Heat-Treated Wood from Grand Fir Provides the Same Quality Compared to Silver Fir
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Thermal Modification
2.3. Tests
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Basic Statistical Analyses of the Properties for Untreated and Heat-Treated Wood
Abies alba | Picea abies | Abies grandis | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Treatment | Properties | Mean | SD | CV | Mean | SD | CV | Mean | SD | CV |
REF | Density (kg·m−3) | 449 | 47.4 | 10.6 | 486 | 47.5 | 9.8 | 475 | 56.8 | 11.9 |
Volumetric Swelling (%) | 15.1 | 1.9 | 12.5 | 16.5 | 2.3 | 14.1 | 14.1 | 2.3 | 15.9 | |
Brightness | 81.1 | 1.8 | 2.2 | 83.2 | 1.9 | 2.3 | 78.2 | 3.7 | 4.7 | |
Wettability (°) | 46.0 | 8.3 | 18.0 | 62.5 | 14.6 | 23.4 | 48.1 | 7.8 | 16.3 | |
Modulus of Elasticity (MPa) | 8454 | 831 | 9.8 | 9252 | 1124 | 12.1 | 8246 | 1,023 | 12.4 | |
Modulus of Rupture (MPa) | 76.1 | 9.5 | 12.4 | 84.9 | 11.2 | 13.2 | 73.6 | 9.1 | 12.4 | |
Toughness (J·cm−2) | 7.1 | 1.6 | 21.9 | 6.7 | 1.9 | 28.8 | 5.2 | 1.8 | 34.7 | |
Compressive strength (MPa) | 39.1 | 4.7 | 12.1 | 41.8 | 5.1 | 12.2 | 42.0 | 4.2 | 10.0 | |
180 | Density (kg·m−3) | 442 | 46 | 10.4 | 476 | 44 | 9.2 | 467 | 44 | 9.5 |
Volumetric Swelling (%) | 13.5 | 1.9 | 13.9 | 14.1 | 2.0 | 14.1 | 12.6 | 2.2 | 17.5 | |
Brightness | 52.1 | 6.7 | 12.9 | 56.0 | 6.6 | 11.8 | 51.6 | 6.4 | 12.4 | |
Wettability (°) | 107.0 | 12.7 | 11.9 | 108.5 | 13.0 | 12.0 | 110.1 | 10.5 | 9.6 | |
Modulus of Elasticity (MPa) | 8,696 | 868 | 10.0 | 9,790 | 1,222 | 12.5 | 8,878 | 1,320 | 14.9 | |
Modulus of Rupture (MPa) | 75.2 | 12.4 | 16.5 | 79.7 | 11.3 | 14.2 | 72.1 | 13.2 | 18.4 | |
Toughness (J·cm−2) | 5.6 | 1.7 | 30.8 | 5.1 | 1.6 | 31.4 | 3.7 | 1.8 | 48.7 | |
Compressive strength (MPa) | 38.2 | 4.7 | 12.4 | 44.4 | 6.4 | 14.5 | 46.7 | 4.6 | 9.8 | |
200 | Density (kg·m−3) | 433 | 48 | 11.2 | 462 | 44 | 9.4 | 456 | 55 | 12.1 |
Volumetric Swelling (%) | 11.0 | 1.6 | 14.3 | 10.9 | 2.2 | 20.7 | 10.4 | 2.1 | 20.0 | |
Brightness | 34.4 | 5.6 | 16.4 | 37.3 | 7.0 | 18.8 | 35.8 | 6.4 | 17.8 | |
Wettability (°) | 110.6 | 9.2 | 8.4 | 107.3 | 9.8 | 9.1 | 107.7 | 10.1 | 9.3 | |
Modulus of Elasticity (MPa) | 8357 | 1124 | 13.5 | 9488 | 1445 | 15.2 | 8303 | 1065 | 12.8 | |
Modulus of Rupture (MPa) | 53.8 | 11.8 | 22.0 | 64.4 | 15.6 | 24.2 | 55.7 | 13.0 | 23.4 | |
Toughness (J·cm−2) | 3.1 | 1.2 | 38.7 | 3.7 | 1.4 | 38.9 | 2.7 | 1.4 | 51.2 | |
Compressive strength (MPa) | 40.4 | 6.0 | 14.8 | 46.3 | 6.6 | 14.3 | 48.8 | 5.9 | 12.0 |
References
- Podrázský, V.; Vacek, Z.; Kupka, I.; Vacek, S.; Třeštík, M.; Cukor, J. Effects of silver fir (Abies alba Mill.) on the humus forms in Norway spruce (Picea abies (L.) H. Karst.) stands. J. For. Sci. 2018, 64, 245–250. [Google Scholar]
- Mikulenka, P.; Prokůpková, A.; Vacek, Z.; Vacek, S.; Bulušek, D.; Simon, J.; Šimůnek, V.; Hájek, V. Effect of climate and air pollution on radial growth of mixed forests: Abies alba Mill. vs. Picea abies (L.) Karst. Eur. For. J. 2020, 66, 23–36. [Google Scholar] [CrossRef]
- Sopushynskyy, I.; Maksymchuk, R.; Kopolovets, Y.; Ayan, S. Intraspecific structural signs of curly silver fir (Abies alba Mill.) growing in the Ukrainian Carpathians. J. For. Sci. 2020, 66, 299–308. [Google Scholar] [CrossRef]
