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Abstract: Afforestation is conducive to improving ecosystem service functions and ecosystem di-
versity in the Mu Us Sandy Land, however, the important attribute of biomass for Mongolian pine
(Pinus sylvestris var. mongolica Litv.) plantations has yet to be accurately evaluated. This study aimed
to develop additive allometric biomass equations for the species and evaluate biomass partitioning
patterns within tree components. A total of 131 trees were measured for stem, branch, and leaf
biomass by destructively sampling and tree climbing, with the latter as a supplement. For each
biomass component, we tested three equations with the diameter at breast (D) alone, height (H)
as additional, and diameter in combination with height (D?H) as predictors using the weighted
least squared method. Weighted nonlinear seemingly unrelated regression was adopted to fit a
system of additive allometric biomass equations utilizing the selected equations. A leave-one-out
cross-validation method (the jackknife procedure) was used to assess the predictive ability. The
biomass partitioning pattern was evaluated by calculating the ratios. The results revealed that the
diameter alone is a good predictor for branches and foliage biomass estimates, while the stem requires
H included to improve estimation accuracy. Mongolian pine allocates relatively more biomass to the
crown (51.4%) compared to the stem (48.6%). Branch biomass fraction increased monotonously with
increasing tree size while a reverse trend was observed for foliage. In conclusion, the additive models
developed in this study provide a robust biomass estimation and can be extensively used to estimate
Mongolian pine forests biomass in Mu Us Sandy Land.

Keywords: biomass equations; additivity; allometry; heteroscedasticity; biomass allocation

1. Introduction

Desertification is one of the most serious global environmental problems and adversely
affects ecosystem services and socio-economic development [1,2]. The Mu Us Sandy Land
lies on the farming-pastoral ecotone [3] and in a transition zone from the Gobi Desert to
forest-steppe [4], has been identified as a crucial ecological security barrier in northern
China, but is very fragile and sensitive to ecological events [3]. Therefore, it is one of the
important development areas in the Three-North Forest Shelterbelt program and artificial
afforestation is the key to preventing degradation and stable sand [1,5]. Because Mongolian
pine (Pinus sylvestris var. mongolica Litv.) has strong adaptability to cold, drought, and soil
infertility, it has been one of the principal species in the program and has been introduced to
the Mu Us Sandy land since the 1970s. Over four decades after plantation, the once sandy
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land with poor primary productivity is now covered by dense trees, implying a significant
achievement in ecological restoration. Furthermore, the afforestation of Mongolian pine is
still in progress. Hence, studying forest biomass is essential for comprehensively evaluating
the effects of ecological restoration on biodiversity as well as for better understanding the
contribution to carbon sinks in desertification regions. To our knowledge, however, little
information is available regarding the biomass production of Mongolian pine plantations
in arid regions, and relevant information is badly needed.

Harvesting trees and weighing all of their components is considered the most accu-
rate method for determining biomass [6], but the destructive sampling method is time-
consuming, labor-intensive, limited to small trees or small sample sizes, and is not appro-
priate for endangered tree species or in protected areas [7]. In contrast, the application of
reliable allometric equations to infer dry mass from census data has become a preferred
way and plays a key role in forest biomass estimation due to its advantages in efficiency,
conciseness, and accuracy [8-10]. Allometric equations established based on sparse mea-
surements from destructive sampling usually link tree biomass and its components, such as
stem, branch, and foliage, with one or more easily measured biophysical metrics including
diameter at breast height (D), total height (H), crown size, and the like [6,9,11]. Linear or
nonlinear regression analyses are often used to test the validity of biological theories, of
which, power-law functions are one of the most commonly used patterns in biology [12].

