A Review of Research on Tree Risk Assessment Methods
Abstract
:1. Introduction
2. Concepts Related to Tree Risk Assessment
2.1. Risk vs. Hazard
2.2. Risk Target
2.3. Risk Assessment and Health Evaluation
3. The Development of Tree Risk Assessment Studies
3.1. Systematic Tree Risk Assessment
3.2. Risk Assessment Based on Tree Mechanics
3.3. Visual Tree Risk Assessment
3.3.1. VTA
- Appearance inspection to diagnose the growth state and structure of trees, investigate the scale of damage, decay, and cavity, and determine whether there are signs of danger in trees;
- Precision inspection: When a tree is found to have signs of danger, a diagnostic instrument is used to measure its internal decay, the presence or absence of cracks, and the strength of the tree’s wood;
- Hazard determination, measurement and analysis of crucial defects, and calculation of residual strength of trees.
3.3.2. Tree Probing Technology
4. Discussions
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Huang, J. Building Forest Cities, Embracing Green Life—An Overview of National Forest City Construction Achievements. Available online: http://www.ce.cn/xwzx/gnsz/gdxw/201911/15/t20191115_33619604.shtml (accessed on 5 September 2022).
- Akay, A.; Önder, S. Ecological Benefits of Urban Trees; 2nd International Conference on Science, Ecology and Technology-2016 (ICONSETE’2016): Barcelona, Spain, 2016; p. 185. [Google Scholar]
- Koeser, A. Trees & Risk Researcher Summit White Paper. In Trees & Risk; International Society of Arboriculture: Atlanta, GA, USA, 2009; Available online: http://www.isa-arbor.com/publications/resources/litReview/Trees_and_Risk_White_Paper_EGM.pdf (accessed on 29 August 2022).
- Smiley, E.T.; Matheny, N.; Lilly, S. Tree Risk Assessment: A Foundation. Arborist News 2011, 20, 12–20. [Google Scholar]
- Linhares, C.S.; Gonçalves, R.; Martins, L.M.; Knapic, S. Structural Stability of Urban Trees Using Visual and Instrumental Techniques: A Review. Forests 2021, 12, 1752. [Google Scholar] [CrossRef]
- Sheng, R.; Perret, L.; Calmet, I.; Demouge, F.; Guilhot, J. Wind Tunnel Study of Wind Effects on a High-Rise Building at a Scale of 1: 300. J. Wind. Eng. Ind. Aerodyn. 2018, 174, 391–403. [Google Scholar] [CrossRef]
- Smiley, E.; Matheny, N.; Lilly, S. Tree Risk Assessment: Mitigation and Reporting. Arborist News 2012, 8, 13–18. [Google Scholar]
- Ellison, M. Quantified Tree Risk Assessment used in the Management of Amenity Trees. Arboric. Urban For. 2005, 31, 57–65. [Google Scholar] [CrossRef]
- Johnson, D.W. Tree Hazards: Recognition and Reduction in Recreation Sites; USDA Forest Service, Rocky Mountain Region: Lakewood, CO, USA, 1981; pp. 3–4.
- Jill, D.P. Urban Tree Risk Management: A Community Guide to Program Design and Implementation; USDA Forest Service, Northeastern Area, State and Private Forestry, Rocky Mountain Region: Lakewood, CO, USA, 2003; Volume 3, pp. 5–10.
- Koeser, A.K.; Hasing, G.; McLean, D.; Northrop, R. Tree Risk Assessment Methods: A Comparison of Three Common Evaluation Forms. EDIS 2014, 2014. [Google Scholar] [CrossRef]
- Smiley, E.T.; Matheny, N.; Lilly, S. Qualitative Tree Risk Assessment. Arborist News 2012, 21, 12–18. [Google Scholar]
- Klein, R.W.; Koeser, A.K.; Hauer, R.J.; Hansen, G.; Escobedo, F.J. Risk Assessment and Risk Perception of Trees: A Review of Literature Relating to Arboriculture and Urban Forestry. Arboric. Urban For. 2019, 45, 23–33. [Google Scholar] [CrossRef]
- Lindsey Purcell Tree Risk Management; 2012. Available online: https://mdc.itap.purdue.edu/item.asp?itemID=20925 (accessed on 10 January 2022).
- Norris, M. Tree Risk Assessments: What Works-What Does Not-Can We Tell; A review of a range of existing tree risk assessment methods; ISAAC Conference Perth Volume. 2007, pp. 1–31. Available online: http://unri.org/ECO%20697U%20S14/norris-_tree_risk_assessments.pdf (accessed on 14 January 2022).