- Vacek, Z.; Cukor, J.; Vacek, S.; Linda, R.; Prokůpková, A.; Podrázský, V.; Gallo, J.; Vacek, O.; Šimůnek, V.; Drábek, O.; et al. Production potential, biodiversity and soil properties of forest reclamations: Opportunities or risk of introduced coniferous tree species under climate change? Eur. J. For. Res. 2021, 140, 1243–1266. [Google Scholar] [CrossRef]
- Fulín, M. Silviculture, production potential and ecological effects of Grand fir (Abies grandis/Douglas ex D. Don/Lindl.) in the Czech Republic-review). Lesn. Cas. 2015, 61, 262–266. [Google Scholar] [CrossRef]
- Podrázský, V.; Čermák, R.; Zahradník, D.; Kouba, J. Production of Douglas-fir in the Czech Republic based on national forest inventory data. J. For. Sci. 2013, 59, 398–404. [Google Scholar] [CrossRef]
- Krejzek, R.; Novotný, P.; Podrázský, V.; Beran, F.; Dostál, J. Evaluation of the IUFRO provenance plot with grand fir in the Habr locality (Western Bohemia) at the age of 31 years. J. For. Sci. 2015, 61, 551–561. [Google Scholar] [CrossRef]
- Fulín, M.; Novotný, P.; Podrázský, V.; Beran, F.; Dostál, J.; Jehlička, J. Evaluation of the provenance plot “Hrubá Skála” (Northern Bohemia) with grand fir at the age of 36 years. J. For. Sci. 2017, 63, 75–87. [Google Scholar]
- Hofman, J. Pěstování Jedle Obrovské; Státní Zemědělské Nakladatelství: Praha, Czech Republic, 1963; p. 116. [Google Scholar]
- Kobliha, J. Some Results of Hybridization and Conservation of the Genofond of Abies alba. In Proceedings of the International Symposium “Forest Genetics, Breeding and Physiology of Woody Plants”; Central Research Institute of Forest Genetics and Breeding: Voronezh, Russia, 1989; pp. 59–63. [Google Scholar]
- Kobliha, J.; Janeček, V. Growth of progenies from spontaneous hybrids within genus Abies in comparative plantations. In Proceedings of the 9th International European Silver Fir Symposium, Skopje, Macdeconia, 21–26 May 2000; Ecology and Silviculture of European Silver Fir: Skopje, Macedonia, 2000; pp. 27–36. [Google Scholar]
- Podrázský, V.; Zahradník, D.; Remeš, J. Potential consequences of tree species and age structure changes of forests in the Czech Republic-review of forest inventory data. Wood Res. 2014, 59, 483–490. [Google Scholar]
- Hapla, F.; Kubalek, S.; Bak, M.; Németh, R. Timber grade oriented analysis of Abies grandis trees’ oven dry density with different growth rates. Part I: Experimental design. Wood Res. 2013, 58, 361–368. [Google Scholar]
- Hapla, F.; Kubalek, S.; Bak, M.; Németh, R. Timber grade oriented analysis of Abies grandis trees’ oven dry density with different growth rates. Part II: Effect of the trees’ social position in the forest on the variability of oven dry density. Wood Res. 2014, 59, 273–282. [Google Scholar]
- Lukášek, J.; Zeidler, A.; Barcík, Š. Shrinkage of Grand fir wood and its variability within the stem. Drvna Ind. 2012, 63, 121–128. [Google Scholar] [CrossRef]
- Mitze, H. Ein unterschätzter Nordamerikaner Küstentanne. Forstwirtsch. Land Forst 2010, 26, 66–67. [Google Scholar]
- Wagenführ, R. Holzatlas, 7th ed.; Fachbuchverlag: Leipzig, Germany, 2007; p. 819. [Google Scholar]
- Burns, R.M.; Honkala, B.H. Silvics of North America, Vol 1., Conifers; Agriculture Handbook 654; U.S. Department of Agriculture, Forest Service: Washington, DC, USA, 1990.
