Quantifying the Effects of Root and Soil Properties on Soil Detachment Capacity in Agricultural Land Use of Southern China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling Site
2.3. Soil Sampling and Soil Properties Measurement
2.4. Hydraulic Parameter Measurement
2.5. Soil Detachment Capacity Measurement
2.6. Statistical Analysis
3. Results
3.1. Root Characteristics in Different Land Use Types
3.2. Soil Properties in Different Land Use Types
3.3. Soil Detachment Capacity in Different Land Use Types
4. Discussion
4.1. Effects of Overland Flow Hydraulics on Soil Detachment
4.2. Effect of Soil Properties on Soil Detachment Capacity
4.3. Effect of Roots on Soil Detachment Capacity
4.4. Relative Contribution of Root System and Soil Properties to Changes in Soil Detachment Capacity
4.5. Estimation of Soil Detachment Capacity
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- De Baets, S.; Poesen, J.; Reubens, B.; Wemans, K.; De Baerdemaeker, J.; Muys, B. Roottensile strength and root distribution of typical Mediterranean plant species and their contribution to soil shear strength. Plant Soil 2008, 305, 207–226. [Google Scholar] [CrossRef]
- Stokes, A.; Sotir, R.; Chen, W.; Ghestem, M. Soil bio- and eco-engineering in China: Past experience and future priorities. Ecol. Eng. 2010, 36, 247–257. [Google Scholar] [CrossRef]
- Chen, Z.J.; Wang, L.; Wei, A.S.; Gao, J.B.; Lu, Y.L.; Zhou, J.B. Land-use change from arable lands to orchards reduced soil erosion and increased nutrient loss in a small catchment. Sci. Total Environ. 2019, 648, 1097–1104. [Google Scholar] [CrossRef] [PubMed]
- Montanarella, L.; Pennock, D.J.; McKenzie, N.; Badraoui, M.; Chude, V.; Baptista, I.; Mamo, T.; Yemefack, M.; Aulakh, M.S.; Yagi, K.; et al. World’s soils are under threat. Soil 2015, 2, 1263–1272. [Google Scholar] [CrossRef] [Green Version]
- Duan, J.; Liu, Y.-J.; Yang, J.; Tang, C.-J.; Shi, Z.-H. Role of groundcover management in controlling soil erosion under extreme rainfall in citrus orchards of southern China. J. Hydrol. 2020, 582, 124290. [Google Scholar] [CrossRef]
- Duan, J.; Liu, Y.-J.; Wang, L.-Y.; Yang, J.; Tang, C.-J.; Zheng, H.-J. Importance of grass stolons in mitigating runoff and sediment yield under simulated rainstorms. CATENA 2022, 213, 106132. [Google Scholar] [CrossRef]
- Zhang, G.; Liu, B.; Nearing, M.A.; Huang, C.; Zhang, K. Soil detachment by shallow flow. Trans. ASAE 2002, 45, 351–357. [Google Scholar]
- Wang, B.; Zhang, G.H.; Shi, Y.Y.; Zhang, X.C. Soil detachment by overland flow under different vegetation restoration models in the loess plateau of china. CATENA 2014, 116, 51–59. [Google Scholar] [CrossRef]
- Zhang, X.C.; Li, Z.B.; Ding, W.F. Validation of WEPP sediment feedback relationships using spatially distributed rill erosion data. Soil Sci. Soc. Am. J. 2005, 69, 1440–1447. [Google Scholar] [CrossRef]
- Zhang, G.H.; Liu, G.B.; Tang, K.M.; Zhang, X.C. Flow detachment of soils under different land uses in the Loess Plateau of China. Trans. ASABE 2008, 51, 883–890. [Google Scholar] [CrossRef]
- Govers, G.; Gimenez, R.; Oost, K.V. Rill erosion: Exploring the relationship between experiments, modeling and field observation. Earth-Sci. Rev. 2007, 84, 87–102. [Google Scholar] [CrossRef]
