Wall-to-Wall Mapping of Forest Biomass and Wood Volume Increment in Italy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. Italian National Forest Map
2.2.2. Corine Land Cover Forest Types, Biomass Expansion Factors, and Wood Basic Densities
2.2.3. Biomass Maps from International Frameworks
2.2.4. Field Italian National Forest Inventory Plot Data
2.3. Methods
2.3.1. Wall-to-Wall Forest Biomass Map
2.3.2. Model-Assisted Estimation
2.3.3. Accuracy Assessment
2.3.4. CAI Modeling
3. Results
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- European Commission. New EU Forest Strategy for 2030; European Commission: Brussels, Belgium, 2021; pp. 5–24. [Google Scholar]
- 52019DC0640; Commission European Communication from the Commission to the European Parliament, The European Council, The Council, The European Economic and Social Committee and The Committee of the Regions The European Green Deal COM/2019/640 Final. European Commission: Brussels, Belgium, 2019.
- Ruiz-Peinado, R.; Bravo-Oviedo, A.; López-Senespleda, E.; Bravo, F.; del Río, M. Forest management and carbon sequestration in the Mediterranean region: A review. For. Syst. 2017, 26, 2. [Google Scholar] [CrossRef]
- Peñuelas, J.; Sardans, J. Global change and forest disturbances in the mediterranean basin: Breakthroughs, knowledge gaps, and recommendations. Forests 2021, 12, 603. [Google Scholar] [CrossRef]
- Martes, L.; Köhl, M. Improving the Contribution of Forests to Carbon Neutrality under Different Policies—A Case Study from the Hamburg Metropolitan Area. Sustainability 2022, 14, 2088. [Google Scholar] [CrossRef]
- Forzieri, G.; Pecchi, M.; Girardello, M.; Mauri, A.; Klaus, M.; Nikolov, C.; Rüetschi, M.; Gardiner, B.; Tomastik, J.; Small, D.; et al. A spatially explicit database of wind disturbances in European forests over the period 2000–2018. Earth Syst. Sci. Data 2020, 12, 603. [Google Scholar] [CrossRef] [Green Version]
- Vayreda, J.; Martinez-Vilalta, J.; Gracia, M.; Retana, J. Recent climate changes interact with stand structure and management to determine changes in tree carbon stocks in Spanish forests. Glob. Chang. Biol. 2012, 18, 1028–1041. [Google Scholar] [CrossRef]
- Corona, P. Communicating facts, findings and thinking to support evidence-based strategies and decisions. Ann. Silvic. Res. 2018, 42, 1. [Google Scholar] [CrossRef]
- Avitabile, V.; Camia, A. An assessment of forest biomass maps in Europe using harmonized national statistics and inventory plots. For. Ecol. Manage. 2018, 409, 489–498. [Google Scholar] [CrossRef]
- Thurner, M.; Beer, C.; Santoro, M.; Carvalhais, N.; Wutzler, T.; Schepaschenko, D.; Shvidenko, A.; Kompter, E.; Ahrens, B.; Levick, S.R.; et al. Carbon stock and density of northern boreal and temperate forests. Glob. Ecol. Biogeogr. 2014, 23, 297–310. [Google Scholar] [CrossRef] [Green Version]
- Barredo, J.I.; San Miguel, J.; Caudullo, G.; Busetto, L. A European Map of Living Biomass and Carbon Stock; Executive Report; The Publications Office of the European Union: Luxembourg, 2012; p. 12. [Google Scholar] [CrossRef]
- Gallaun, H.; Zanchi, G.; Nabuurs, G.J.; Hengeveld, G.; Schardt, M.; Verkerk, P.J. EU-wide maps of growing stock and above-ground biomass in forests based on remote sensing and field measurements. For. Ecol. Manag. 2010, 260, 252–261. [Google Scholar] [CrossRef]