- Li, C.; Weng, S.; Lin, Y.; Pang, R. Advance on assessment of landscaping tree health and hazard. Guangdong Agric. Sci. 2009, 7, 186–189. [Google Scholar] [CrossRef]
- Koeser, A.K.; Hauer, R.J.; Miesbauer, J.W.; Peterson, W. Municipal Tree Risk Assessment in the United States: Findings from a Comprehensive Survey of Urban Forest Management. Arboric. J. 2016, 38, 218–229. [Google Scholar] [CrossRef]
- Koeser, A.K.; Vogt, J.; Hauer, R.J.; Northrop, R.J.; Peterson, W. The Cost of Not Maintaining Trees: Findings and Recommendations from an Interna-Tional Symposium and Summit. Arboric. Ur-Ban For. 2016, 42, 377–388. [Google Scholar] [CrossRef]
- Han, F. Overview of Tree Risk Assessment Studies. J. Shandong For. Sci. Technol. 2013, 43, 90–94. [Google Scholar]
- Paine, L.A. Tree Failures and Accidents in Recreation Areas: A Guide to Data Management for Hazard Control; Department of Agriculture, Forest Service, Pacific Southwest Forest and Range Experiment Station: Berkeley, CA, USA, 1978.
- Paine, L.A. Coding Hazardous Tree Failures for a Data Management System; Pacific Southwest Forest and Range Experiment Station. 1978; Volume 29. Available online: https://www.srs.fs.usda.gov/pubs/26939 (accessed on 12 January 2022).
- Paine, L.A. Accident Hazard Evaluation and Control Decisions on Forested Recreation Sites; Pacific Southwest Forest and Range Experiment Station, Forest Service, US Department of Agriculture: Berkeley, CA, USA, 1971; Volume 68.
- Hickman, G.W.; Caprile, J.; Perry, E. Oak Tree Hazard Evaluation. J. arboric. 1989, 15, 177–184. [Google Scholar] [CrossRef]
- Hickman, G.W.; Perry, E.; Evans, R. Validation of a Tree Failure Evaluation System. J. Arboric. 1995, 21, 233. [Google Scholar] [CrossRef]
- Cox, L.A., Jr. What’s Wrong with Risk Matrices? Risk Anal. Int. J. 2008, 28, 497–512. [Google Scholar]
- Stewart, M.; O’Callaghan, D.; Hartley, M. Review of QTRA and Risk-based Cost-benefit Assessment of Tree Management. Arboric. Urban For. 2013, 39. [Google Scholar] [CrossRef]
- Weng, S.; Li, C.; Pang, R. Establishment of Landscaping Tree Health Assessment Model Using Analytic Hierarchy Process. J. Northwest For. Univ. 2009, 24, 177–181. [Google Scholar]
- Chen, J. Health Assessment of Ancient Trees in Beijing. Doctoral Thesis, Beijing Forestry University, Beijing, China, 2014. Available online: https://kns.cnki.net/KCMS/detail/detail.aspx?dbname=CDFD1214&filename=1014324751.nh (accessed on 20 January 2022).
- Mattheck, C.; Breloer, H. Field Guide for Visual Tree Assessment (VTA). Arboric. J. 1994, 18, 1–23. [Google Scholar] [CrossRef]
- Meilleur, G. Basic Tree Risk Assessment. Arborist News 2006, 15, 12–17. [Google Scholar]
- Matheny, N.; Clark, J. Tree Risk Assessment: What We Know (and What We Don’t Know). Arborist News 2009, 18, 28–33. [Google Scholar]
- Van Wassenaer, P.; Richardson, M. A Review of Tree Risk Assessment Using Minimally Invasive Technologies and Two Case Studies. Arboric. J. 2009, 32, 275–292. [Google Scholar] [CrossRef]
- Bruchwald, A.; Dmyterko, E.; Balazy, R. Risk Model of Tree Stand Damage by Winds and Its Evaluation Based on Damage Caused by Cyclone “Xaver”. For. Syst. 2018, 27, e014. [Google Scholar] [CrossRef]
- Mattheck, C.; Bethge, K. A Critic of the Static Integrated Analysis (SIA) Method. Arboric. J. 2005, 28, 191–199. [Google Scholar] [CrossRef]
- Reinartz, H.; Schlag, M. Integrierte Baumkontrolle (IBA). Stadt Grün 1997, 10, 696. [Google Scholar]
- Sinn, G.; Wessolly, L. A Contribution to the Proper Assessment of the Strength and Stability of Trees. Arboric. J. 1989, 13, 45–65. [Google Scholar] [CrossRef]
- Cousins, W. Elastic Modulus of Lignin as Related to Moisture Content. Wood Sci. Technol. 1976, 10, 9–17. [Google Scholar] [CrossRef]
- Cousins, W. Young’s Modulus of Hemicellulose as Related to Moisture Content. Wood Sci. Technol. 1978, 12, 161–167. [Google Scholar] [CrossRef]
- Cannell, M.G.R.; Morgan, J. Young’s Modulus of Sections of Living Branches and Tree Trunks. Tree Physiol. 1987, 3, 355–364. [Google Scholar] [CrossRef]
- Forest Products Laboratory (US). Wood Handbook: Wood as an Engineering Material; General Technical Report FPL-GTR-190; USDA Forest Service, Forest Products Laboratory, Madison, Rocky Mountain Region: Lakewood, CO, USA, 2010; p. 190.