Determining a proper regression method is a major challenge when establishing allo-
metric biomass models [13]. In most cases, allometric equations of biomass components
and their aggregates are independently fitted by applying the ordinary least squares (OLS)
technique [14]. However, this technique ignores the inherent correlations between different
biomass components and the tree total [11]. Consequently, these biomass models were
not additive, namely, the sum of the predictions obtained from independent models of
the tree components may not equal that for the whole tree. Solving the additivity implies
that the equations for different components and the total tree must be estimated concur-
rently [15]. Seemingly unrelated regression (SUR) and nonlinear seemingly unrelated regres-
sion (NSUR) methods utilizing simultaneous estimation have been considered preferred
procedures to address this issue for linear and nonlinear equations, respectively [15-18].
The two procedures provide a set of contemporaneously correlated equations with cross-
equation parameter constraints, thus ensuring additive predictions [19]. The NSUR proce-
dure shows more efficient for parameter estimators because of its flexibility in applying
a specific weighting function to stabilize variances [16,17], known as weighted nonlinear
seemingly unrelated regression (WNSUR). The WNSUR procedure is therefore recom-
mended to estimate nonlinear biomass equations and the heteroscedasticity in biomass
data could be corrected as well [18].

Based on these facts, robust allometric equations are imperative for accurate forest
biomass estimation. However, there is a general lack of allometric equations to predict the
aboveground biomass for Mongolian pine trees in the Mu Us Sandy Land. To this end, we
aimed to determine the best additive system of biomass equations using the appropriate
variables for each component. The biomass equations system is validated through the
leave-one-out cross-validation method and compared to previous models. In addition, we
assessed the biomass partitioning pattern within the sampled trees.

2. Materials and Methods
2.1. Study Site Description

This study was conducted in the Mu Us Sandy Land (107°18'-110°12" E, 37°37'-39°35' N),
located in the middle and southeastern part of the Ordos Plateau in central Inner Mongolia
(Figure 1), with a total area of approximately 3.2 million hectares. The altitude varies
between 1100-1500 m with a higher terrain in the northwest. This area is controlled by a
distinct temperate continental monsoon climate, and the mean annual precipitation ranges
from 250 mm in the west to 440 mm in the east. Precipitation is uneven among seasons,
approximately 60%-75% happens from July to September. The annual average temperature
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ranges between 6.0 °C and 8.5 °C, with monthly mean temperatures of —9.5-12.0 °C in
January and 22-24 °C in July. Soils are generally sandy and, according to the Chinese soil
classification system, belong to the light chestnut soil, brown calcic soil, and sierozem, all
are in the category calciorthid, as determined by the U.S. system. The landform of Mu Us
Sandy Land is mainly divided into three subtypes: grasslands, cultivated lands, and sandy
lands, and the sandy lands are subdivided into fixed, semi-fixed, and mobile dunes. The
main life form in the sandy land is psammophytic vegetation. Dominant shrub and herb
species in terms of abundance are Artemisia ordosica Krasch., Caragana intermedia Kuang et H.
C. Fu, Juniperus sabina L., Salix cheilophila Schneid., Agropyron mongolicum Keng, Cleistogenes
songorica (Roshev.) Ohwi, among others.
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Figure 1. The geographical location of the study area and biomass sampling sites in Mongolian pine
plantations in the Mu Us Sandy Land.

2.2. Tree Sampling and Biomass Measurement

Developing accurate allometric biomass equations needs high sampling efforts across
tree sizes and individuals [13]. However, destructive sampling is strictly restricted in
this study area. In the present study, we took advantage of the action of clearing trees
for use in construction executed by the local government to collect 116 felled trees. To
expand the diameter range, we also collected biomass data by climbing 15 standing trees,
with a diameter and height range of 29.1 to 44.2 cm and 9.62-15.25 m, respectively. The
131 trees were randomly picked according to occurring diameter classes. Only trees that
had relatively intact bole and crown were selected for biomass measurements. These
sampled trees were distributed in four separate locations (Figure 1) with stand density
ranges between 250 and 1225 trees per hectare.