- Alden, H.A. Softwoods of North America; Forest Service, Forest Products Laboratory: Madison, WI, USA, 1997.
- Moliński, W.; Raczkowski, J. Wybrane właściwości drewna jodły olbrzymiej (Abies grandis Lindl.) krajowego pochodzenia. Sylwan 1993, 11, 69–79. [Google Scholar]
- Wąsik, R.; Michalec, K.; Barszcz, A. The variability of certain macrostructural features and the density of grand fir (Abies grandis Lindl.) wood from selected stands in southern Poland. Drewno 2015, 58, 45–58. [Google Scholar]
- Zeidler, A.; Salem, M.Z.M.; Borůvka, V. Mechanical properties of grand fir wood grown in the Czech Republic in vertical and horizontal positions. BioResources 2015, 10, 793–808. [Google Scholar] [CrossRef]
- Hill, C.A. Wood Modification: Chemical, Thermal and Other Processes; John Wiley & Sons: Chichester, UK, 2006; p. 264. [Google Scholar]
- Esteves, B.; Pereira, H. Wood modification by heat treatment: A review. BioResources 2009, 4, 370–404. [Google Scholar] [CrossRef]
- Jones, D.; Sandberg, D. A review of wood modification globally–updated findings from COST FP1407. Interdiscip. Perspect. Built Environ. 2020, 1, 1–31. [Google Scholar] [CrossRef]
- Borůvka, V.; Dudík, R.; Zeidler, A.; Holeček, T. Influence of site conditions and quality of birch wood on its properties and utilization after heat treatment. Part I—Elastic and strength properties, relationship to water and dimensional stability. Forests 2019, 10, 189. [Google Scholar] [CrossRef]
- ITA (International Thermowood Association). Thermowood Handbook; International Thermowood Association: Helsinki, Finland, 2003; Available online: https://asiakas.kotisivukone.com/files/en.thermowood.palvelee.fi/downloads/tw_handbook_080813.pdf (accessed on 28 April 2022).
- Dudík, R.; Borůvka, V.; Zeidler, A.; Holeček, T.; Riedl, M. Influence of Site Conditions and Quality of Birch Wood on Its Properties and Utilization after Heat Treatment. Part II—Surface Properties and Marketing Evaluation of the Effect of the Treatment on Final Usage of Such Wood. Forests 2020, 11, 556. [Google Scholar] [CrossRef]
- Sandberg, D.; Kutnar, A.; Mantanis, G. Wood modification technologies—A review. iFor.-Biogeosci. For. 2017, 10, 895. [Google Scholar] [CrossRef]
- Allegretti, O.; Brunetti, M.; Cuccui, I.; Ferrari, S.; Nocetti, M.; Terziev, N. Thermo-vacuum modification of spruce (Picea abies Karst.) and fir (Abies alba Mill.) wood. BioResources 2012, 7, 3656–3669. [Google Scholar]
- Gündüz, G.; Niemz, P.; Aydemir, D. Changes in specific gravity and equilibrium moisture content in heat-treated fir (Abies nordmanniana subsp Bornmülleriana Mattf.) wood. Dry. Technol. 2008, 26, 1135–1139. [Google Scholar] [CrossRef]
- Günduz, G.; Aydemir, D.; Korkut, S. The effect of heat treatment on some mechanical properties and color changes of Uludag fir wood. Dry. Technol. 2010, 28, 249–255. [Google Scholar] [CrossRef]
- Kol, H.Ş.; Sefil, Y.; Keskin, S.A. Effect of heat treatment on the mechanical properties, and dimensional stability of fir wood. In Proceedings of the 27th International Conference Research for the Furniture Industry, Ankara, Turkey, 17–18 September 2015; Gazi University: Ankara, Turkey, 2015; pp. 17–18. [Google Scholar]