- Kindermann, G.E.; McCallum, I.; Fritz, S.; Obersteiner, M. A global forest growing stock, biomass and carbon map based on FAO statistics. Silva Fenn. 2008, 42, 387–396. [Google Scholar] [CrossRef] [Green Version]
- Baccini, A.; Goetz, S.J.; Walker, W.S.; Laporte, N.T.; Sun, M.; Sulla-Menashe, D.; Hackler, J.; Beck, P.S.A.; Dubayah, R.; Friedl, M.A.; et al. Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nat. Clim. Chang. 2012, 2, 182. [Google Scholar] [CrossRef]
- Santoro, M. GlobBiomass-Global Datasets of Forest Biomass; PANGAEA: Bremen, Germany, 2018. [Google Scholar]
- Avitabile, V.; Pilli, R.; Camia, A. The Biomass of European Forests; EUR 30462 EN; Publications Office of the European Union: Luxembourg, 2020; ISBN 978-92-76-26100-1. [Google Scholar] [CrossRef]
- Santoro, M.; Cartus, O.; Carvalhais, N.; Rozendaal, D.M.A.; Avitabile, V.; Araza, A.; De Bruin, S.; Herold, M.; Quegan, S.; Rodríguez-Veiga, P.; et al. The global forest above-ground biomass pool for 2010 estimated from high-resolution satellite observations. Earth Syst. Sci. Data 2021, 13, 3927–3950. [Google Scholar] [CrossRef]
- D’Amico, G.; Vangi, E.; Francini, S.; Giannetti, F.; Nicolaci, A.; Travaglini, D.; Massai, L.; Giambastiani, Y.; Terranova, C.; Chirici, G. Are We Ready for a Web-Based National Forest Information System? State of the Art of for-Est Maps and Airborne Laser Scanning Data Availability in Italy. IForest 2021, 14, 144–154. [Google Scholar] [CrossRef]
- Giannetti, F.; Pegna, R.; Francini, S.; McRoberts, R.E.; Travaglini, D.; Marchetti, M.; Mugnozza, G.S.; Chirici, G. A new method for automated clearcut disturbance detection in Mediterranean coppice forests using Landsat time series. Remote Sens. 2020, 12, 3720. [Google Scholar] [CrossRef]
- ICPP 2019 the Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Fundam. Appl. Climatol. 2019, 2, 5–13. [CrossRef]
- FAO; UEP. The State of the World’s Forests 2020. Forests, Biodiversity and People; FAO: Rome, Italy; UEP: Luxembourg, 2020; ISBN 978-92-5-132419-6. [Google Scholar]
- Forest Europe; FAO, U. State of Europe’s Forests 2020. In Proceedings of the Ministerial Conference on the Protection of Forests in Europe-Forest Europe, Bratislava, Slovakia, 28–29 2020. [Google Scholar]
- Chirici, G.; Giannetti, F.; McRoberts, R.E.; Travaglini, D.; Pecchi, M.; Maselli, F.; Chiesi, M.; Corona, P. Wall-to-wall spatial prediction of growing stock volume based on Italian National Forest Inventory plots and remotely sensed data. Int. J. Appl. Earth Obs. Geoinf. 2020, 84, 101959. [Google Scholar] [CrossRef]
- Kangas, A.; Astrup, R.; Breidenbach, J.; Fridman, J.; Gobakken, T.; Korhonen, K.T.; Maltamo, M.; Nilsson, M.; Nord-Larsen, T.; Næsset, E.; et al. Remote sensing and forest inventories in Nordic countries–roadmap for the future. Scand. J. For. Res. 2018, 33, 397–412. [Google Scholar] [CrossRef] [Green Version]
- White, J.C.; Tompalski, P.; Vastaranta, M.; Wulder, M.A.; Saarinen, N.; Stepper, C.; Coops, N.C. A Model Development and Application Guide for Generating an Enhanced Forest Inventory Using Airborne Laser Scanning Data and an Area-Based Approach; Government of Canada: Ottawa, ON, Canada, 2017; ISBN 9780660097381.