- Clair, B.; Fournier, M.; Prevost, M.F.; Beauchêne, J.; Bardet, S. Biomechanics of Buttressed Trees: Bending Strains and Stresses. Am. J. Bot. 2003, 90, 1349–1356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woodrum, C.L.; Ewers, F.W.; Telewski, F.W. Hydraulic, Biomechanical, and Anatomical Interactions of Xylem from Five Species of Acer (Aceraceae). Am. J. Bot. 2003, 90, 693–699. [Google Scholar] [CrossRef]
- Kane, B. Branch Strength of Bradford Pear (Pyrus Calleryana Var.Bradford’). Arboric. Urban For. 2007, 33, 283–291. [Google Scholar] [CrossRef]
- Kane, B.; Clouston, P. Tree Pulling Tests of Large Shade Trees in the Genus Acer. Arboric. Urban For. 2008, 34, 101. [Google Scholar] [CrossRef]
- Dahle, G.A.; Grabosky, J.C. Variation in Modulus of Elasticity (E) along Acer Platanoides L.(Aceraceae) Branches. Urban For. Urban Green. 2010, 9, 227–233. [Google Scholar] [CrossRef]
- Kane, B.; Finn, J.T. Factors Affecting Branch Failures in Open-Grown Trees during a Snowstorm in Massachusetts, USA; SpringerPlus: Cham, Switzerland, 2014; Volume 3, pp. 1–10. [Google Scholar]
- Dahle, G.A.; James, K.R.; Kane, B.; Grabosky, J.C.; Detter, A. A Review of Factors That Affect the Static Load-Bearing Capacity of Urban Trees. Arboric. Urban For. 2017, 43, 89–106. [Google Scholar] [CrossRef]
- Zobel, B.J.; Van Buijtenen, J.P. Wood Variation: Its Causes and Control; Springer Science & Business Media: Berlin, Germany, 2012; ISBN 3-642-74069-3. [Google Scholar]
- Speck, T.; Burgert, I. Plant Stems: Functional Design and Mechanics. Annu. Rev. Mater. Res. 2011, 41, 169–193. [Google Scholar] [CrossRef]
- Bouslimi, B.; Koubaa, A.; Bergeron, Y. Effects of Biodegradation by Brown-Rot Decay on Selected Wood Properties in Eastern White Cedar (Thuja Occidentalis L.). Int. Biodeterior. Biodegrad. 2014, 87, 87–98. [Google Scholar] [CrossRef]
- Mencuccini, M.; Grace, J.; Fioravanti, M. Biomechanical and Hydraulic Determinants of Tree Structure in Scots Pine: Anatomical Characteristics. Tree Physiol. 1997, 17, 105–113. [Google Scholar] [CrossRef]
- Grochowski, J. Dendrometria; Państwowe Wydawn. Rolnicze i Leśne: Warsaw, Poland, 1973. [Google Scholar]
- Bruchwald, A.; Dmyterko, E. Metoda Okreslania Ryzyka Uszkodzenia Drzewostanu Przez Wiatr. Leśne Pr. Badaw. 2010, 71, 165–173. [Google Scholar]
- Urata, T.; Shibuya, M.; Koizumi, A.; Torita, H.; Cha, J. Both Stem and Crown Mass Affect Tree Resistance to Uprooting. J. For. Res. 2012, 17, 65–71. [Google Scholar] [CrossRef]
- Slater, D.; Ennos, A. The Level of Occlusion of Included Bark Affects the Strength of Bifurcations in Hazel (Corylus Avellana L.). J. Arboric. Urban For. 2015, 41, 194–207. [Google Scholar] [CrossRef]
- Slater, D. The Mechanical Effects of Bulges Developed around Bark-Included Branch Junctions of Hazel (Corylus Avellana L.) and Other Trees. Trees 2021, 35, 513–526. [Google Scholar] [CrossRef]
- Kontogianni, A.; Tsitsoni, T.; Goudelis, G. An Index Based on Silvicultural Knowledge for Tree Stability Assessment and Improved Ecological Function in Urban Ecosystems. Ecol. Eng. 2011, 37, 914–919. [Google Scholar] [CrossRef]
- Kong, F.; Bi, H.; McLean, M.; Li, F. Comparative Performances of New and Existing Indices of Crown Asymmetry: An Evaluation Using Tall Trees of Eucalyptus Pilularis (Smith). J. For. Res. 2021, 32, 43–65. [Google Scholar] [CrossRef]
- Dahle, G.; Grabosky, J.; Kane, B.; Miesbauer, J.; Peterson, W.; Telewski, F.; Koeser, A.; Watson, G. Tree Biomechanics: A White Paper from the 2012 International Meeting and Research Summit at The Morton Arboretum (Lisle, Illinois, U.S.). AUF 2014, 40, 309–318. [Google Scholar] [CrossRef]
- Schwarze, F.; Lonsdale, D.; Fink, S. An Overview of Wood Degradation Patterns and Their Implications for Tree Hazard Assessment. Arboric. J. 1997, 21, 1–32. [Google Scholar] [CrossRef]
- Schwarze, F.; Engels, J.; Mattheck, C. Fungal Strategies of Wood Decay in Trees; Springer: Berlin, Germany, 2000. [Google Scholar]
- Wagener, W.W. Judging Hazard from Native Trees in California Recreational Areas: A Guide for Professional Foresters (Res. Paper PSW-RP-1); Pacific Southwest Forest and Range Experiment Station, Forest Service, US Department of Agriculture: Berkeley, CA, USA, 1963; Volume 1.