- Zhang, G.H.; Tang, M.K.; Zhang, X.C. Temporal variation in soil detachment under different land uses in the loess plateau of china. Earth Surf. Process. Landf. 2010, 34, 1302–1309. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, G.H.; Yang, Y.F.; Li, P.P.; Liu, J.X. Response of soil detachment capacity to plant root and soil properties in typical grasslands on the loess plateau. Agric. Ecosyst. Environ. 2018, 266, 68–75. [Google Scholar] [CrossRef]
- Reubens, B.; Poesen, J.; Danjon, F.; Geudens, G.; Muys, B. The role of fine and coarse roots in shallow slope stability and soil erosion control with a focus on root system architecture: A review. Trees–Struct. Funct. 2007, 21, 385–402. [Google Scholar] [CrossRef]
- Vergani, C.; Giadrossich, F.; Buckley, P.; Conedera, M.; Pividori, M.; Salbitano, F.; Rauch, H.S.; Lovreglio, R.; Schwarz, M. Root reinforcement dynamics of European coppice woodlands and their effect on shallow landslides: A review. Earth-Sci. Rev. 2017, 167, 88–102. [Google Scholar] [CrossRef]
- Karimi, Z.; Abdi, E.; Deljouei, A.; Cislaghi, A.; Shirvany, A.; Schwarz, M.; Hales, T.C. Vegetation-induced soil stabilization in coastal area: An example from a natural mangrove forest. Catena 2022, 216, 106410. [Google Scholar] [CrossRef]
- Abdi, E.; Saleh, H.R.; Majnonian, B.; Deljouei, A. Soil fixation and erosion control by Haloxylon persicum roots in arid lands, Iran. J. Arid. Land 2019, 11, 86–96. [Google Scholar] [CrossRef] [Green Version]
- Mamo, M.; Bubenzer, G. Detachment rate, soil erodibility, and soil strength as influenced by living plant roots part I: Laboratory study. Trans. ASAE 2001, 44, 1167–1174. [Google Scholar] [CrossRef]
- Zhou, Z.C.; Shangguan, Z.P. Soil anti-scouribility enhanced by plant roots. J. Integr. Plant Biol. 2005, 47, 676–682. [Google Scholar] [CrossRef]
- De Baets, S.; Poesen, J.; Knapen, A.; Galindo, P. Impact of root architecture on the 23 erosion-reducing potential of roots during concentrated flow. Earth Surf. Proc. Land. 2007, 32, 1323–1345. [Google Scholar] [CrossRef]
- Ekanayake, J.C.; Marden, M.; Watson, A.J.; Rowan, D. Tree roots and slope stability: A comparison between Pinus radiata and Kanuka. New Zealand J. Sci. 1997, 27, 216–233. [Google Scholar]
- Bardgett, R.D.; Mommer, L.; De Vries, F.T. Going underground: Root traits as drivers of ecosystem processes. Trends Ecol. Evol. 2014, 29, 692–699. [Google Scholar] [CrossRef] [PubMed]
- Simon, A.; Collison, A.J.C. Pore-water pressure effects on the detachment of cohesive streambeds: Seepage forces and matric suction. Earth Surf. Process. Landf. 2001, 26, 1421–1442. [Google Scholar] [CrossRef]
- Li, Y.; Xu, X.Q.; Zhu, X.M.; Tian, J.Y. Effectiveness of plant-roots on increasing the soil permeability on the Loess Plateau. Chin. Sci. Bull. 1992, 37, 1735–1738. [Google Scholar]
- De Baets, S.; Poesen, J. Empirical models for predicting the erosion-reducing effects of plant roots during concentrated flow erosion. Geomorphology 2010, 118, 425–432. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, G.H.; Shi, Y.Y.; Zhang, X.C.; Ren, Z.P.; Zhu, L.J. Effect of natural restoration time of abandoned farmland on soil detachment by overland flow in the Loess Plateau of China. Earth Surf. Process. Landf. 2013, 38, 1725–1734. [Google Scholar] [CrossRef]
- Li, Z.W.; Zhang, G.H.; Geng, R.; Wang, H.; Zhang, X.C. Land use impacts on soil detachment capacity by overland flow in the Loess Plateau, China. Catena 2015, 124, 9–17. [Google Scholar] [CrossRef]
- Knapen, A.; Poesen, J.; Govers, G.; Gussels, G.; Nachtergaele, J. Resistance of soils to concentrated flow erosion: A review. Earth-Sci. Rev. 2007, 80, 75–109. [Google Scholar] [CrossRef]
