronics (ICCE), Taipei, Taiwan, 12–14 June 2017; pp. 252–253. [Google Scholar]
- Wang, Z.; Zhang, H.; Hou, M.; Shu, X.; Wu, J.; Zhang, X. A Study on Forest Flame Recognition of UAV Based on YOLO-V3 Improved Algorithm. In Recent Advances in Sustainable Energy and Intelligent Systems; Springer: Singapore, 2021; pp. 497–503. [Google Scholar]
- Hossain, F.A.; Zhang, Y.M.; Tonima, M.A. Forest fire flame and smoke detection from UAV-captured images using fire-specific color features and multi-color space local binary pattern. J. Unmanned Veh. Syst. 2020, 8, 285–309. [Google Scholar] [CrossRef]
- Zhang, J.; Li, W.; Yin, Z.; Liu, S.; Guo, X. Forest fire detection system based on wireless sensor network. In Proceedings of the 2009 4th IEEE Conference on Industrial Electronics and Applications, Xi’an, China, 25–27 May 2009; pp. 520–523. [Google Scholar]
- Chen, Y.; Zhang, Y.; Xin, J.; Wang, G.; Mu, L.; Yi, Y.; Liu, H.; Liu, D. UAV image-based forest fire detection approach using convolutional neural network. In Proceedings of the 2019 14th IEEE Conference on Industrial Electronics and Applications (ICIEA), Xi’an, China, 19–21 June 2019; pp. 2118–2123. [Google Scholar]
- Ryu, J.; Kwak, D. Flame Detection Using Appearance-Based Pre-Processing and Convolutional Neural Network. Appl. Sci. 2021, 11, 5138. [Google Scholar] [CrossRef]
- Borges, P.; Izquierdo, E. A Probabilistic Approach for Vision-Based Fire Detection in Videos. IEEE Trans. Circuits Syst. Video Technol. 2010, 20, 721–731. [Google Scholar] [CrossRef]
- Yuan, C.; Ghamry, K.A.; Liu, Z.; Zhang, Y. Unmanned aerial vehicle based forest fire monitoring and detection using image processing technique. In Proceedings of the 2016 IEEE Chinese Guidance, Navigation and Control Conference (CGNCC), Nanjing, China, 12–14 August 2016; pp. 1870–1875. [Google Scholar]
- Jindal, P.; Gupta, H.; Pachauri, N.; Sharma, V.; Verma, O.P. Real-Time Wildfire Detection via Image-Based Deep Learning Algorithm. In Soft Computing: Theories and Applications; Springer: Singapore, 2021; pp. 539–550. [Google Scholar]
- Barmpoutis, P.; Dimitropoulos, K.; Kaza, K.; Grammalidis, N. Fire Detection from Images Using Faster R-CNN and Multidimensional Texture Analysis. In Proceedings of the ICASSP 2019–2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 12–17 May 2019; pp. 8301–8305. [Google Scholar]
- Lu, P.; Zhao, Y.; Xu, Y. A Two-Stream CNN Model with Adaptive Adjustment of Receptive Field Dedicated to Flame Region Detection. Symmetry 2021, 13, 397. [Google Scholar] [CrossRef]
- Xu, R.; Lin, H.; Lu, K.; Cao, L.; Liu, Y. A Forest Fire Detection System Based on Ensemble Learning. Forests 2021, 12, 217. [Google Scholar] [CrossRef]
- Li, P.; Zhao, W. Image fire detection algorithms based on convolutional neural networks. Case Stud. Therm. Eng. 2020, 19, 100625. [Google Scholar] [CrossRef]
- Chino, D.Y.T.; Avalhais, L.P.S.; Rodrigues, J.F.; Traina, A.J.M. BoWFire: Detection of Fire in Still Images by Integrating Pixel Color and Texture Analysis. In Proceedings of the 2015 28th SIBGRAPI Conference on Graphics, Patterns and Images, Salvador, Brazil, 26–29 August 2015; pp. 95–102. [Google Scholar]
- Cazzolato, M.T.; Avalhais, L.; Chino, D.; Ramos, J.S.; de Souza, J.A.; Rodrigues-Jr, J.F.; Traina, A. Fismo: A compilation of datasets from emergency situations for fire and smoke analysis. In Proceedings of the Brazilian Symposium on Databases-SBBD, Uberlândia, Brazil, 2–5 October 2017; pp. 213–223. [Google Scholar]
- Kucuk, G.; Kosucu, B.; Yavas, A.; Baydere, S. FireSense: Forest Fire Prediction and Detection System using Wireless Sensor Networks. In Proceedings of the 4th IEEE/ACM International Conference on Distributed Computing in Sensor Systems (DCOSS’08), Santorini, Greece, 11–14 June 2008. [Google Scholar]