- Smiley, E.T.; Fraedrich, B.R. Determining Strength Loss from Decay. J. Arboric. 1992, 18, 201–204. [Google Scholar] [CrossRef]
- Coder, K. Should You or Shouldn’t You Fill Tree Hollows. Grounds Maintenance (USA): Bellevue, WA, USA, 1989; Volume 24. [Google Scholar]
- Kane, B.C.; Ryan, H. The Accuracy of Formulas Used to Assess Strength Loss Due to Decay in Trees. J. Arboric. 2004, 30, 347–356. [Google Scholar] [CrossRef]
- Sterken, P. A Guide for Tree-Stability Analysis; Second and Expanded Edition; University and Research Centre of Wageningen: Wageningen, The Netherlands, 2005; p. 64. ISBN 90-90-19377-4. Available online: http://library.wur.nl.gkn (accessed on 10 March 2022).
- Mattheck, C.; Bethge, K.; Erb, D. Failure Criteria for TreeS. Arboric. J. 1993, 17, 201–209. [Google Scholar] [CrossRef]
- Erb, M.; Wessolly, L. Handbuch Der Baumstatik Und Baumkontrolle; Patzer-Verlag: Berlin/Heidelberg, Germany, 1998. [Google Scholar]
- Sterken, P.; Coder, K. A Protocol for Tree-Stability Assessments in Southern Europe; Arborist News: Atlanta, GA, USA, 2005. [Google Scholar]
- Kane, B.; Ryan, D.; Bloniarz, D.V. Comparing Formulae That Assess Strength Loss Due to Decay in Trees. J. Arboric. 2001, 27, 78–87. [Google Scholar] [CrossRef]
- Koizumi, A.; Hirai, T. Evaluation of the Section Modulus for Tree-Stem Cross Sections of Irregular Shape. J. Wood Sci. 2006, 52, 213–219. [Google Scholar] [CrossRef] [Green Version]
- Ciftci, C.; Kane, B.; Brena, S.F.; Arwade, S.R. Loss in Moment Capacity of Tree Stems Induced by Decay. Trees 2014, 28, 517–529. [Google Scholar] [CrossRef]
- Burcham, D.C.; Brazee, N.J.; Marra, R.E.; Kane, B. Can Sonic Tomography Predict Loss in Load-Bearing Capacity for Trees with Internal Defects? A Comparison of Sonic Tomograms with Destructive Measurements. Trees 2019, 33, 681–695. [Google Scholar] [CrossRef]
- dos Reis, M.N.; Gonçalves, R.; Brazolin, S.; de Assis Palma, S.S. Strength Loss Inference Due to Decay or Cavities in Tree Trunks Using Tomographic Imaging Data Applied to Equations Proposed in the Literature. Forests 2022, 13, 596. [Google Scholar] [CrossRef]
- Coutts, M. Components of Tree Stability in Sitka Spruce on Peaty Gley Soil. For. Int. J. For. Res. 1986, 59, 173–197. [Google Scholar] [CrossRef]
- Dupuy, L.X.; Fourcaud, T.; Lac, P.; Stokes, A. A Generic 3D Finite Element Model of Tree Anchorage Integrating Soil Mechanics and Real Root System Architecture. Am. J. Bot. 2007, 94, 1506–1514. [Google Scholar] [CrossRef] [PubMed]
- Rahardjo, H.; Harnas, F.; Indrawan, I.; Leong, E.; Tan, P.; Fong, Y.; Ow, L. Understanding the Stability of Samanea Saman Trees through Tree Pulling, Analytical Calculations and Numerical Models. Urban For. Urban Green. 2014, 13, 355–364. [Google Scholar] [CrossRef]
- Yang, M.; Défossez, P.; Danjon, F.; Fourcaud, T. Tree Stability under Wind: Simulating Uprooting with Root Breakage Using a Finite Element Method. Ann. Bot. 2014, 114, 695–709. [Google Scholar] [CrossRef]
- Dupuy, L.; Fourcaud, T.; Stokes, A. A Numerical Investigation into the Influence of Soil Type and Root Architecture on Tree Anchorage. In Eco-and Ground Bio-Engineering: The Use of Vegetation to Improve Slope Stability; Springer: Berlin/Heidelberg, Germany, 2007; pp. 175–189. [Google Scholar]