- Vangi, E.; D’amico, G.; Francini, S.; Giannetti, F.; Lasserre, B.; Marchetti, M.; McRoberts, R.E.; Chirici, G. The effect of forest mask quality in the wall-to-wall estimation of growing stock volume. Remote Sens. 2021, 13, 1038. [Google Scholar] [CrossRef]
- Rees, W.G.; Tomaney, J.; Tutubalina, O.; Zharko, V.; Bartalev, S. Estimation of boreal forest growing stock volume in russia from sentinel-2 msi and land cover classification. Remote Sens. 2021, 13, 4483. [Google Scholar] [CrossRef]
- Hawryło, P.; Francini, S.; Chirici, G.; Giannetti, F.; Parkitna, K.; Krok, G.; Mitelsztedt, K.; Lisańczuk, M.; Stereńczak, K.; Ciesielski, M.; et al. The Use of Remotely Sensed Data and Polish NFI Plots for Prediction of Growing Stock Volume Using Di ff erent Predictive Methods. Remote Sens. 2020, 12, 3331. [Google Scholar] [CrossRef]
- Gao, T.; Zhu, J.J.; Yan, Q.L.; Deng, S.Q.; Zheng, X.; Zhang, J.X.; Shang, G.D. Mapping growing stock volume and biomass carbon storage of larch plantations in Northeast China with L-band ALOS PALSAR backscatter mosaics. Int. J. Remote Sens. 2018, 39, 7978–7997. [Google Scholar] [CrossRef]
- Santoro, M.; Cartus, O.; Fransson, J.E.S.; Shvidenko, A.; McCallum, I.; Hall, R.J.; Beaudoin, A.; Beer, C.; Schmullius, C. Estimates of forest growing stock volume for sweden, central siberia, and québec using envisat advanced synthetic aperture radar backscatter data. Remote Sens. 2013, 5, 4503–4532. [Google Scholar] [CrossRef] [Green Version]
- Hauglin, M.; Rahlf, J.; Schumacher, J.; Astrup, R.; Breidenbach, J. Large scale mapping of forest attributes using heterogeneous sets of airborne laser scanning and National Forest Inventory data. For. Ecosyst. 2021, 8, 65. [Google Scholar] [CrossRef]
- Chirici, G.; Chiesi, M.; Fibbi, L.; Giannetti, F.; Corona, P.; Maselli, F. High spatial resolution modelling of net forest carbon fluxes based on ground and remote sensing data. Agric. For. Meteorol. 2022, 316, 108866. [Google Scholar] [CrossRef]
- Huang, S.; Ramirez, C.; Conway, S.; Kennedy, K.; Kohler, T.; Liu, J. Mapping site index and volume increment from forest inventory, landsat, and ecological variables in Tahoe national forest, California, USA. Can. J. For. Res. 2017, 47, 113–124. [Google Scholar] [CrossRef] [Green Version]
- Liu, L. Opportunities of Mapping Forest Carbon Stock and its Annual Increment Using Landsat Time-Series Data. Geoinform. Geostat. Overv. 2016, 4, 2–5. [Google Scholar] [CrossRef] [Green Version]
- Waser, L.T.; Ginzler, C.; Rehush, N. Wall-to-Wall tree type mapping from countrywide airborne remote sensing surveys. Remote Sens. 2017, 9, 766. [Google Scholar] [CrossRef] [Green Version]
- Senf, C.; Pflugmacher, D.; Hostert, P.; Seidl, R. Using Landsat time series for characterizing forest disturbance dynamics in the coupled human and natural systems of Central Europe. ISPRS J. Photogramm. Remote Sens. Off. Publ. Int. Soc. Photogramm. Remote Sens. 2017, 130, 453–463. [Google Scholar] [CrossRef]
- Novo-Fernández, A.; Barrio-Anta, M.; Recondo, C.; Cámara-Obregón, A.; López-Sánchez, C.A. Integration of national forest inventory and nationwide airborne laser scanning data to improve forest yield predictions in north-western Spain. Remote Sens. 2019, 11, 1693. [Google Scholar] [CrossRef] [Green Version]
- Chrysafis, I.; Mallinis, G.; Gitas, I.; Tsakiri-Strati, M. Estimating Mediterranean forest parameters using multi seasonal Landsat 8 OLI imagery and an ensemble learning method. Remote Sens. Environ. 2017, 199, 154–166. [Google Scholar] [CrossRef]