- Kong, S.G.; Jin, D.; Li, S.; Kim, H. Fast fire flame detection in surveillance video using logistic regression and temporal smoothing. Fire Saf. J. 2016, 79, 37–43. [Google Scholar] [CrossRef]
- Douce, G.K.; Moorhead, D.J.; Bargeron, C.T., IV. Forestry Images. org: High resolution image archive and web-available image system. J. For. Sci. 2001, 47, 77–79. [Google Scholar]
- Tian, Z.; Shen, C.; Chen, H.; He, T. FCOS: Fully convolutional one-stage object detection. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 27–28 October 2019; pp. 9627–9636. [Google Scholar] [CrossRef] [Green Version]
- Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767. [Google Scholar]
- Bochkovskiy, A.; Wang, C.-Y.; Liao, H.-Y.M. YOLOv4: Optimal Speed and Accuracy of Object Detection. arXiv 2020, arXiv:2004.10934. [Google Scholar]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.-Y.; Berg, A.C. Ssd: Single shot multibox detector. In Proceedings of the 14th European Conference on Computer Vision, Amsterdam, The Netherlands, 8–16 October 2016; pp. 21–37. [Google Scholar]
- Ge, Z.; Liu, S.; Wang, F.; Li, Z.; Sun, J. Yolox: Exceeding yolo series in 2021. arXiv 2021, arXiv:2107.08430. [Google Scholar]
- Ma, N.; Zhang, X.; Zheng, H.-T.; Sun, J. Shufflenet v2: Practical guidelines for efficient cnn architecture design. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 116–131. [Google Scholar]
- Wang, K.; Liew, J.H.; Zou, Y.; Zhou, D.; Feng, J. PANet: Few-Shot Image Semantic Segmentation With Prototype Alignment. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea, 27 October–2 November 2019; pp. 9197–9206. [Google Scholar]
- Lin, T.-Y.; Dollar, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2117–2125. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Wang, W.; Wu, L.; Chen, S.; Hu, X.; Li, J.; Tang, J.; Yang, J. Generalized focal loss: Learning qualified and distributed bounding boxes for dense object detection. arXiv 2020, arXiv:2006.04388. [Google Scholar]
- Lin, T.-Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal loss for dense object detection. In Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2980–2988. [Google Scholar]
- Rezatofighi, H.; Tsoi, N.; Gwak, J.; Sadeghian, A.; Reid, I.; Savarese, S. Generalized Intersection Over union: A metric and a Loss for Bounding Box Regression. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2019, Long Beach, CA, USA, 15–20 June 2019; pp. 658–666. [Google Scholar] [CrossRef] [Green Version]
- Hirschmuller, H. Accurate and Efficient Stereo Processing by Semi-Global Matching and Mutual Information. In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 20–25 June 2005; pp. 807–814. [Google Scholar]
- Tatar, N.; Saadatseresht, M.; Arefi, H. The Effect of Shadow Area on Sgm Algorithm and Disparity Map Refinement from High Resolution Satellite Stereo Images. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, 42, 281–286. [Google Scholar] [CrossRef] [Green Version]
- Mei, X.; Sun, X.; Zhou, M.; Jiao, S.; Wang, H.; Zhang, X. On building an accurate stereo matching system on graphics hardware. In Proceedings of the IEEE International Conference on Computer Vision Workshops (ICCV), Barcelona, Spain, 6–13 November 2011; pp. 467–474. [Google Scholar] [CrossRef]
- Birchfield, S.; Tomasi, C. Depth Discontinuities by Pixel-to-Pixel Stereo. Int. J. Comput. Vis. 1999, 35, 269–293. [Google Scholar] [CrossRef]
- Sanyal, S.; Bhushan, S.; Yazi, S. Detection and Location Estimation of Object in Unmanned Aerial Vehicle using Single Camera and GPS. In Proceedings of the 2020 First International Conference on Power, Control and Computing Technologies (ICPC2T), Raipur, India, 3–5 January 2020; pp. 73–78. [Google Scholar]