- Ji, J.; Fourcaud, T.; Zhang, Z. Towards Simulating the Biomechanical Acclimation of Tree Roots Using Numerical Analyses. In Proceedings of the 2006 Second International Symposium on Plant Growth Modeling and Applications, Beijing, China, 13–17 November 2006. [Google Scholar]
- Stokes, A.; Fourcaud, T. The Effect of Root Architecture and Root Loss through Trenching on the Anchorage of Tropical Urban Trees (Eugenia Grandis Wight). Trees 2009, 23, 197–209. [Google Scholar]
- Dumroese, R.K.; Terzaghi, M.; Chiatante, D.; Scippa, G.S.; Lasserre, B.; Montagnoli, A. Functional Traits of Pinus Ponderosa Coarse Roots in Response to Slope Conditions. Front. Plant Sci. 2019, 10, 947. [Google Scholar] [CrossRef]
- Krisans, O.; Matisons, R.; Rust, S.; Burnevica, N.; Bruna, L.; Elferts, D.; Kalvane, L.; Jansons, A. Presence of Root Rot Reduces Stability of Norway Spruce (Picea Abies): Results of Static Pulling Tests in Latvia. Forests 2020, 11, 416. [Google Scholar] [CrossRef]
- Krišāns, O.; Samariks, V.; Donis, J.; Jansons, Ā. Structural Root-Plate Characteristics of Wind-Thrown Norway Spruce in Hemiboreal Forests of Latvia. Forests 2020, 11, 1143. [Google Scholar] [CrossRef]
- James, K.R.; Haritos, N.; Ades, P.K. Mechanical Stability of Trees under Dynamic Loads. Am. J. Bot. 2006, 93, 1522–1530. [Google Scholar] [CrossRef]
- Gromke, C.; Ruck, B. Aerodynamic Modelling of Trees for Small-Scale Wind Tunnel Studies. Forestry 2008, 81, 243–258. [Google Scholar] [CrossRef]
- Gardiner, B.; Marshall, B.; Achim, A.; Belcher, R.; Wood, C. The Stability of Different Silvicultural Systems: A Wind-Tunnel Investigation. Forestry 2005, 78, 471–484. [Google Scholar] [CrossRef]
- Cao, J.; Tamura, Y.; Yoshida, A. Wind Tunnel Study on Aerodynamic Characteristics of Shrubby Specimens of Three Tree Species. Urban For. Urban Green. 2012, 11, 465–476. [Google Scholar] [CrossRef]
- Pavlis, M.; Kane, B.; Harris, J.R.; Seiler, J.R. The Effects of Pruning on Drag and Bending Moment of Shade Trees. Arboric. Urban For. 2008, 34, 207. [Google Scholar] [CrossRef]
- Smiley, E.T.; Kane, B. The Effects of Pruning Type on Wind Loading of Acer Rubrum. J. Arboric. 2006, 32, 33. [Google Scholar] [CrossRef]
- Ciftci, C.; Brena, S.F.; Kane, B.; Arwade, S.R. The effect of crown architecture on dynamic amplification factor of an open-grown sugar maple (Acer Saccharum L.). Trees 2013, 27, 1175–1189. [Google Scholar] [CrossRef]
- Rodriguez, M.; De Langre, E.; Moulia, B. A Scaling Law for the Effects of Architecture and Allometry on Tree Vibration Modes Suggests a Biological Tuning to Modal Compartmentalization. Am. J. Bot. 2008, 95, 1523–1537. [Google Scholar] [CrossRef] [PubMed]
- Sellier, D.; Fourcaud, T. Crown Structure and Wood Properties: Influence on Tree Sway and Response to High Winds. Am. J. Bot. 2009, 96, 885–896. [Google Scholar] [CrossRef]
- Peltola, H.; Kellomäki, S.; Hassinen, A.; Granander, M. Mechanical Stability of Scots Pine, Norway Spruce and Birch: An Analysis of Tree-Pulling Experiments in Finland. For. Ecol. Manag. 2000, 135, 143–153. [Google Scholar] [CrossRef]
- Kolbe, S.; Rentschler, F.; Frey, J.; Seifert, T.; Gardiner, B.; Detter, A.; Schindler, D. Assessment of Effective Wind Loads on Individual Plantation-Grown Forest Trees. Forests 2022, 13, 1026. [Google Scholar] [CrossRef]
- Guitard, D.; Castera, P. Experimental Analysis and Mechanical Modelling of Wind-Induced Tree Sways. In Wind and Trees; Cambridge University Press: Cambridge, UK, 1995; pp. 182–194. [Google Scholar]