For each selected individual tree, dendrometric variables including diameter at breast
height (1.30 m height) and total tree height (from the trunk base to the tip) were firstly
measured and recorded with a tape graduated in cm and m, respectively. As displayed in
Figure 2, a generally positive relationship between tree height and diameter was found.
Thereafter, a nested regression method that treats the tree crown as a deducible system [20]
was used to acquire branch and foliage biomass, and its reliability in biomass estimation
has been validated many times [20-22]. Branches directly protruding from the trunk were
defined as the first order, and those protruding from the first order were defined as the
second order and so on. The branch without lateral branches was defined as the branch axis,
which was treated as a cone-like minor tree bole for volume calculation using the sectional
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method. Consequently, the volume of all branches can be calculated by summing the branch
axis and their lateral branches. Likewise, the number of leaves could be easily obtained.

Height (m)

5 10 1I5 2IO 2I5 3I0 35 40 45
Diameter (cm)
Figure 2. Correlation between tree height and diameter for sampled trees. The density diagrams on
the top and right side indicate the distribution of diameter and height, respectively. The solid line
indicates loess smoothing with a 95% confidence interval.

In the actual measurement, we firstly measured the basal diameters of all the first-order
branches, and then measured the basal diameters of the second-order branches, and the
same for other orders. It is noteworthy that only the first-order branches were measured for
the standing trees. Subsequently, over 200 branch axes were randomly collected according
to size. These branch axes were sectioned into segments of 40 cm or 20 cm, and the
diameters at both ends of a section were recorded. The leaf number of branch axes was
concurrently counted. Finally, regression relationships between volume and leaf number,
and diameter were established for branch axes. Based on the established relationships, we
calculated the total volume of branches and the amounts of needle leaves synchronously.

A section length of 2 and 1 m for large and small trees, respectively, was applied to
determine the stem volume. The diameter at each section position was measured and
the top section, i.e., the tip, less than a segment was treated as a cone when estimating
the volume. Finally, the total stem volume was obtained by summing the volumes of
all sections [23].

Representative samples of branch and foliage, as well as stem discs, were collected and
taken to the laboratory for basic characteristics determination. Three thin discs containing
barks were taken from 1.30 m, 0.5, and 0.7 tree height of each felled trunk. Similarly,
three branch discs were taken from the lower, middle, and upper canopy. Leaf fascicles of
different sizes and ages were randomly taken from different trees and branches, amounting
to over 1000. Sub-samples of twigs and leaves were stored in sealed bags to maintain
moisture. In the laboratory, stem and branch samples were firstly saturated and then cut
into moderate blocks to measure volume by the water displacement method. All samples
including foliage were oven-dried at 75 °C to a constant weight. Basic density (g-cm~3) was
then inferred by dividing dry weight from fresh volume. The total biomass of stems and
branches was determined by multiplying each component volume based on their specific
basic density. Similarly, we acquired total foliage biomass by multiplying the leaf amount
(number of needles) by the average dry weight per needle leaf. Overall, tree aboveground
biomass was expressed as the sum of all components, i.e., the stem, branch, and foliage
(Table 1). The stump biomass was not included since the workload to dig it out was too
great. The biomass partitioning was made by dividing the observed component biomass
by aboveground biomass.
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Table 1. Statistics of dendrometric variables for developing biomass equations.

Variable Mean Minimum Median  Maximum SD

D (cm) 20.1 24 19.4 442 7.8

H (m) 8.88 1.90 8.65 15.25 2.36
Stem biomass (kg) 71.77 0.63 51.99 331.89 65.48
Branch biomass (kg) 45.96 0.37 29.04 296.51 52.83
Foliage biomass (kg) 31.48 0.95 24.27 150.64 26.87
Aboveground biomass (kg) 149.21 217 112.32 779.03 143.37

D = diameter at breast height (cm), H = total tree height (m), SD = standard deviation.