- Kol, H.S. Characteristics of heat-treated Turkish pine and fir wood after ThermoWood processing. J. Environ. Biol. 2010, 31, 1007–1011. [Google Scholar]
- Korkut, S. The effects of heat treatment on some technological properties in Uludağ fir (Abies bornmuellerinana Mattf.) wood. Build. Environ. 2008, 43, 422–428. [Google Scholar] [CrossRef]
- Kučerová, V.; Lagaňa, R.; Hýrošová, T. Changes in chemical and optical properties of silver fir (Abies alba L.) wood due to thermal treatment. J. Wood Sci. 2019, 65, 1–10. [Google Scholar] [CrossRef]
- Yildiz, S.; Gezer, E.D.; Yildiz, U.C. Mechanical and chemical behavior of spruce wood modified by heat. Build. Environ. 2006, 41, 1762–1766. [Google Scholar] [CrossRef]
- Shi, J.L.; Kocaefe, D.; Zhang, J. Mechanical behaviour of Quebec wood species heat-treated using ThermoWood process. Holz Als Roh Werkst. 2007, 65, 255–259. [Google Scholar] [CrossRef]
- Podrázský, V.; Remeš, J. Půdotvorná role významných introdukovaných jehličnanů—Douglasky tisolisté, jedle obrovské a borovice vejmutovky. Zprávy Lesn. Výzkumu 2008, 53, 27–33. [Google Scholar]
- Podrázský, V.; Remeš, J. Soil-forming effect of Grand fir (Abies grandis [Dougl. ex D. Don] Lindl.). J. For. Sci. 2009, 55, 533–539. [Google Scholar] [CrossRef] [Green Version]
- Remeš, J.; Pulkrab, K.; Bílek, L.; Podrázský, V. Economic and Production Effect of Tree Species Change as a Result of Adaptation to Climate Change. Forests 2020, 11, 431. [Google Scholar] [CrossRef]
- Viitaniemi, P.; Ranta-Maunus, A.; Jämsä, S.; Ek, P. Method for Processing of Wood at Elevated Temperatures. Patent EP-0759137 VTT, 11 May 1995. [Google Scholar]
- ČSN 49 0108; Drevo. Zisťovanie Hustoty (Wood. Determination of the Density). Český Normalizační Institut: Prague, Czech Republic, 1993.
- ČSN 49 0126; Skúšky Vlastností Rastlého Dreva. Metóda Zisťovania Napúčavosti (Testing of Growth Wood Properties. Method for Determination of Swelling). Office for Standardization and Measurement: Prague, Czech Republic, 1989.
- ČSN EN ISO 11664-4; Kolorimetrie-Část 4: Kolorimetrický Prostor CIE 1976 L*a*b* (Colorimetry-Part 4: CIE 1976 L*a*b* Colour Space). Czech Office for Standards, Metrology and Testing: Prague, Czech Republic, 2011.
- ČSN 49 0116; Drevo. Metóda Zisťovania Modulu Pružnosti pri Statickom Ohybe (Wood. Determination of the Modulus of Elasticity in Static Bending). Vydavatelství Úřadu pro Normalizaci a Měření: Prague, Czech Republic, 1982.
- ČSN 49 0115; Drevo. Zisťovanie medze Pevnosti v statickom Ohybe (Wood. Determination of Ultimate Strength in Flexure Tests). Vydavatelství Úřadu pro Normalizaci a Měření: Prague, Czech Republic, 1979.
- ČSN 49 0110; Drevo. Medza Pevnosti v tlaku v Smere Vlákien (Wood. Compression Strength Limits Parallel to the Grain). Office for Standardization and Measurement: Prague, Czech Republic, 1980.
- ČSN 49 0117; Drevo. Rázová Húževnatosť Vohybe (Wood. Impact Strength in Bending). Vydavatelství Úřadu pro Normalizaci a Měření: Prague, Czech Republic, 1980.
- ČSN 49 0103; Drevo. Zisťovanie Vlhkosti pri Fyzikálnych a Mechanických Skúškach (Wood. Determination of Moisture Content at Physical and Mechanical Testing). Vydavatelství Úřadu pro normalizaci a měření: Prague, Czech Republic, 1979.