- Kerzenmacher, T.; Gardiner, B. A Mathematical Model to Describe the Dynamic Response of a Spruce Tree to the Wind. Trees 1998, 12, 385–394. [Google Scholar] [CrossRef]
- Flesch, T.K.; Wilson, J.D. Wind and Remnant Tree Sway in Forest Cutblocks. II. Relating Measured Tree Sway to Wind Statistics. Agric. For. Meteorol. 1999, 93, 243–258. [Google Scholar] [CrossRef]
- Saunderson, S.; England, A.; Baker, C. A Dynamic Model of the Behaviour of Sitka Spruce in High Winds. J. Theor. Biol. 1999, 200, 249–259. [Google Scholar] [CrossRef] [PubMed]
- Spatz, H.-C. Greenhill’s Formula for the Critical Euler Buckling Length Revisited. In Proceedings of the 3rd Plant Biomechanics Conference, Freiburg-Badenweiler 2000, New York, NY, USA, 27 August – 2 September 2000. [Google Scholar]
- Gaffrey, D. Stress Distribution in a Stem of a 64-Year Old Douglas Fir Simulated with a 3D-Tree and Load Model. In Proceedings of the the 3rd Plant Biomechanics Conference Freiburg–Badenweiler 2000, New York, NY, USA, 27 August–2 September 2000. [Google Scholar]
- Tao, S. Research on trees Wind-induced Vibration Characteristics Based on Testing Methods and FEM simulation. Doctoral Dissertation, Beijing Forestry University, Beijing, China, 2013. [Google Scholar]
- Li, Z.L.; Chen, B. Wind Tunnel Test on Wind Load and Flow Field Characteristics of Trees. Sci. Silvae Sin. 2020, 56, 173–180. [Google Scholar]
- Véga, C.; Hamrouni, A.; El Mokhtari, S.; Morel, J.; Bock, J.; Renaud, J.-P.; Bouvier, M.; Durrieu, S. PTrees: A Point-Based Approach to Forest Tree Extraction from Lidar Data. Int. J. Appl. Earth Obs. Geoinf. 2014, 33, 98–108. [Google Scholar] [CrossRef]
- Jackson, T.; Shenkin, A.; Wellpott, A.; Calders, K.; Origo, N.; Disney, M.; Burt, A.; Raumonen, P.; Gardiner, B.; Herold, M. Finite Element Analysis of Trees in the Wind Based on Terrestrial Laser Scanning Data. Agric. For. Meteorol. 2019, 265, 137–144. [Google Scholar] [CrossRef]
- Giachetti, A.; Zini, G.; Giambastiani, Y.; Bartoli, G. Field Measurements of Tree Dynamics with Accelerometers. Forests 2022, 13, 1243. [Google Scholar] [CrossRef]
- Huang, X. Influence of Forest Stand Parameters on Windbreak Variables Using a Fluid Simulation Technique. Master’s Thesis, Nanjing Forestry University, Nanjing, China, 2019. [Google Scholar]
- Wilson, P.; Allen, J.; Walker, J. Appraisal of the Shigometer Technique. N. Z. J. For. Sci. 1982, 12, 86–95. [Google Scholar]
- Mattheck, C.G. Use of the Fractormeter to Determine the Strength of Wood with Uncipient Decay. Arboric. J. 1995, 21, 105–112. [Google Scholar]
- Mattheck, C.; Bethge, K.; Albrecht, W. How to Read the Results of Resistograph M. Arboric. J. 1997, 21, 331–346. [Google Scholar] [CrossRef]
- Dolwin, J.; Lonsdale, D.; Barnett, J. Detection of Decay in Trees. Arboric. J. 1999, 23, 139–149. [Google Scholar] [CrossRef]
- Han, M.; Li, Z.; Zhang, D. Assessment and Management Characteristics of Urban Single Tree Abroad. J. Anhui Agric. Sci. 2011, 39, 9620–9622, 9625. [Google Scholar] [CrossRef]
- Goh, C.L.; Abdul Rahim, R.; Fazalul Rahiman, M.H.; Mohamad Talib, M.T.; Tee, Z.C. Sensing Wood Decay in Standing Trees: A Review. Sens. Actuators A Phys. 2018, 269, 276–282. [Google Scholar] [CrossRef]
- Garrett, S. Tree Defect Detection; US Department of Agriculture, Forest Service, Technology & Development Program: San Dimas, CA, USA, 1997.