- Fattet, M.; Fu, Y.; Ghestem, M.; Mab, W.; Foulonneaud, M.; Nespoulousd, J.; Le Bissonnaise, Y.; Stokes, A. Effects of vegetation type on soil resistance to erosion: Relation-ship between aggregate stability and shear strength. Catena 2011, 87, 60–69. [Google Scholar] [CrossRef]
- Ye, C.; Guo, Z.; Li, Z.; Cai, C. The effect of bahiagrass roots on soil erosion resistance of aquults in subtropical china. Geomorphology 2017, 285, 82–93. [Google Scholar] [CrossRef]
- Wang, B.; Zhangb, G.H.; Yanga, Y.F.; Lia, P.P.; Liua, J.X. The effects of varied soil properties induced by natural grassland succession on the process of soil detachment. Catena 2018, 166, 192–199. [Google Scholar] [CrossRef]
- Jiao, F.; Wen, Z.M.; An, S.S. Changes in soil properties across a chronosequence of vegetation restoration on the Loess Plateau of China. Catena 2011, 86, 110–116. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, X.; Zhou, Z. Quantifying effects of root systems of planted and natural vegetation on rill detachment and erodibility of a loessial soil. Soil Tillage Res. 2019, 195, 104420. [Google Scholar] [CrossRef]
- Duan, J.; Liu, Y.-J.; Tang, C.-J.; Shi, Z.-H.; Yang, J. Efficacy of orchard terrace measures to minimize water erosion caused by extreme rainfall in the hilly region of China: Long-term continuous in situ observations. J. Environ. Manage. 2021, 278, 111537. [Google Scholar] [CrossRef] [PubMed]
- Durán Zuazo, V.H.; Aguilar Ruiz, J.; Martínez, R.A.; FrancoTarifa, D. Impact of erosion in the taluses of subtropical orchard terraces. Agric. Ecosyst. Environ. 2005, 107, 199–210. [Google Scholar] [CrossRef]
- Xu, Q.X.; Wang, T.W.; Cai, C.F.; Li, Z.X.; Shi, Z.H. Effects of soil conservation on soil properties of citrus orchards in the Three-Gorges Area, China. Land Degrad. Dev. 2012, 23, 34–42. [Google Scholar] [CrossRef]
- Li, X.H.; Yang, J.; Zhao, C.Y. Effect of agroforestry and time on soil and water conservation of sloping red soil in southeastern China. J. Soil Water Conserv. 2014, 69, 131–139. [Google Scholar] [CrossRef]
- Prosdocimi, M.; Cerdà, A.; Tarolli, P. Soil water erosion on Mediterranean vineyards: A review. Catena 2016, 141, 1–21. [Google Scholar] [CrossRef]
- Comino, J.R.; Taguas, E.V.; Seeger, M.; Ries, J. Quantification of soil and water losses in an extensive olive orchard catchment in Southern Spain. J. Hydrol. 2018, 556, 749–758. [Google Scholar] [CrossRef]
- Zhang, G.H.; Liu, B.Y.; Liu, G.B.; He, X.W.; Nearing, M. Detachment of undisturbed soil by shallow flow. Soil Sci. Soc. Am. J. 2003, 67, 713–719. [Google Scholar] [CrossRef]
- Hao, X.; Ball, B.C.; Culley, J.L.B.; Carter, M.R.; Parkin, G.W. Soil density and porosity. Soil Sampl. Methods Anal. 2008, 2, 179–196. [Google Scholar]
- Ashworth, J.; Keyes, D.; Kirk, R.; Lessard, R. Standard procedure in the hydrometer method for particle size analysis. Commun. Soil Sci. Plant Anal. 2001, 32, 633–642. [Google Scholar] [CrossRef]
- Amezketa, E.; Singer, M.J.; Le Bissonnais, Y. Testing a new procedure for measuring water-stable aggregation. Soil Sci. Soc. Am. J. 1996, 60, 888–894. [Google Scholar] [CrossRef]
- Tabatabai, M.A. Soil organic matter testing: An overview. Soil Org. Matter Anal. Interpret. 1996, 46, 1–9. [Google Scholar]
- Lai, J.; Zou, Y.; Zhang, J.; Peres-Neto, P. Generalizing hierarchical and variation partitioning in multiple regression and canonical analyses using the rdacca.hp R package. Method. Ecol. Evol. 2022, 13, 782–788. [Google Scholar] [CrossRef]