- Zeidler, A.; Šedivka, P. Influence of selected factors on wood density variability in Grand fir (Abies grandis/Douglas/Lindl.). Wood Res. 2015, 60, 33–44. [Google Scholar]
- Kučerová, V.; Lagaňa, R.; Výbohová, E.; Hýrošová, T. The effect of chemical changes during heat treatment on the color and mechanical properties of fir wood. BioResources 2016, 11, 9079–9094. [Google Scholar] [CrossRef]
- Ferrari, S.; Cuccui, I.; Allegretti, O. Thermo-vacuum modification of some European softwood and hardwood species treated at different conditions. BioResources 2013, 8, 1100–1109. [Google Scholar] [CrossRef]
- Skaar, C. Wood-Water Relations; Springer: Berlin, Germany, 1988; p. 283. [Google Scholar]
- Navickas, P.; Karpavicuite, S.; Albrektas, D. Effect of heat treatment on wettability and MOE of pine and spruce wood. Mater. Sci. 2015, 21, 400–404. [Google Scholar] [CrossRef]
- Bakar, B.F.A.; Hiziroglu, S.; Tahir, P.M. Properties of some thermally modified wood species. Mater. Des. 2013, 43, 348–355. [Google Scholar] [CrossRef]
- Kačíková, D.; Kačík, F.; Čabalová, I.; Ďurkovič, J. Effects of thermal treatment on chemical, mechanical and colour traits in Norway spruce wood. Bioresour. Technol. 2013, 144, 669–674. [Google Scholar] [CrossRef] [PubMed]
- Torniainen, P.; Popescu, C.M.; Jones, D.; Scharf, A.; Sandberg, D. Correlation of studies between colour, structure and mechanical properties of commercially produced ThermoWood® treated Norway spruce and Scots pine. Forests 2021, 12, 1165. [Google Scholar] [CrossRef]
- Li, X.J.; Cai, Z.Y.; Mou, Q.Y.; Wu, Y.Q.; Liu, Y. Effects of heat treatment on some physical properties of Douglas fir (Pseudotsuga menziesii) wood. Adv. Mater. Res. 2011, 197–198, 90–95. [Google Scholar] [CrossRef]
- Korkut, S.; Akgül, M.; Dündar, T. The effects of heat treatment on some technological properties of Scots pine (Pinus sylvestris L.) wood. Bioresour. Technol. 2008, 99, 1861–1868. [Google Scholar] [CrossRef] [PubMed]
Species | Species Share (%) | Mean Diameter (cm) | Mean Height (m) | Standing Volume (m3·ha−1) |
---|---|---|---|---|
Norway spruce | 40 | 19 | 21 | 144 |
European beech | 20 | 18 | 18 | 43 |
Grand fir | 20 | 25 | 24 | 97 |
European larch | 15 | 27 | 21 | 50 |
Silver fir | 5 | 17 | 17 | 15 |
180 °C/REF * | 200 °C/REF * | |||||
---|---|---|---|---|---|---|
Silver Fir | Spruce | Grand Fir | Silver Fir | Spruce | Grand Fir | |
Density | −1.6 | −1.9 | −1.8 | −3.6 | −4.9 | −4.0 |
Volumetric Swelling | −10.8 | −14.3 | −10.5 | −27.0 | −34.1 | −26.3 |
Brightness | −35.8 | −32.7 | −34.1 | −57.6 | −55.2 | −54.2 |
Wettability | 132.8 | 73.6 | 128.8 | 140.7 | 71.6 | 123.7 |
Modulus of Elasticity | 2.9 | 5.8 | 7.7 | −1.1 | 2.6 | 0.7 |
Modulus of Rupture | −1.2 | −6.1 | −2.0 | −29.3 | −24.1 | −24.3 |
Toughness | −21.6 | −24.4 | −30.3 | −56.6 | −44.6 | −47.9 |
Compressive strength | −2.5 | 6.2 | 11.3 | 3.2 | 10.9 | 16.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeidler, A.; Borůvka, V.; Remeš, J.; Pulkrab, K. Heat-Treated Wood from Grand Fir Provides the Same Quality Compared to Silver Fir. Forests 2022, 13, 1542. https://doi.org/10.3390/f13101542
Zeidler A, Borůvka V, Remeš J, Pulkrab K. Heat-Treated Wood from Grand Fir Provides the Same Quality Compared to Silver Fir. Forests. 2022; 13(10):1542. https://doi.org/10.3390/f13101542
Chicago/Turabian StyleZeidler, Aleš, Vlastimil Borůvka, Jiří Remeš, and Karel Pulkrab. 2022. "Heat-Treated Wood from Grand Fir Provides the Same Quality Compared to Silver Fir" Forests 13, no. 10: 1542. https://doi.org/10.3390/f13101542
APA StyleZeidler, A., Borůvka, V., Remeš, J., & Pulkrab, K. (2022). Heat-Treated Wood from Grand Fir Provides the Same Quality Compared to Silver Fir. Forests, 13(10), 1542. https://doi.org/10.3390/f13101542