- Lin, C.-J.; Yang, T.-H. Detection of Acoustic Velocity and Electrical Resistance Tomographies for Evaluation of Peripheral-Inner Wood Demarcation in Urban Royal Palms. Urban For. Urban Green. 2015, 14, 583–589. [Google Scholar] [CrossRef]
- Divós, F.; Divós, P. Resolution of Stress Wave Based Acoustic Tomography; Shaker Verlag: Hannover, Germany, 2005; pp. 309–314. [Google Scholar]
- Wei, X.; Xu, S.; Sun, L.; Tian, C.; Du, C. Propagation Velocity Model and Two-Dimensional Defect Imaging of Stress Wave in Larch (Larix Gmelinii) Wood. BioResources 2021, 16, 6799. [Google Scholar] [CrossRef]
- Filipowicz, S.F.; Rymarczyk, T. Measurement Methods and Image Reconstruction in Electrical Impedance Tomography. Prz. Elektrotechniczny 2012, 88, 247–250. [Google Scholar]
- Yue, X.; Wang, L.; Wang, X.; Rong, B.; Ge, X.; Liu, Z.; Chen, Q. Quantitative Detection of Internal Decay Degree for Standing Trees Based on Three NDT Methods-Electric Resistance Tomography, Stress Wave Imaging and Resistograph Techniques. Sci. Silvae Sin. 2017, 53, 138–146. [Google Scholar]
- Wen, J.; Li, W.; Xiao, Z.; Zhang, J.; Han, H. Radar Wave Detection of Standing Trees Internal Defect. Trans. Chin. Soc. Agric. Mach. 2017, 48, 180–188. [Google Scholar]
- Brazee, N.J.; Marra, R.E.; Göcke, L.; Van Wassenaer, P. Non-Destructive Assessment of Internal Decay in Three Hardwood Species of Northeastern North America Using Sonic and Electrical Impedance Tomography. Forestry 2011, 84, 33–39. [Google Scholar] [CrossRef]
- Bertallot, A.; Canavero, F.; Comino, F.; Sambuelli, L.; Socco, L.; Martinis, R.; Nicolotti, G. On the Choice between Resistivity and Capacitance Tomography for Tree Stability Assessment. In Proceedings of the 12th international symposium on nondestructive testing of wood university of Western Hungary, Sopron, Hungary, 13–15 September 2000; Volume 15, p. 2001. [Google Scholar]
- Zong, Z.; Wang, Y.; Wei, Z. A Review of Algorithms and Hardware Implementations in Electrical Impedance Tomography. Prog. Electromagn. Res. 2020, 169, 59–71. [Google Scholar] [CrossRef]
- Bucur, V. Nondestructive Characterization and Imaging of Wood; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2003; ISBN 3-540-43840-8. [Google Scholar]
- Martin, P.; Collet, R.; Barthelemy, P.; Roussy, G. Evaluation of Wood Characteristics: Internal Scanning of the Material by Microwaves. Wood Sci. Technol. 1987, 21, 361–371. [Google Scholar] [CrossRef]
- Alani, A.M.; Lantini, L. Recent Advances in Tree Root Mapping and Assessment Using Non-Destructive Testing Methods: A Focus on Ground Penetrating Radar. Surv. Geophys. 2020, 41, 605–646. [Google Scholar] [CrossRef]
- Buza, Á.K.; Divós, F. Root Stability Evaluation with Non-Destructive Techniques. Acta Silv. Lignaria Hung. Int. J. For. Wood Environ. Sci. 2016, 12, 125–134. [Google Scholar] [CrossRef]
- Ow, L.F.; Sim, E.K. Detection of Urban Tree Roots with the Ground Penetrating Radar. Plant Biosyst.-Int. J. Deal. All Asp. Plant Biol. 2012, 146, 288–297. [Google Scholar] [CrossRef]
- Guo, L.; Chen, J.; Cui, X.; Fan, B.; Lin, H. Application of Ground Penetrating Radar for Coarse Root Detection and Quantification: A Review. Plant Soil 2013, 362, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Daniels, D.J. Ground Penetrating Radar; Iet: London, UK, 2004; Volume 1, ISBN 0-86341-360-9. [Google Scholar]
- Zhu, S.; Huang, C.; Su, Y.; Sato, M. 3D Ground Penetrating Radar to Detect Tree Roots and Estimate Root Biomass in the Field. Remote Sens. 2014, 6, 5754–5773. [Google Scholar] [CrossRef]
- Yeung, S.W.; Yan, W.M.; Hau, C.H.B. Performance of Ground Penetrating Radar in Root Detection and Its Application in Root Diameter Estimation under Controlled Conditions. Sci. China Earth Sci. 2016, 59, 145–155. [Google Scholar] [CrossRef]
- Liang, H.; Fan, G.; Li, Y.; Zhao, Y. Theoretical Development of Plant Root Diameter Estimation Based on Gprmax Data and Neural Network Modelling. Forests 2021, 12, 615. [Google Scholar] [CrossRef]
- Fan, G.; Liang, H.; Zhao, Y.; Li, Y. Automatic Reconstruction of Three-Dimensional Root System Architecture Based on Ground Penetrating Radar. Comput. Electron. Agric. 2022, 197, 106969. [Google Scholar] [CrossRef]
- Fäth, J.; Kunz, J.; Kneisel, C. Monitoring Spatiotemporal Soil Moisture Changes in the Subsurface of Forest Sites Using Electrical Resistivity Tomography (ERT). J. For. Res. 2022, 33, 1649–1662. [Google Scholar] [CrossRef]
- de Jong, S.M.; Heijenk, R.A.; Nijland, W.; van der Meijde, M. Monitoring Soil Moisture Dynamics Using Electrical Resistivity Tomography under Homogeneous Field Conditions. Sensors 2020, 20, 5313. [Google Scholar] [CrossRef]