2.3. Allometric Biomass Model Establishment

Assembled data for dendrometric variables like D, H, and component biomass were
used to develop biomass regression equations. The most common mathematical power
functiony = ﬁoxﬁg 1x§ 2. -xﬁ" was adopted for biomass estimation. We preferred utilizing
the nonlinear form with an additive error structure to avoid the system bias caused by
log-transformed linear models [24,25]. Since biomass data always exhibit significant het-
eroscedasticity in model residuals [17,24], weightings were introduced to generate constant
error variances over all observations in this study. A specific weighting function defined as
w =1/DV was applied to correct each observation before parameter estimation. The power
exponent Q was computed by the residuals of independent models fitted by OLS regression.

For each component, the nonlinear power model was tested to relate biomass with
dendrometric variables including D, H, and D?H as defined in Equations (1)-(3).

W; = BoDPt + ¢ 1)

Wi = BoDP1HP? +¢; @
B

W; = Bo (DZH) ' +¢€; (3)

where W; represents the i-th observed component biomass, f; is the regression coefficient,
and ¢; is the additive error term. The independent weighted least square (WLS) method
was applied to each equation of each component. The “best model”, i.e., the most suitable
predictor for each component was explored and determined by two fit statistics, including
the adjusted coefficient of determination (Rﬁ 4 ].) and the root mean square error (RMSE).
Only equations with statistically significant coefficients (p < 0.05) were eligible to be selected.
The best models are those that have the highest R2, j as well as the lowest RMSE.

To realize the additive property between tree components, a system of equations for
aboveground biomass and its components (stem, branch, and foliage) were simultaneously
fitted utilizing the models selected above. The model for total aboveground biomass was
equated by adding the equations for each specific component together [16,18]. Therefore,
we defined the system of equations as displayed in Model (4):

Wit = fst(Xst/ ,Bst) + €st
Wy = fbr(Xbr/ ‘Bbr) + Epy
Wi = ffO(XfOl ;Bfo) + o
Wag = fst(Xst/ ,Bst) + fbr(Xbr/ ﬁbr) =+ ffO(XfOI ,Bfo) + €ag

)

where Wy, Wy, Wg,, and Wy are estimates of the stem, branch, foliage, and above-
ground biomass, respectively; f (X;, B;) is the selected nonlinear equation of the i-th com-
ponent; ¢; is the additive error term. The procedure of WNSUR was used to fit the system
of equations [7,18], using the PROC MODEL procedure in SAS 9.3 (SAS Institute Inc.,
Cary, NC, USA). The WNSUR method considers the correlations between regressions
residuals and set constraints on regression coefficients, resulting in lower variance and
additive predictions [18].



Forests 2022, 13, 1672

6 of 14

2.4. Model Evaluation and Validation

The behavior of biomass estimators was evaluated by R2, j and RMSE, as described
above. The formulas of the three goodness-of-statistics were presented as Equations (5) and (6).
The predictive performance of the additive system of biomass equations was tested via
Turkey’s jackknife procedure, a leave-one-out cross-validation method. Graphical analyses
of predicted versus observed values of biomass were conducted and the linear fitting
statistic of R?,; was achieved to evaluate the model goodness-of-fit. A paired t-test was
utilized to check the consistency between predicted and observed values. And the cross-
validation statistics of mean absolute error (MAE), mean prediction error (MPE), and total
relative error (TRE) were used to diagnose the predictive ability. In addition, the measured
biomass data in this study was used to compare with previous biomass equations. These
statistics were displayed as follows:

Ry =1- (1= X0 — )"/~ 9)°) x (1= 1)/ (n — p) ©)
RMSE = \/Y_(y; — 9))°/ (1~ p) ©

MAE =) [y = §j,|/n @)

MPE = t, x \/Y (v — 9,1)*/ (n — p)/ (7 % /i) x 100 (®)
TRE = ) (v = §j,-) / .9}, % 100 ©)

where y; and 7; represent the actual and estimated biomass, respectively; 7 is the average
value of the actual biomass; 7, ; represents the j-th predicted value by the biomass equation
fitted with the n-1 remaining observations; n and p are the number of observations and
model coefficients, respectively.