- Chrysafis, I.; Mallinis, G.; Tsakiri, M.; Patias, P. Evaluation of single-date and multi-seasonal spatial and spectral information of Sentinel-2 imagery to assess growing stock volume of a Mediterranean forest. Int. J. Appl. Earth Obs. Geoinf. 2019, 77, 1–14. [Google Scholar] [CrossRef]
- Pascual, A.; Guerra-Hernández, J.; Cosenza, D.N.; Sandoval, V. The role of improved ground positioning and forest structural complexity when performing forest inventory using airborne laser scanning. Remote Sens. 2020, 12, 413. [Google Scholar] [CrossRef] [Green Version]
- Chirici, G.; McRoberts, R.E.; Fattorini, L.; Mura, M.; Marchetti, M. Comparing echo-based and canopy height model-based metrics for enhancing estimation of forest aboveground biomass in a model-assisted framework. Remote Sens. Environ. 2016, 174, 1–9. [Google Scholar] [CrossRef]
- Mura, M.; McRoberts, R.E.; Chirici, G.; Marchetti, M. Estimating and mapping forest structural diversity using airborne laser scanning data. Remote Sens. Environ. 2015, 170, 133–142. [Google Scholar] [CrossRef]
- Montaghi, A.; Corona, P.; Dalponte, M.; Gianelle, D.; Chirici, G.; Olsson, H. Airborne laser scanning of forest resources: An overview of research in Italy as a commentary case study. Int. J. Appl. Earth Obs. Geoinf. 2013, 23, 288–300. [Google Scholar] [CrossRef] [Green Version]
- INFC Italian Forests. Selected Results of the Third National Forest Inventory. INFC 2015. Carabinieri Command of Forestry, Environmental and Agri-Food Units and CREA-Research Centre for Forestry and Wood; Tipografia: Trento, Italy, 2021; ISBN 978-88-338-5140-2. [Google Scholar]
- Gasparini, P.; Di Cosimo, L.; Floris, A.; De Laurentis, D. Italian National Forest Inventory—Methods and Results of the Third Survey; Springer: Berlin/Heidelberg, Germany, 2022; ISBN 9783030986773. [Google Scholar]
- Barbati, A.; Marchetti, M.; Chirici, G.; Corona, P. European Forest Types and Forest Europe SFM indicators: Tools for monitoring progress on forest biodiversity conservation. For. Ecol. Manag. 2014, 321, 145–157. [Google Scholar] [CrossRef] [Green Version]
- Giannetti, F.; Barbati, A.; Mancini, L.D.; Travaglini, D.; Bastrup-Birk, A.; Canullo, R.; Nocentini, S.; Chirici, G. European Forest Types: Toward an automated classification. Ann. For. Sci. 2018, 75, 6. [Google Scholar] [CrossRef] [Green Version]
- Bologna, S.; Chirici, G.; Corona, P.; Marchetti, M.; Pugliese, A.; Munafò, M. Sviluppo e implementazione del IV livello Corine Land Cover per i territori boscati e ambienti semi-naturali in Italia; Paper Presented at the Annual Meeting for the Society of ASITA; 8a Conferenza Nazionale ASITA: Roma, Italy, 2004; pp. 467–472. [Google Scholar]
- Federici, S.; Vitullo, M.; Tulipano, S.; De Lauretis, R.; Seufert, G. An approach to estimate carbon stocks change in forest carbon pools under the UNFCCC: The Italian case. IForest 2008, 1, 86–95. [Google Scholar] [CrossRef]
- McRoberts, R.E.; Næsset, E.; Gobakken, T. The effects of temporal differences between map and ground data on map-assisted estimates of forest area and biomass. Ann. For. Sci. 2016, 73, 839–847. [Google Scholar] [CrossRef]
- INFC Il disegno di campionamento. Inventario Nazionale delle Foreste e dei Serbatoi Forestali di Carbonio. MiPAF-Direzione Generale per le Risorse Forestali Montane e Idriche, Corpo Forestale dello Stato, ISAFA, Trento. 36p. . Available online: http://www.isafa.it/scientifica/2004 (accessed on 1 March 2021).