- Govers, G. Relationship between discharge, velocity and flow area for rills eroding loose, non-layered materials. Earth Surf. Process. Landf. 1992, 17, 515–528. [Google Scholar] [CrossRef]
- Nearing, M.A.; Simanton, J.R.; Norton, L.D.; Bulygin, S.J.; Stone, J. Soil erosion by surface water flow on a stony, semiarid hillslope. Earth Surf. Process. 1999, 24, 677–686. [Google Scholar] [CrossRef]
- Poesen, J.; Nachtergaele, J.; Verstraeten, G.; Valentin, C.; (2003). Gully erosion and environmental change: Importance and research needs. Catena 2003, 50, 91–133. [Google Scholar] [CrossRef]
- Knapen, A.; Poesen, J.; De Baets, D. Seasonal variations in soil erosion resistance during concentrated flow for a loess-derived soil under two contrasting tillage practices. Soil Tillage Res. 2007, 94, 425–440. [Google Scholar] [CrossRef]
- Gould, I.J.; Quinton, J.N.; Weigelt, A.; De Deyn, G.B.; Bardgett, R.D. Plant diversity and root traits benefit physical proper-ties key to soil function in grasslands. Ecol Lett. 2016, 19, 1140–1149. [Google Scholar] [CrossRef] [Green Version]
- Xiang, Y.; Li, Y.; Liu, Y.; Zhang, S.; Yue, X.; Yao, B.; Li, S. Factors shaping soil organic carbon stocks in grass covered orchards across China: A meta-analysis. Sci. Total Environ. 2022, 807, 150632. [Google Scholar] [CrossRef] [PubMed]
- Tu, A.; Xie, S.; Zheng, H.; Li, H.; Li, Y.; Mo, M. Long-term effects of living grass mulching on soil and water conservation and fruit yield of citrus orchard in south China. Agric. Water Manag. 2021, 252, 106897. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, G.H.; Shi, Y.Y.; Li, Z.W.; Shan, Z.J. Effects of near soil surface characteristics on the soil detachment processin a chronological series of vegetation restoration. Soil Sci. Soc. Am. J. 2015, 79, 1213–1222. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Zhang, H.; Liu, Q.; Duan, L.; Zhou, Q. Total nitrogen and community turnover determine phosphorus use efficiency of phytoplankton along nutrient gradients in plateau lakes. J. Environ. Sci. 2022, 124, 699–711. [Google Scholar] [CrossRef]
- Hao, H.; Di, H.; Jiao, X.; Wang, J.; Shi, Z. Fine roots benefit soil physical properties key to mitigate soil detachment capacity following the restoration of eroded land. Plant Soil 2020, 446, 487–501. [Google Scholar] [CrossRef]
- Gyssels, G.; Poesen, J.; Bochet, E.; Li, Y. Impact of plant root characteristics on the resistance of soils to erosion by water: A review. Prog. Phys. Geogr. 2005, 29, 189–217. [Google Scholar] [CrossRef] [Green Version]
- Roumet, C.; Birouste, M.; Picon-Cochard, C.; Ghestem, M.; Osman, N.; Vrignon-Brenas, S.; Cao, K.F.; Stokes, A. Root structure function relationships in 74 species: Evidence of a root economics spectrum related to carbon economy. New Phytol. 2016, 210, 815–826. [Google Scholar] [CrossRef]
- Knapen, A.; Smets, T.; Poesen, J. Flow-retarding effects of vegetation and geotextiles on soil detachment during concentrated flow. Hydrol. Process. 2009, 23, 2427–2437. [Google Scholar] [CrossRef]
Site Code | Root Length Density (cm·cm−3) | Root Surface Area Density (cm2·cm−3) | Root Volume Density (cm3·cm−3) | Average Root Diameter (mm) | Root Mass Density (kg·m−3) |
---|---|---|---|---|---|
GL | 4.72 ± 0.61 a | 0.56 ± 0.10 a | 0.0058 ± 0.0013 a | 0.36 ± 0.02 d | 2.5 ± 0.2 ab |
SCL | 3.08 ± 0.30 b | 0.38 ± 0.10 b | 0.0051 ± 0.0002 a | 0.39 ± 0.07 d | 1.05 ± 0.07 c |