3. Results
3.1. Allometric Biomass Models

For the underlying estimation of biomass, allometric relationships were firstly exam-
ined between three size variables (D, H, D*H) and biomass of stem, branch, foliage, and
aboveground total (Figure 3). Poorer correlations were found between biomass values and
tree heights. The results of the biomass equations independently fitted through weighted
regression are summarized in Table 2. In all, equations for total aboveground biomass and
its constituents gave good fitting effects with R?, j greater than 0.91, and all model coeffi-
cients were significant (p < 0.05). For the stem component, the equation with D alone as its
predictor already achieved a satisfactory goodness-of-fit performance statistic. Adding H
as an additional predictor or combining it with D as a single compound predictor could
improve the estimation with R?, i increased to over 0.99 and RMSE decreased by about half.

Branch and foliage biomass equations, on the contrary, showed the highest R2, j and lowest

RMSE when D was used as the sole predictor. The aboveground total was best estimated
when using D and H as multiple variables, which had higher R?, j and lower RMSE values.
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Figure 3. Scatter plot of component-specific and total aboveground biomass against potential inde-
pendent variables.
Table 2. Regression coefficients with standard errors (in parentheses) and fitting statistics through
the independently fitted procedure using weighted regression.
Coefficient Statistics
Component  Predictor 5 w
Bo B1 B2 R RMSE
D 0.071(0.008) *** 2.239(0.035) *** 0.966 12.047 1/D?622
stem D,H 0.041(0.003) *** 1.690(0.033) *** 1.000(0.052) *** 0.991 6.293 1/D%761
D?H 0.043(0.003) *** 0.880(0.007) *** 0.990 6.423 1/D?675
D 0.013(0.003) *** 2.629(0.059) *** 0.947 12.208 1/D?788
branch D,H 0.018(0.004) *** 2.922(0.110) *** —0.556(0.170) ** 0.939 13.034 1/D%*701
D?H 0.007(0.002) *** 1.034(0.028) *** 0.929 14.129 1/D18%
D 0.096(0.014) *** 1.889(0.048) *** 0.917 7.722 1/D%*9%7
Foliage D,H 0.106(0.017) *** 2.173(0.096) ***  —0.434(0.145) ** 0.916 7.799 1/D%706
D?H 0.043(0.009) *** 0.786(0.023) *** 0.916 7.804 1/D16%0
D 0.144(0.013) *** 2.246(0.030) *** 0.972 23.824 1/D3331
Aboveground D, H 0.112(0.011) **+ 2.188(0.055) *** 0.192(0.084) * 0.978 21.315 1/D%837
D*H 0.074(0.009) *** 0.901(0.013) *** 0.976 22233 1/D?163

*p <0.05,* p < 0.01, ** p < 0.001.

With the same weighting functions adopted in WLS regression, the additive model
system based on the considered appropriate independently fitted biomass equations were
presented in Table 3. The total aboveground biomass equation was obtained by combining
the best equation of each component. The equations for the stem, foliage, and aboveground
total showed statistics that fit a little better with higher R?, i and lower RMSE values com-
pared to the independent fitting results. Simultaneously fitted allometric biomass equations
for branch indicated the goodness-of-fit statistics were slightly poorer than that for inde-
pendently fitted ones. Applying weightings to the additive system of equations could
adequately result in homoscedasticity of the variance errors, as shown by the graphical

analyses of the residuals (Figure 4).

Table 3. Additive biomass models developed by simultaneously fitted (WNSUR) procedure based on
the selected equations for each component.