- Tabacchi, G.; Di Cosmo, L.; Gasparini, P.; Morelli, S. Stima del Volume e Della Fitomassa Delle Principali Specie Forestali Italiene, Equazioni di Previsione, Tavole del Volume e Tavole Della Fitomassa Arborea Epigea; Consiglio per la Ricerca e la sperimentazione in Agricoltura, Unità di Ricerca per il monitoraggio e la pianificazione Forestale: Trento, Italy, 2011; ISBN 9788897081111. [Google Scholar]
- Borghetti, M.; Chirici, G. Raw data from the Italian National Forest Inventory are on-line and publicly available. For. Riv. Selvic. Ecol. For. 2016, 13, 33–34. [Google Scholar] [CrossRef] [Green Version]
- Tabacchi, G.; De Natale, F.; Di Cosmo, L.; Floris, A.; Gagliano, C.; Gasparini, P.; Genchi, L.; Scrinzi, G.; Tosi, V. Le stime di superficie 2005-Prima parte. Inventario Nazionale delle Foreste e dei Serbatoi Forestali di Carbonio; MiPAF – Corpo Forestale dello Stato - Ispettorato Generale, CRA -ISAFA: Trento, Italy, 2007. [Google Scholar]
- Maselli, F.; Papale, D.; Puletti, N.; Chirici, G.; Corona, P. Combining remote sensing and ancillary data to monitor the gross productivity of water-limited forest ecosystems. Remote Sens. Environ. 2009, 113, 657–667. [Google Scholar] [CrossRef] [Green Version]
- Chirici, G.; Chiesi, M.; Corona, P.; Puletti, N.; Mura, M.; Maselli, F. Prediction of forest NPP in Italy by the combination of ground and remote sensing data. Eur. J. For. Res. 2015, 134, 453–467. [Google Scholar] [CrossRef] [Green Version]
- Neeti, N.; Kennedy, R. Comparison of national level biomass maps for conterminous US: Understanding pattern and causes of differences. Carbon Balance Manag. 2016, 11, 19. [Google Scholar] [CrossRef] [Green Version]
- Araza, A.; de Bruin, S.; Herold, M.; Quegan, S.; Labriere, N.; Rodriguez-Veiga, P.; Avitabile, V.; Santoro, M.; Mitchard, E.T.A.; Ryan, C.M.; et al. A comprehensive framework for assessing the accuracy and uncertainty of global above-ground biomass maps. Remote Sens. Environ. 2022, 272, 112917. [Google Scholar] [CrossRef]
- Zhang, Y.; Liang, S.; Yang, L. A Review of Regional and Global Gridded Forest Biomass Datasets. Remote Sens. 2019, 11, 2744. [Google Scholar] [CrossRef] [Green Version]
- Huang, W.; Swatantran, A.; Johnson, K.; Duncanson, L.; Tang, H.; Dunne, J.O.N.; Hurtt, G.; Dubayah, R. Local discrepancies in continental scale biomass maps: A case study over forested and non-forested landscapes in Maryland, USA. Carbon Balance Manag. 2015, 10, 19. [Google Scholar] [CrossRef] [Green Version]
- Francini, S.; McRoberts, R.E.; Giannetti, F.; Marchetti, M.; Scarascia-Mugnozza, G.; Chirici, G. The Three Indices Three Dimensions algorithm (3I3D): A new method for forest disturbance mapping and area estimation based on optical remotely sensed imagery. Int. J. Remote Sens. 2021, 42, 4693–4711. [Google Scholar] [CrossRef]
- Urbazaev, M.; Thiel, C.; Cremer, F.; Dubayah, R.; Migliavacca, M.; Reichstein, M.; Schmullius, C. Estimation of forest aboveground biomass and uncertainties by integration of field measurements, airborne LiDAR, and SAR and optical satellite data in Mexico. Carbon Balance Manag. 2018, 13, 5. [Google Scholar] [CrossRef]
- Avitabile, V.; Herold, M.; Henry, M.; Schmullius, C. Mapping biomass with remote sensing: A comparison of methods for the case study of Uganda. Carbon Balance Manag. 2011, 6, 7. [Google Scholar] [CrossRef] [Green Version]
- Puletti, N.; Bascietto, M. Towards a tool for early detection and estimation of forest cuttings by remotely sensed data. Land 2019, 8, 58. [Google Scholar] [CrossRef] [Green Version]
- Francini, S.; McRoberts, R.E.; D’Amico, G.; Coops, N.C.; Hermosilla, T.; White, J.C.; Wulder, M.A.; Marchetti, M.; Mugnozza, G.S.; Chirici, G. An open science and open data approach for the statistically robust estimation of forest disturbance areas. Int. J. Appl. Earth Obs. Geoinf. 2022, 106, 102663. [Google Scholar] [CrossRef]
- Giannetti, F.; Pecchi, M.; Travaglini, D.; Saverio, F.; Amico, G.D.; Vangi, E.; Cocozza, C.; Chirici, G. Estimating VAIA windstorm damaged forest area in Italy using time series Sentinel-2 imagery and continuous change detection algorithms. Forests 2021, 12, 680. [Google Scholar] [CrossRef]
- Bonannella, C.; Chirici, G.; Travaglini, D.; Pecchi, M.; Vangi, E.; D’amico, G.; Giannetti, F. Characterization of Wildfires and Harvesting Forest Disturbances and Recovery Using Landsat Time Series: A Case Study in Mediterranean Forests in Central Italy. Fire 2022, 5, 68. [Google Scholar] [CrossRef]
- Forest Europe. State of Europe’s Forests 2015. In Proceedings of the Ministerial Conference on the Protection of Forests in Europe-Forest Europe, Madrid, Spain, 20–2015. [Google Scholar]
- FAO Global Forest Resources Assessment 2015; FAO: Rome, Italy, 2015; ISBN 9789251088210.
