Additive Allometric Equations to Improve Aboveground Biomass Estimation for Mongolian Pine Plantations in Mu Us Sandy Land, Inner Mongolia, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site Description
2.2. Tree Sampling and Biomass Measurement
2.3. Allometric Biomass Model Establishment
2.4. Model Evaluation and Validation
3. Results
3.1. Allometric Biomass Models
3.2. Model Validation by a Jackknife Procedure
3.3. Aboveground Biomass Partitioning
4. Discussion
4.1. Aboveground Allometry Relationships
4.2. Model Comparison and Biomass Allocation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Song, L.; Zhu, J.; Zheng, X.; Wang, K.; Zhang, J.; Hao, G.; Wang, G.; Liu, J. Comparison of canopy transpiration between Pinus sylvestris var. mongolica and Pinus tabuliformis plantations in a semiarid sandy region of Northeast China. Agric. For. Meteorol. 2022, 314, 108784. [Google Scholar] [CrossRef]
- Huang, J.; Li, Y.; Fu, C.; Chen, F.; Fu, Q.; Dai, A.; Shinoda, M.; Ma, Z.; Guo, W.; Li, Z.; et al. Dryland climate change: Recent progress and challenges. Rev. Geophys. 2017, 55, 719–778. [Google Scholar] [CrossRef]
- Yan, F.; Wu, B.; Wang, Y. Estimating spatiotemporal patterns of aboveground biomass using Landsat TM and MODIS images in the Mu Us Sandy Land, China. Agric. For. Meteorol. 2015, 200, 119–128. [Google Scholar] [CrossRef]
- Teraminami, T.; Nakashima, A.; Ominami, M.; Yamamoto, M.; Sheng, Z.G.; Yoshikawa, K. Effects of sand burial depth on the root system of Salix cheilophila seedlings in Mu Us Sandy Land, Inner Mongolia, China. Landsc. Ecol. Eng. 2013, 9, 249–257. [Google Scholar] [CrossRef]
- Wang, F.; Letort, V.; Lu, Q.; Bai, X.; Guo, Y.; de Reffye, P.; Li, B. A functional and structural mongolian scots pine (Pinus sylvestris var. mongolica) model integrating architecture, biomass and effects of precipitation. PLoS ONE 2012, 7, e43531. [Google Scholar] [CrossRef] [PubMed]
- Basuki, T.M.; van Laake, P.E.; Skidmore, A.K.; Hussin, Y.A. Allometric equations for estimating the above-ground biomass in tropical lowland Dipterocarp forests. For. Ecol. Manag. 2009, 257, 1684–1694. [Google Scholar] [CrossRef]
- Dimobe, K.; Mensah, S.; Goetze, D.; Ouédraogo, A.; Kuyah, S.; Porembski, S.; Thiombiano, A. Aboveground biomass partitioning and additive models for Combretum glutinosum and Terminalia laxiflora in West Africa. Biomass Bioenergy 2018, 115, 151–159. [Google Scholar] [CrossRef]
- Zhou, X.; Yang, M.; Liu, Z.; Li, P.; Xie, B.; Peng, C. Dynamic allometric scaling of tree biomass and size. Nat. Plants 2021, 7, 42–49. [Google Scholar] [CrossRef]
- Chave, J.; Rejou-Mechain, M.; Burquez, A.; Chidumayo, E.; Colgan, M.S.; Delitti, W.B.C.; Duque, A.; Eid, T.; Fearnside, P.M.; Goodman, R.C.; et al. Improved allometric models to estimate the aboveground biomass of tropical trees. Glob. Change Biol. 2014, 20, 3177–3190. [Google Scholar] [CrossRef]
- Cui, Y.; Bi, H.; Liu, S.; Hou, G.; Wang, N.; Ma, X.; Zhao, D.; Wang, S.; Yun, H. Developing additive systems of biomass equations for Robinia pseudoacacia L. in the region of loess plateau of western Shanxi Province, China. Forests 2020, 11, 1332. [Google Scholar] [CrossRef]
- Meng, S.; Yang, F.; Hu, S.; Wang, H.; Wang, H. Generic additive allometric models and biomass allocation for two natural oak species in Northeastern China. Forests 2021, 12, 715. [Google Scholar] [CrossRef]
- Xiao, X.; White, E.P.; Hooten, M.B.; Durham, S.L. On the use of log-transformation vs. nonlinear regression for analyzing biological power laws. Ecology 2011, 92, 1887–1894. [Google Scholar] [CrossRef] [Green Version]