Component Model Expression Ri dj RMSE
Stem Wet = 0.041D1-699 (70983 0.991 6.258
Branch Wy, = 0.020D2%4%7 0.941 12.884
Foliage Wi, = 0.094D1-8%8 0.921 7.555
Aboveground  W,g = 0.041D1699H0983 1 0.020D24%7 + 0.094D'8%  0.978 21.177
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Figure 4. Weighted residual plots for each biomass component in the system of equations fitted with
the WNSUR procedure. The density diagram on the right side indicates residual distribution.
3.2. Model Validation by a Jackknife Procedure
The additive system of biomass equations for total aboveground and its constituents
was tested by the jackknife method, and relationships between the observed and predicted
biomass values all showed a close correlation with R2, j larger than 0.92 (Figure 5). The
linear fitting results identified the linear trend of v = x, especially for the stem component
and aboveground total. The paired t-test demonstrated that the predicted and observed
biomass were statistically consistent for all components (p > 0.05). The predictive ability
was also supported by the cross-validation statistics which showed relatively little bias
(Table 4). The corresponding TRE values were negative, resulting in conservative estimates.
Stem Branch Foliage _ Aboveground
_ 07 R2 =004 1597 g2, —092 R2, =098
2300+
4 200 100 -
£ 200+
o
=
2 1004 100 - 50 -
2
&
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Figure 5. Relationships between observed and predicted biomass values obtained by jackknife procedure.
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Table 4. Cross-validation statistics for component-specific and total aboveground biomass.
Statistics Paired t-Test
Category
MAE MPE TRE t p-Value

Stem 3.857 1.601 —0.066 —0.082 0.935
Branch 8.720 5.126 —0.062 —0.024 0.981
Foliage 5.155 4.376 —0.027 —0.012 0.990
Aboveground 14.117 2.561 —0.057 —0.044 0.965

3.3. Aboveground Biomass Partitioning

The relative proportion of component biomass varied against diameter in different
ways (Figure 6). The results showed an increasing trend in the stem biomass fraction
over small trees and a slightly declining trend over large trees. In contrast, the branch
component showed a monotone increasing percentage while the foliage component had a
monotone declining percentage with tree size. Aboveground biomass exhibited relatively
larger biomass allocation to stems with a value of approximately 48.6% when compared
with branches and foliage. The partitioning proportion was the lowest for foliage biomass
(23.7%) and intermediate for branch biomass (27.7%).

80
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07 - Foliage °
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1

Biomass ratio (%)
2
L

° F————.—————IOO

20

R} --eee 00 o
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r T 1
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Diameter (cm)

Figure 6. Percentage of component biomass varies against diameter at breast height and the marginal
boxplot shows the distribution of component biomass ratios. The solid line indicates loess smoothing.
The length of the box indicates the 25th—75th percentile, the blue dot inside the box represents the
mean value, the horizontal line inside the box represents the median, and outliers are marked as
hollow circles.

4. Discussion
4.1. Aboveground Allometry Relationships

The best statistics of goodness-of-fit (Rg 4j and RMSE) were found for the stem biomass
equations, while relatively poor statistics were observed for branch and foliage components.
Because of the influences of internal and external factors, branch and foliage biomass is
naturally more variable than other parts like stems [15,26]. Despite this, the equations
presented in this study for predicting the biomass of stem, branch, foliage, and their
aggregates provided a satisfactory accuracy level.

Allometric biomass equations with D as the sole explanatory variable are easy to build
and employ, and usually provide satisfactory biomass estimates for many species and
regions [27-29]. Our results also indicate that the regression models utilizing D could yield
good fitting results for component biomass and their aggregates. Moreover, D is very easy
to accurately measure in the field and is almost involved in all forest inventory data. The
inclusion of H as an additional predictor improved equations for stem and aboveground
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biomass but led to a decline in the goodness-of-fit for branch and foliage biomass. Similar
results have been found as well in previous studies [7,22]. This probably suggests that
tree height may be essential for stem biomass but may not be a good predictor for crown
biomass. In a way, tree heights capture the variation of volume among trees [30]. The
model using single compound variables D?H showed less efficient estimations than the
one based on the multiple variables of D and H.