CLC IV Forest Types Nomenclature Systems | BEF (Volume of Aboveground Biomass/ Volume of Growing Stock) | WBD (Dry Weight t/ Fresh Volume of Aboveground Biomass m3) |
---|---|---|
3.1.1.1. Forest dominated by holm oak and/or cork oak | 1.45 | 0.72 |
3.1.1.2. Forest dominated by deciduous oak (Turkey oak, downy oak, farnetto oak, and/or English oak) | 1.39 | 0.65 |
3.1.1.3. Mixed forests with a prevalence of mesophilic and mesothermophilous broad-leaved trees (maple-ash, cute black-ash) | 1.28 | 0.66 |
3.1.1.4. Chestnut forests | 1.33 | 0.49 |
3.1.1.5. Beech forests | 1.36 | 0.61 |
3.1.1.6. Forests dominated by hygrophilous species (forests with a prevalence of willows, poplars, and/or alders, etc.) | 1.39 | 0.41 |
3.1.2.1. Forests dominated by Mediterranean pines (stone pine, pine maritime) and cypress | 1.53 | 0.53 |
3.1.2.2. Forests dominated by mountain and Mediterranean pines (black pine and larch, Scots pine, Bosnian pine) | 1.33 | 0.47 |
3.1.2.3. Forests dominated by silver fir and/or spruce | 1.34 | 0.38 |
3.1.2.5. Forests dominated by larch and/or stone pine | 1.37 | 0.43 |
3.1.3.1 Mixed Forests with a prevalence of broad-leaved trees | 1.53 | 0.53 |
3.1.3.2 Mixed Forests with a prevalence of conifers | 1.37 | 0.43 |
INFC-BIO | ITA-BIO | JRC-BIO | ESA-BIO | |||||
---|---|---|---|---|---|---|---|---|
Region (NUT2) | t ha−1 | SE (%) | t ha−1 | SE t ha−1 | t ha−1 | SE t ha−1 | t ha−1 | SE t ha−1 |
Abruzzo | 77.7 | 4.5 | 75.2 | 2.37 | 55.7 | 4.88 | 50.1 | 4.84 |
Alto Adige | 130.5 | 4.3 | 123.9 | 3.96 | 116.7 | 7.69 | 106.1 | 6.18 |
Basilicata | 64.3 | 6.7 | 53.0 | 2.83 | 46.6 | 5.54 | 39.4 | 5.66 |
Calabria | 98.9 | 4.5 | 80.7 | 3.11 | 52.2 | 5.21 | 50.9 | 5.78 |
Campania | 65.3 | 6 | 64.5 | 2.90 | 51.8 | 5.76 | 42.6 | 5.67 |
Emilia Romagna | 73.5 | 3.6 | 70.8 | 2.32 | 64.2 | 4.31 | 52.3 | 3.99 |
Friuli-Venezia Giulia | 107.7 | 4.9 | 114.9 | 3.64 | 101.0 | 7.45 | 98.8 | 6.26 |
Lazio | 63.7 | 4.5 | 62.9 | 2.12 | 48.5 | 4.51 | 41.6 | 3.94 |
Liguria | 77.5 | 4.2 | 72.5 | 2.60 | 69.5 | 4.66 | 57.7 | 3.99 |
Lombardia | 86.7 | 3.8 | 83.7 | 2.33 | 74.3 | 5.76 | 71.6 | 3.96 |
Marche | 48 | 6.4 | 49.8 | 2.23 | 29.9 | 5.49 | 30.5 | 4.47 |
Molise | 67.6 | 8.7 | 56.8 | 4.72 | 50.3 | 6.54 | 42.1 | 6.32 |
Piemonte | 77.4 | 2.8 | 78.5 | 1.98 | 65.7 | 4.16 | 56.8 | 3.09 |
Puglia | 49.2 | 10.7 | 44.5 | 4.28 | 53.8 | 7.42 | 35.9 | 8.06 |