- Ganamé, M.; Bayen, P.; Ouédraogo, I.; Balima, L.H.; Thiombiano, A. Allometric models for improving aboveground biomass estimates in West African savanna ecosystems. Trees For. People 2021, 4, 100077. [Google Scholar] [CrossRef]
- Sanquetta, C.R.; Wojciechowski, J.; Dalla Corte, A.P.; Behling, A.; Netto, S.P.; Rodrigues, A.L.; Sanquetta, M.N.I. Comparison of data mining and allometric model in estimation of tree biomass. BMC Bioinform. 2015, 16, 247. [Google Scholar] [CrossRef] [Green Version]
- Sanquetta, C.R.; Behling, A.; Corte, A.P.D.; Péllico Netto, S.; Schikowski, A.B.; do Amaral, M.K. Simultaneous estimation as alternative to independent modeling of tree biomass. Ann. For. Sci. 2015, 72, 1099–1112. [Google Scholar] [CrossRef] [Green Version]
- Trautenmüller, J.W.; Péllico Netto, S.; Balbinot, R.; Watzlawick, L.F.; Dalla Corte, A.P.; Sanquetta, C.R.; Behling, A. Regression estimators for aboveground biomass and its constituent parts of trees in native southern Brazilian forests. Ecol. Indic. 2021, 130, 108025. [Google Scholar] [CrossRef]
- Zhao, D.; Kane, M.; Markewitz, D.; Teskey, R.; Clutter, M. Additive tree biomass equations for midrotation loblolly pine plantations. For. Sci. 2015, 61, 613–623. [Google Scholar] [CrossRef] [Green Version]
- Parresol, B.R. Additivity of nonlinear biomass equations. Can. J. For. Res. 2001, 31, 865–878. [Google Scholar] [CrossRef]
- Parresol, B.R. Assessing tree and stand biomass: A review with examples and critical comparisons. For. Sci. 1999, 45, 573–593. [Google Scholar]
- Liu, Q.J. Nested regression for establishing tree biomass equations. Chinese J. Plant Ecol. 2009, 33, 331–337. [Google Scholar]
- Xu, Z.; Du, W.; Zhou, G.; Qin, L.; Meng, S.; Yu, J.; Sun, Z.; SiQing, B.; Liu, Q. Aboveground biomass allocation and additive allometric models of fifteen tree species in northeast China based on improved investigation methods. For. Ecol. Manage. 2022, 505, 119918. [Google Scholar] [CrossRef]
- Meng, S.; Jia, Q.; Liu, Q.; Zhou, G.; Wang, H.; Yu, J. Aboveground biomass allocation and additive allometric models for natural Larix gmelinii in the western Daxing’anling mountains, Northeastern China. Forests 2019, 10, 150. [Google Scholar] [CrossRef]
- Laar, A.v.; Akça, A. Forest Mensuration; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Menéndez-Miguélez, M.; Calama, R.; Del Río, M.; Madrigal, G.; López-Senespleda, E.; Pardos, M.; Ruiz-Peinado, R. Species-specific and generalized biomass models for estimating carbon stocks of young reforestations. Biomass Bioenergy 2022, 161, 106453. [Google Scholar] [CrossRef]
- Huynh, T.; Lewis, T.; Applegate, G.; Pachas, A.N.A.; Lee, D.J. Allometric equations to estimate aboveground biomass in spotted gum (Corymbia citriodora subspecies variegata) plantations in Queensland. Forests 2022, 13, 486. [Google Scholar] [CrossRef]
- Antonio, N.; Tome, M.; Tome, J.; Soares, P.; Fontes, L. Effect of tree, stand, and site variables on the allometry of Eucalyptus globulus tree biomass. Can. J. For. Res. 2007, 37, 895–906. [Google Scholar] [CrossRef]
- Kebede, B.; Soromessa, T. Allometric equations for aboveground biomass estimation of Olea europaea L. subsp. cuspidata in Mana Angetu Forest. Ecosyst. Health Sustain. 2018, 4, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Dong, L.; Zhang, L.; Li, F. Developing two additive biomass equations for three coniferous plantation species in northeast China. Forests 2016, 7, 136. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.K. Biomass allometric equations for 10 co-occurring tree species in Chinese temperate forests. For. Ecol. Manag. 2006, 222, 9–16. [Google Scholar] [CrossRef]