Due to the absence of information about tree crown size, we developed biomass equa-
tions using D and H only. In general, crown size variables including crown length and
crown diameter, have been found to further improve crown biomass estimations [11,17,31].
However, crown size measurements from the ground are a time-consuming and laborious
task, and crown overlap may increase the difficulty in measurements, hence crown dimen-
sions were rarely available in forest inventory data [24]. In practice, equations with easily
measured metrics are more practical to estimate forest aboveground biomass.

As reported in published studies, the NSUR procedure results in greater statistical
efficiency and lower variance by considering the contemporaneous correlations between
different biomass components [18,32,33]. In this study, the simultaneous fitting of the
system of biomass equations generated little improvement in terms of Rﬁ 4 and RMSE for
the stem, foliage, and aboveground total compared to the independently fitted equations.
Similar results were demonstrated by previous researchers who found small differences
in the fitting statistics between independent and simultaneous fitting procedures that
applied to the total biomass and its constituent parts [15,34]. But actually, the system of
equations fitted simultaneously ensures the additivity, which has long been considered a
desirable property when modeling the biomass estimates of the total and its constituent
parts [16,18]. The additivity property conforms to the biological point of view that the
estimates of biomass components and total are consistent [34]. In addition, simultaneous
fitting of equations usually provides narrower confidence intervals relative to the equations
fitted independently, since the model for total biomass must be a combination of that for
component biomass resulting in parameter restrictions [19,34]. Therefore, considering the
model sensitivity, fitting efficiency, and biological consistency, the estimates are more robust
by the simultaneous fitting procedure [16].

Heteroscedasticity is almost a certainty in allometric biomass model development,
as already discussed in previous studies [14,17,18,35]. The fact that biomass variability
around the equations increased with the size of the independent variables can be considered
general and natural, resulting in the heterogeneity of variance of biomass models [16,24,36].
When developing biomass equations, the residuals should satisfy the normality, and as a
result, heterogeneous variances cannot be ignored and must be dealt with to achieve stable
and minimum variance. The direct application of the OLS technique to biomass data, in
this case, does not remain efficient and reliable because of the unstable variance [16].

An alternative method to tackle this daunting issue is to log-transform both response
and explanatory variables before model construction to comply with normality and ho-
moscedasticity [7,37,38]. Approximately 66% of the biomass equations were analyzed using
OLS log-linear regression [39]. However, the application of log-transformation may alter
the relationship between predictor and response variables and may arouse substantial
bias if the parameter estimation of an allometric equation on its original scale is estimated
by linear fitting of logarithms [40]. A more efficient way is to model the error structure
as a weighting function to correct heteroscedasticity in biomass data, as recommended
by several studies [16,18,19]. The weighted nonlinear equations can achieve relatively
low errors compared to OLS log-linear equations [25]. In this study, the variances were
modeled as a power-law function of predictor D, stabilizing the model variances for all
biomass components (Figure 4). Thereby, the WNSUR procedure is more suitable for
fitting biomass equations since it can provide accurate estimates with lower uncertainty
than those obtained from independently fitted unweighted equations, corresponding with
previous analyses of the performance of the equations, the biological consistency, and
statistical efficiency [16].
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4.2. Model Comparison and Biomass Allocation

An additive system of equations was developed for estimating the aboveground
biomass of Mongolian pine trees in Northeastern China [28]. The biomass measured
during the present study was used to test the existing equations’ reliability on this study
site. Since biomass models are valid only within the range of explanatory variables, the
sampled trees that fell in the specific range were employed. Although the predicted and
observed values showed good linear fitting results with R2, j larger than 0.88, the published
equations did not provide accurate biomass estimates at the tree level, especially for
individual components (Figure 7). By contrast with the 1:1 line, we found these equations
overestimated the biomass for stem but underestimated for branches and foliage, resulting
in relatively and seemingly effective biomass estimates for the aboveground total. The
different biomass sampling methods (volume conversion versus direct weighing) may be
the potential causes. But the primary reason may be that the biomass allocation pattern is
driven by environmental conditions [41,42].
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Figure 7. Relationships between measured biomass of each component and total aboveground
biomass in this study for comparison with published equations of Dong, et al. [28].