Sardegna | 37.8 | 5.3 | 27.0 | 1.68 | 28.5 | 2.82 | 16.8 | 3.47 |
Sicilia | 50.4 | 6 | 34.8 | 2.55 | 15.8 | 4.54 | 14.3 | 3.84 |
Toscana | 72.6 | 2.8 | 72.4 | 1.70 | 59.7 | 3.47 | 53.6 | 2.89 |
Trentino | 122.2 | 4.3 | 123.7 | 3.71 | 115.5 | 7.33 | 108.5 | 5.99 |
Umbria | 48.3 | 4.7 | 48.5 | 1.91 | 42.7 | 4.41 | 34.0 | 2.96 |
Valle d’Aosta | 68.3 | 6.9 | 67.3 | 4.63 | 65.0 | 9.91 | 46.0 | 5.68 |
Veneto | 98.3 | 4 | 98.8 | 2.82 | 93.4 | 6.22 | 78.3 | 4.31 |
INFC-CAI | ITA-CAI | |||
---|---|---|---|---|
Region (NUT2) | m3ha−1year−1 | SE (%) | m3ha−1year−1 | SE m3ha−1year−1 |
Abruzzo | 3.4 | 4.5 | 4.3 | 0.10 |
Alto Adige | 5.6 | 4.0 | 7.4 | 0.21 |
Basilicata | 2.8 | 5.5 | 4.3 | 0.13 |
Calabria | 5.4 | 4.4 | 7.5 | 0.17 |
Campania | 4.1 | 5.1 | 4.7 | 0.13 |
Emilia Romagna | 4.3 | 3.7 | 5.5 | 0.11 |
Friuli-Venezia Giulia | 5.6 | 4.5 | 7.9 | 0.17 |
Lazio | 2.9 | 4.6 | 4.4 | 0.10 |
Liguria | 4.7 | 4.6 | 6.7 | 0.13 |
Lombardia | 5.0 | 3.6 | 6.8 | 0.15 |
Marche | 2.7 | 7.0 | 4.0 | 0.13 |
Molise | 3.2 | 7.0 | 4.2 | 0.16 |
Piemonte | 4.5 | 3.1 | 5.2 | 0.12 |
Puglia | 2.8 | 8.2 | 3.6 | 0.21 |
Sardegna | 1.9 | 5.2 | 2.6 | 0.08 |
Sicilia | 3.0 | 6.5 | 3.7 | 0.14 |
Toscana | 4.1 | 3.3 | 5.6 | 0.10 |
Trentino | 6.2 | 4.0 | 7.4 | 0.19 |
Umbria | 2.2 | 4.6 | 3.6 | 0.08 |
Valle d’Aosta | 3.0 | 7.4 | 4.0 | 0.26 |
Veneto | 5.5 | 3.7 | 7.0 | 0.20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giannetti, F.; Chirici, G.; Vangi, E.; Corona, P.; Maselli, F.; Chiesi, M.; D’Amico, G.; Puletti, N. Wall-to-Wall Mapping of Forest Biomass and Wood Volume Increment in Italy. Forests 2022, 13, 1989. https://doi.org/10.3390/f13121989
Giannetti F, Chirici G, Vangi E, Corona P, Maselli F, Chiesi M, D’Amico G, Puletti N. Wall-to-Wall Mapping of Forest Biomass and Wood Volume Increment in Italy. Forests. 2022; 13(12):1989. https://doi.org/10.3390/f13121989
Chicago/Turabian StyleGiannetti, Francesca, Gherardo Chirici, Elia Vangi, Piermaria Corona, Fabio Maselli, Marta Chiesi, Giovanni D’Amico, and Nicola Puletti. 2022. "Wall-to-Wall Mapping of Forest Biomass and Wood Volume Increment in Italy" Forests 13, no. 12: 1989. https://doi.org/10.3390/f13121989
APA StyleGiannetti, F., Chirici, G., Vangi, E., Corona, P., Maselli, F., Chiesi, M., D’Amico, G., & Puletti, N. (2022). Wall-to-Wall Mapping of Forest Biomass and Wood Volume Increment in Italy. Forests, 13(12), 1989. https://doi.org/10.3390/f13121989