- Nogueira, F.C.B.; Dobe, E.K.; Silva Filho, J.B.; Rodrigues, L.S. Allometric equations to estimate aboveground biomass of Dalbergia cearensis species in the Brazilian seasonally dry tropical forest. For. Ecol. Manag. 2021, 484, 118920. [Google Scholar] [CrossRef]
- Carvalho, J.P.; Parresol, B.R. Additivity in tree biomass components of Pyrenean oak (Quercus pyrenaica Willd.). For. Ecol. Manag. 2003, 179, 269–276. [Google Scholar] [CrossRef]
- Huff, S.; Ritchie, M.; Temesgen, H. Allometric equations for estimating aboveground biomass for common shrubs in northeastern California. For. Ecol. Manag. 2017, 398, 48–63. [Google Scholar] [CrossRef]
- Riofrio, J.; Herrero, C.; Grijalva, J.; Bravo, F. Aboveground tree additive biomass models in Ecuadorian highland agroforestry systems. Biomass Bioenergy 2015, 80, 252–259. [Google Scholar] [CrossRef]
- Behling, A.; Netto, S.P.; Sanquetta, C.R.; Corte, A.P.D.; Affleck, D.L.R.; Rodrigues, A.L.; Behling, M. Critical analyses when modeling tree biomass to ensure additivity of its components. An. Acad. Bras. Cienc. 2018, 90, 1759–1774. [Google Scholar] [CrossRef] [Green Version]
- Zeng, W.; Zhang, L.; Chen, X.; Cheng, Z.; Ma, K.; Li, Z. Construction of compatible and additive individual-tree biomass models for Pinus tabulaeformis in China. Can. J. For. Res. 2017, 47, 467–475. [Google Scholar] [CrossRef]
- Cunia, T.; Briggs, R.D. Forcing additivity of biomass tables: Some empirical results. Can. J. For. Res. 1984, 14, 376–384. [Google Scholar] [CrossRef]
- Djomo, A.N.; Chimi, C.D. Tree allometric equations for estimation of above, below and total biomass in a tropical moist forest: Case study with application to remote sensing. For. Ecol. Manag. 2017, 391, 184–193. [Google Scholar] [CrossRef]
- Chave, J.; Andalo, C.; Brown, S.; Cairns, M.A.; Chambers, J.Q.; Eamus, D.; Folster, H.; Fromard, F.; Higuchi, N.; Kira, T.; et al. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 2005, 145, 87–99. [Google Scholar] [CrossRef]
- Sileshi, G.W. A critical review of forest biomass estimation models, common mistakes and corrective measures. For. Ecol. Manage. 2014, 329, 237–254. [Google Scholar] [CrossRef]
- Packard, G.C. On the use of logarithmic transformations in allometric analyses. J. Theor. Biol. 2009, 257, 515–518. [Google Scholar] [CrossRef]
- Freschet, G.T.; Kichenin, E.; Wardle, D.A. Explaining within-community variation in plant biomass allocation: A balance between organ biomass and morphology above vs below ground? J. Veg. Sci. 2015, 26, 431–440. [Google Scholar] [CrossRef]
- Mensah, S.; Kakaï, R.G.; Seifert, T. Patterns of biomass allocation between foliage and woody structure: The effects of tree size and specific functional traits. Ann. For. Res. 2016, 59, 49–60. [Google Scholar] [CrossRef] [Green Version]
- Escoto-Rodríguez, M.; Facelli, J.M.; Watling, J.R. Do wide crowns in arid woodland trees reflect hydraulic limitation and reduction of self-shading? Funct. Plant Biol. 2014, 41, 1221. [Google Scholar] [CrossRef] [PubMed]
- Thomas, P. Trees: Their Natural History; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Ryan, M.G.; Yoder, B.J. Hydraulic limits to tree height and tree growth. Bioscience 1997, 47, 235–242. [Google Scholar] [CrossRef] [Green Version]