- Zheng, L.; Zhu, Y.; Xue, B.; Liu, M.; Fan, R. Low-Cost GPS-Aided LiDAR State Estimation and Map Building. In Proceedings of the 2019 IEEE International Conference on Imaging Systems and Techniques (IST), Abu Dhabi, United Arab Emirates, 9–10 December 2019; pp. 1–6. [Google Scholar]
- Sankowski, M. Target course estimation in tracking filters using local Cartesian coordinates. In Proceedings of the 2012 13th International Radar Symposium, Warsaw, Poland, 23–25 May 2012; pp. 515–520. [Google Scholar]
- Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft coco: Common objects in context. In Proceedings of the 13th European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014; pp. 740–755. [Google Scholar]
- Loshchilov, I.; Hutter, F. Sgdr: Stochastic gradient descent with warm restarts. arXiv 2016, arXiv:1608.03983. [Google Scholar]
- He, T.; Zhang, Z.; Zhang, H.; Zhang, Z.; Xie, J.; Li, M. Bag of Tricks for Image Classification with Convolutional Neural Networks. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 558–567. [Google Scholar]
- Kim, M.; Jeong, J.; Kim, S. ECAP-YOLO: Efficient Channel Attention Pyramid YOLO for Small Object Detection in Aerial Image. Remote Sens. 2021, 13, 4851. [Google Scholar] [CrossRef]
Type | Numbers |
---|---|
Fire image | 4276 |
Non-fire image | 7405 |
Total | 11,681 |
Model | InputSize | mAP | AP50 | AP75 | APS | APM | APL | Params | FPS |
---|---|---|---|---|---|---|---|---|---|
Yolov3-tiny | 416 × 416 | 54.3 | 75.2 | 57.4 | 32.8 | 48.9 | 59.4 | 8.86M | 24 |
Yolov4-tiny | 416 × 416 | 57.1 | 80.3 | 61.2 | 45.0 | 52.7 | 65.6 | 6.10M | 25 |
Yolov5-s | 640 × 640 | 62.8 | 83.1 | 64.1 | 46.6 | 51.4 | 67.4 | 7.22M | 11 |
YoloX-nano | 416 × 416 | 58.9 | 81.4 | 62.2 | 48.4 | 53.6 | 66.2 | 0.92M | 45 |
NanoDet | 416 × 416 | 57.6 | 80.5 | 62.9 | 46.0 | 52.1 | 65.7 | 0.95M | 48 |
+Cosine-LR | - | 57.9 | 80.6 | 62.8 | 46.0 | 52.5 | 65.9 | - | - |
+H-Flip | - | 59.1 | 81.5 | 63.5 | 46.1 | 53.2 | 66.2 | - | - |
+Color-Jitter | - | 59.2 | 81.9 | 63.3 | 46.0 | 53.4 | 66.4 | - | - |
Frame Number | LLA Coordinates (Longitude (°), Latitude (°), Altitude (m)) | Absolute Errors (Longitude (°), Latitude (°), Altitude (m)) |
---|---|---|
No.112 | - | - |
No.130 | (119.1120818, 31.4094473, 8.8796) | , 0.1729) |
(119.1120805, 31.4094412, 8.8052) | , 0.0985) | |
No.132 | (119.1120932, 31.4094565, 8.7034) | , 0.0033) |
(119.1120911, 31.4094573, 8.7747) | , 0.0679) | |
No.167 | (119.1121048, 31.4094656, 8.5170) | , 0.1897) |
No.242 | (119.1121033, 31.4094519, 8.9669) | , 0.2602) |
No.510 | - | - |
No.576 | (119.1120726, 31.4094977, 8.7739) | , 0.0672) |
No.598 | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, K.; Xu, R.; Li, J.; Lv, Y.; Lin, H.; Liu, Y. A Vision-Based Detection and Spatial Localization Scheme for Forest Fire Inspection from UAV. Forests 2022, 13, 383. https://doi.org/10.3390/f13030383
Lu K, Xu R, Li J, Lv Y, Lin H, Liu Y. A Vision-Based Detection and Spatial Localization Scheme for Forest Fire Inspection from UAV. Forests. 2022; 13(3):383. https://doi.org/10.3390/f13030383
Chicago/Turabian StyleLu, Kangjie, Renjie Xu, Junhui Li, Yuhao Lv, Haifeng Lin, and Yunfei Liu. 2022. "A Vision-Based Detection and Spatial Localization Scheme for Forest Fire Inspection from UAV" Forests 13, no. 3: 383. https://doi.org/10.3390/f13030383
APA StyleLu, K., Xu, R., Li, J., Lv, Y., Lin, H., & Liu, Y. (2022). A Vision-Based Detection and Spatial Localization Scheme for Forest Fire Inspection from UAV. Forests, 13(3), 383. https://doi.org/10.3390/f13030383