GO | 2.71 ± 0.10 b | 0.36 ± 0.02 b | 0.0044 ± 0.0.0005 a | 0.49 ± 0.03 c | 2.73 ± 0.36 a |
FL | 0.72 ± 0.10 c | 0.21 ± 0.02 c | 0.0048 ± 0.0003 a | 0.92 ± 0.03 a | 2.17 ± 0.25 b |
CFO | 0.84 ± 0.02 c | 0.18 ± 0.02 c | 0.0014 ± 0.0.0006 b | 0.68 ± 0.07 b | 1.13 ± 0.15 c |
Site Code | Bulk Density (kg·m−3) | Total Porosity (%) | MWD (mm) | Organic Matter (g·kg−1) | Shear Strength (Pa) | Particle-Size Distribution (%) | ||
---|---|---|---|---|---|---|---|---|
Clay | Silt | Sand | ||||||
CK | 1570 ± 46 a | 40.66 ± 3.7 c | 0.34 ± 0.04 e | 1.16 ± 0.43 d | 4.78 ± 0.22 e | 18.83 ± 2.16 b | 36.43 ± 5.18 b | 44.74 ± 4.11 a |
GL | 1420 ± 25 b | 47.85 ± 0.6 b | 0.78 ± 0.09 a | 12.99 ± 0.76 b | 40.49 ± 5.34 a | 25.36 ± 3.27 ab | 60.83 ± 4.24 a | 13.81 ± 1.89 b |
SCL | 1190 ± 30 c | 55.36 ± 0.96 a | 0.48 ± 0.09 d | 5.76 ± 0.36 c | 12.96 ± 0.68 c | 26.39 ± 0.36 ab | 64.95 ± 2.06 a | 8.66 ± 2.76 bc |
GO | 1360 ± 71 bc | 49.68 ± 2.58 ab | 0.67 ± 0.12 c | 7.64 ± 0.60 c | 18.32 ± 1.22 b | 28.45 ± 2.15 ab | 63.92 ± 3.20 a | 7.63 ± 3.22 c |
FL | 1370 ± 54 bc | 46.95 ± 4.74 b | 0.72 ± 0.08 b | 18.13 ± 0.22 a | 12.24 ± 1.21 c | 19.18 ± 4.21 b | 31.96 ± 1.40 b | 48.87 ± 1.22 a |
CFO | 1250 ± 57 bc | 52.98 ± 0.81 ab | 0.42 ± 0.05 e | 7.09 ± 0.72 c | 9.72 ± 1.25 d | 24.33 ± 3.86 ab | 61.86 ± 2.36 a | 13.81 ± 2.53 bc |
Site Code | Shear Stress (τ, Pa) | Stream Power (ω, kg·s−3) | Unit Stream Power (p, m·s−1) | Flow Velocity (v, m·s−1) | ||||
---|---|---|---|---|---|---|---|---|
Equation | R2 | Equation | R2 | Equation | R2 | Equation | R2 | |
CK | Dc = 0.386 (τ − 1.36) | 0.93 *** | Dc = 0.221 (ω + 0.41) | 0.94 *** | Dc = 10.530 (p − 0.19) | 0.94 *** | Dc = 6.489 (v − 0.93) | 0.92 *** |
GL | Dc = 0.005 (τ − 3.21) | 0.96 *** | Dc = 0.002 (ω−3.21) | 0.95 *** | Dc = 0.184 (p − 0.21) | 0.94 *** | Dc = 0.073 (v − 1.06) | 0.92 *** |
SCL | Dc = 0.140 (τ − 1.66) | 0.93 *** | Dc = 0.056 (ω + 4.29) | 0.97 *** | Dc = 2.586 (p − 0.10) | 0.95 *** | Dc = 1.738 (v − 0.82) | 0.93 *** |
GO | Dc = 0.008 (τ − 2.22) | 0.96 *** | Dc = 0.004 (ω−0.52) | 0.95 *** | Dc = 0.165 (p − 0.16) | 0.94 *** | Dc = 0.136 (v − 1.01) | 0.96 *** |
FL | Dc = 0.006 (τ − 2.66) | 0.94 *** | Dc = 0.003 (ω−1.16) | 0.97*** | Dc = 0.153 (p − 0.22) | 0.96 *** | Dc = 0.110 (v − 1.02) | 0.97 *** |
CFO | Dc = 0.152 (τ − 1.75) | 0.97 *** | Dc = 0.072 (ω + 1.91) | 0.97 *** | Dc = 3.159 (p − 0.16) | 0.97 *** | Dc = 2.445 (v − 0.97) | 0.94 *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, L.; Tang, C.; Zhang, X.; Duan, J.; Yang, L.; Liu, S. Quantifying the Effects of Root and Soil Properties on Soil Detachment Capacity in Agricultural Land Use of Southern China. Forests 2022, 13, 1788. https://doi.org/10.3390/f13111788
Peng L, Tang C, Zhang X, Duan J, Yang L, Liu S. Quantifying the Effects of Root and Soil Properties on Soil Detachment Capacity in Agricultural Land Use of Southern China. Forests. 2022; 13(11):1788. https://doi.org/10.3390/f13111788
Chicago/Turabian StylePeng, Lang, Chongjun Tang, Xinyin Zhang, Jian Duan, Luyang Yang, and Shiyu Liu. 2022. "Quantifying the Effects of Root and Soil Properties on Soil Detachment Capacity in Agricultural Land Use of Southern China" Forests 13, no. 11: 1788. https://doi.org/10.3390/f13111788
APA StylePeng, L., Tang, C., Zhang, X., Duan, J., Yang, L., & Liu, S. (2022). Quantifying the Effects of Root and Soil Properties on Soil Detachment Capacity in Agricultural Land Use of Southern China. Forests, 13(11), 1788. https://doi.org/10.3390/f13111788