- Xiang, W.; Li, L.; Ouyang, S.; Xiao, W.; Zeng, L.; Chen, L.; Lei, P.; Deng, X.; Zeng, Y.; Fang, J.; et al. Effects of stand age on tree biomass partitioning and allometric equations in Chinese fir (Cunninghamia lanceolata) plantations. Eur. J. For. Res. 2021, 140, 317–332. [Google Scholar] [CrossRef]
- Helmisaari, H.S.; Makkonen, K.; Kellomaki, S.; Valtonen, E.; Malkonen, E. Below- and above-ground biomass, production and nitrogen use in Scots pine stands in eastern Finland. For. Ecol. Manag. 2002, 165, 317–326. [Google Scholar] [CrossRef]
Variable | Mean | Minimum | Median | Maximum | SD |
---|---|---|---|---|---|
D (cm) | 20.1 | 2.4 | 19.4 | 44.2 | 7.8 |
H (m) | 8.88 | 1.90 | 8.65 | 15.25 | 2.36 |
Stem biomass (kg) | 71.77 | 0.63 | 51.99 | 331.89 | 65.48 |
Branch biomass (kg) | 45.96 | 0.37 | 29.04 | 296.51 | 52.83 |
Foliage biomass (kg) | 31.48 | 0.95 | 24.27 | 150.64 | 26.87 |
Aboveground biomass (kg) | 149.21 | 2.17 | 112.32 | 779.03 | 143.37 |
Component | Predictor | Coefficient | Statistics | w | |||
---|---|---|---|---|---|---|---|
β0 | β1 | β2 | RMSE | ||||
stem | D | 0.071(0.008) *** | 2.239(0.035) *** | 0.966 | 12.047 | 1/D2.622 | |
D, H | 0.041(0.003) *** | 1.690(0.033) *** | 1.000(0.052) *** | 0.991 | 6.293 | 1/D2.761 | |
D2H | 0.043(0.003) *** | 0.880(0.007) *** | 0.990 | 6.423 | 1/D2.675 | ||
branch | D | 0.013(0.003) *** | 2.629(0.059) *** | 0.947 | 12.208 | 1/D2.788 | |
D, H | 0.018(0.004) *** | 2.922(0.110) *** | −0.556(0.170) ** | 0.939 | 13.034 | 1/D2.701 | |
D2H | 0.007(0.002) *** | 1.034(0.028) *** | 0.929 | 14.129 | 1/D1.894 | ||
Foliage | D | 0.096(0.014) *** | 1.889(0.048) *** | 0.917 | 7.722 | 1/D2.937 | |
D, H | 0.106(0.017) *** | 2.173(0.096) *** | −0.434(0.145) ** | 0.916 | 7.799 | 1/D2.706 | |
D2H | 0.043(0.009) *** | 0.786(0.023) *** | 0.916 | 7.804 | 1/D1.690 | ||
Aboveground | D | 0.144(0.013) *** | 2.246(0.030) *** | 0.972 | 23.824 | 1/D3.531 | |
D, H | 0.112(0.011) *** | 2.188(0.055) *** | 0.192(0.084) * | 0.978 | 21.315 | 1/D2.837 | |
D2H | 0.074(0.009) *** | 0.901(0.013) *** | 0.976 | 22.233 | 1/D2.163 |
Component | Model Expression | RMSE | |
---|---|---|---|
Stem | Wst = 0.041D1.699H0.983 | 0.991 | 6.258 |
Branch | Wbr = 0.020D2.497 | 0.941 | 12.884 |
Foliage | Wfo = 0.094D1.898 | 0.921 | 7.555 |
Aboveground | Wag = 0.041D1.699H0.983 + 0.020D2.497 + 0.094D1.898 | 0.978 | 21.177 |
Category | Statistics | Paired t-Test | |||
---|---|---|---|---|---|
MAE | MPE | TRE | t | p-Value | |
Stem | 3.857 | 1.601 | −0.066 | −0.082 | 0.935 |
Branch | 8.720 | 5.126 | −0.062 | −0.024 | 0.981 |
Foliage | 5.155 | 4.376 | −0.027 | −0.012 | 0.990 |
Aboveground | 14.117 | 2.561 | −0.057 | −0.044 | 0.965 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siqing, B.; Meng, S.; Liu, L.; Zhou, G.; Yu, J.; Xu, Z.; Liu, Q. Additive Allometric Equations to Improve Aboveground Biomass Estimation for Mongolian Pine Plantations in Mu Us Sandy Land, Inner Mongolia, China. Forests 2022, 13, 1672. https://doi.org/10.3390/f13101672
Siqing B, Meng S, Liu L, Zhou G, Yu J, Xu Z, Liu Q. Additive Allometric Equations to Improve Aboveground Biomass Estimation for Mongolian Pine Plantations in Mu Us Sandy Land, Inner Mongolia, China. Forests. 2022; 13(10):1672. https://doi.org/10.3390/f13101672
Chicago/Turabian StyleSiqing, Bilige, Shengwang Meng, Liping Liu, Guang Zhou, Jian Yu, Zhenzhao Xu, and Qijing Liu. 2022. "Additive Allometric Equations to Improve Aboveground Biomass Estimation for Mongolian Pine Plantations in Mu Us Sandy Land, Inner Mongolia, China" Forests 13, no. 10: 1672. https://doi.org/10.3390/f13101672