- Amato, M.; Basso, B.; Celano, G.; Bitella, G.; Morelli, G.; Rossi, R. In Situ Detection of Tree Root Distribution and Biomass by Multi-Electrode Resistivity Imaging. Tree Physiol. 2008, 28, 1441–1448. [Google Scholar] [CrossRef] [PubMed]
- Giambastiani, Y.; Errico, A.; Preti, F.; Guastini, E.; Censini, G. Indirect Root Distribution Characterization Using Electrical Resistivity Tomography in Different Soil Conditions. Urban For. Urban Green. 2022, 67, 127442. [Google Scholar] [CrossRef]
- Mohamed, A.; Monnier, Y.; Mao, Z.; Lobet, G.; Maeght, J.-L.; Ramel, M.; Stokes, A. An Evaluation of Inexpensive Methods for Root Image Acquisition When Using Rhizotrons. Plant Methods 2017, 13, 11. [Google Scholar] [CrossRef] [PubMed]
- Buza, A.K.; Göncz, B. Comparison of Trees and NDT Methods. Wood Res. 2015, 60, 45–58. [Google Scholar]
- Dhondt, S.; Vanhaeren, H.; Van Loo, D.; Cnudde, V.; Inzé, D. Plant Structure Visualization by High-Resolution X-Ray Computed Tomography. Trends Plant Sci. 2010, 15, 419–422. [Google Scholar] [CrossRef]
- Pierret, A.; Capowiez, Y.; Moran, C.J.; Kretzschmar, A. X-Ray Computed Tomography to Quantify Tree Rooting Spatial Distributions. Geoderma 1999, 90, 307–326. [Google Scholar] [CrossRef]
- Kaestner, A.; Schneebeli, M.; Graf, F. Visualizing Three-Dimensional Root Networks Using Computed Tomography. Geoderma 2006, 136, 459–469. [Google Scholar] [CrossRef]
- Jassogne, L. Characterisation of Porosity and Root Growth in a Sodic Texture-Contrast Soil. Ph.D. Thesis, University of Western Australia, Perth, Australia, 2008. [Google Scholar]
Method | Tool | Judgment | Advantages and Disadvantages |
---|---|---|---|
Percussion diagnosis method | Wooden hammer or rubber hammer | Change in sound of knocking trees | Easy to operate, simple tools, no damage to trees, but highly subjective |
Drilling method | Increment borer | Observe the color of the extracted wood core to determine the decay and degree | Generally used for moderate and heavy corrosion detection, but the obtained wood cores vary greatly and are susceptible to new damage caused by the spread of decay |
Fractometer | Measurement of wood strength properties to determine the degree of decay | Growth cone sampling is required to quickly obtain wood properties of trees | |
Boroscope | Drill holes in the tree trunk and use a small camera to observe the interior | Allows visual confirmation from the inside, with the same defects as the growth cone | |
Resistance measurement method | Resistograph | Insert the drill bit into the tree, measure and record the drilling resistance | Fast and easy to perform and interpret graphs, but only detects severe decay and cavities, requiring a control group |
Resistance method | Shigometer | The xylem is drilled and a probe with pulsed current is added to determine the change in resistance | Detects early-stage decay |
Method | Advantages | Disadvantages |
---|---|---|
Rhizotrons and minirhizotrons | High resolution imaging and repeatable measurements | May affect the root growth and only a part of the roots can be observed, high cost and limited installation |
Ground penetrating radar | Accurate diagnosis of early and late wood decay and trunk cavities, and calculation of cavity volume | Detection of wood layers requires high-resolution frequency domain methods |
Electrical resistivity tomography | Easy data collection and repeatable measurements 1D, 2D, and 3D measurement capabilities | Systematic errors due to poor electrode contact exist Longer measurement time Difficult to discriminate the effect of roots from the background noise of low root biomass |
Acoustic detection | Detectable thick roots | No detection of small roots (<4 cm diameter) Shallow detection depth (<50 cm) High sensitivity to water content Difficult to distinguish roots from other buried materials |
X-ray computed tomography | High resolution imaging Easy repeatable measurements Fine root detection | Difficult to distinguish between roots and other materials High dependence on soil-related factors (i.e., soil type, soil moisture content, presence of organic matter or aerated pore space, root moisture status) Overestimation of root diameter and short root length |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Zhang, X.; Li, Z.; Wen, J.; Tan, X. A Review of Research on Tree Risk Assessment Methods. Forests 2022, 13, 1556. https://doi.org/10.3390/f13101556
Li H, Zhang X, Li Z, Wen J, Tan X. A Review of Research on Tree Risk Assessment Methods. Forests. 2022; 13(10):1556. https://doi.org/10.3390/f13101556
Chicago/Turabian StyleLi, Haibin, Xiaowei Zhang, Zeqing Li, Jian Wen, and Xu Tan. 2022. "A Review of Research on Tree Risk Assessment Methods" Forests 13, no. 10: 1556. https://doi.org/10.3390/f13101556