As displayed in Figure 6, the stem alone accounted for approximately 48.6% of the
aboveground biomass on average, whereas branches accounted for 27.7% and the foliage
for 23.7%. The partitioning pattern within the tree indicates that Mongolian pine in dryland
allocates the greatest fraction of its resources to crown (branches and foliage included)
development, then to the stem. Interestingly, the pattern of aboveground biomass allocation
among components largely differed from that reported by Dong, et al. [28] who highlighted
that stem biomass occupied over three-quarters of the aboveground total, while branches
and foliage had only 13% and 9%, respectively. The discrepancies in partitioning pattern
could be explained due to the site quality, climate, and competition among trees. Previous
studies have demonstrated that many tree species develop broad crowns but short trunks
in arid regions [43,44]. The hydraulic resistance is considered the most severe limitation
to tree height growth [45]. The drier the site conditions the sooner upward growth will
be stopped [44]. In this study area, the low precipitation makes it drier than northeastern
China, Mongolian pine produces a rather shorter tree height. For example, a tree with
a diameter of 38.3 cm has a height of 22.3 m in northeast China [28], but a tree with a
44.2 cm diameter only has a height of less than 14 m in Mu Us Sandy Land. Due to the low
soil water availability in dryland, upper branches are limited by hydraulic resistance as
well. The middle and lower lateral branches become the principal part of photosynthesis.
However, the lower branches may be shaded and limited by light. In this issue, the middle
branches may grow more and then develop a broad crown [43]. A spreading crown of
a short tree could also reduce wind load and help to enhance wind resistance [43,44]. In
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addition, the relatively low stand density, i.e., the weak competition in this study, may
promote crown growth as well.

As usual, the stem is always the largest biomass pool among different components [46].
Although the results in this study showed a similar allocation pattern, the stem holds
a relatively small portion of aboveground biomass relative to other studies [11,46]. The
proportional distribution of biomass among tree components changes with tree size, namely
tree diameter has a strong effect on aboveground biomass allocation patterns. More
specifically, foliage mass declined substantially while branches increased continuously
as tree size increased, which is consistent with other studies [7,11,42]. This indicates
that the accumulation of foliage biomass per unit of woody mass tends to decrease as
trees grow larger, corresponding to the fact that woody biomass increases generally at
the cost of foliage biomass [42,47]. When trees are small and at the early development
stage, more carbohydrates are allocated to foliage to maintain efficient photosynthesis and
promote vertical growth. As the trees grow big, lateral branches of different individuals
contact each other, resulting in light competition between neighboring trees. Thus, more
resources are allocated to stems allowing for primary and secondary growth to enable trees
to compete with neighbors [42]. In the meantime, additional carbohydrates are invested for
branch growth. Trees with increasing biomass investment in branches keep a competitive
advantage that allows them to out-compete neighbors by developing broad crowns to
fight for light and available water [7]. Indeed, the biomass partitioning patterns stress the
plasticity of trees growing in different environmental conditions in nutrient acquisition and
trait formation. Therefore, the application of site-specific and species-specific allometric
biomass equations is recommended to the corresponding sites whenever possible [30].

5. Conclusions

This study recommends using the additive systems of equations to estimate the
aboveground biomass of Mongolian pine forests in Mu Us Sandy Land. Diameter at breast
height alone is a perfect predictor for branch and foliage biomass estimation, while the stem
requires tree height as an additional predictor to improve estimation accuracy. Mongolian
pine species in sandy land allocate relatively more biomass in the crown, as a possible
mechanism to improve water absorption ability. Given the plasticity of trees under different
environments, the allometric equations developed in this study can be applied to make
accurate biomass estimates reliable to the corresponding sites. The applicability of these
equations should restrict an independent variable to the range of the data used for model
development in this study.
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