Electroantennographic Responses of Cerambyx welensii Küster to Host-Related Volatiles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Substances
2.2. Electroantennography
2.3. Statistical Analyses
3. Results
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- López-Pantoja, G.; Domínguez, L.; Sánchez-Osorio, I. Mark-recapture estimates of the survival and recapture rates of Cerambyx welensii Küster (Coleoptera, Cerambycidae) in a cork oak dehesa in Huelva (Spain). Cent. Eur. J. Biol. 2008, 3, 431–441. [Google Scholar] [CrossRef]
- Sallé, A.; Bouget, C. Victims or perpetrators: Contribution and response of insects to forest diebacks and declines. Ann. For. Sci. 2020, 77, 104. [Google Scholar] [CrossRef]
- Duque-Lazo, J.; Navarro-Cerrillo, R.M. What to save, the host or the pest? The spatial distribution of xylophage insects within the Mediterranean oak woodlands of Southwestern Spain. For. Ecol. Manag. 2017, 392, 90–104. [Google Scholar] [CrossRef]
- Vives, E. Coleoptera, Cerambycidae. In Fauna Ibérica; Ramos, M.A., Ed.; Museo Nacional de Ciencias Naturales, CSIC: Madrid, Spain, 2000; Volume 12. [Google Scholar]
- Martin, J.; Cabezas, J.; Buyolo, T.; Patón, D. The relationship between Cerambyx spp. damage and subsequent Biscogniauxia mediterranum infection on Quercus suber forests. For. Ecol. Manag. 2005, 216, 166–174. [Google Scholar] [CrossRef]
- Bruce, T.J.A.; Wadhams, L.J.; Woodcock, C.M. Insect host location: A volatile situation. Trends Plant Sci. 2005, 10, 269–274. [Google Scholar] [CrossRef] [PubMed]
- Smart, L.E.; Aradottir, G.I.; Bruce, T.J.A. Role of semiochemicals in Integrated Pest Management. In Integrated Pest Management Current Concepts and Ecological Perspective; Abrol, D., Ed.; Elsevier: London, UK, 2013; pp. 93–109. [Google Scholar]
- Allison, J.; Borden, J.; Seybold, J. A review of the chemical ecology of the Cerambycidae (Coleoptera). Chemoecology 2004, 14, 123–150. [Google Scholar] [CrossRef]
- Millar, J.G.; Hanks, L.M. Chemical ecology of cerambycids. In Cerambycidae of the World: Biology and Pest Management; Wang, Q., Ed.; CRC Press: Boca Raton, FL, USA, 2017; pp. 161–208. [Google Scholar]
- Torres-Vila, L.M.; Mendiola-Díaz, F.J.; Sánchez-González, Á. Dispersal differences of a pest and a protected Cerambyx species (Coleoptera: Cerambycidae) in oak open woodlands: A mark–recapture comparative study. Ecol. Entomol. 2017, 42, 18–32. [Google Scholar] [CrossRef]
- Torres-Vila, L.M.; Sánchez-González, Á.; Merino-Martínez, J.; Ponce-Escudero, F.; Conejo-Rodríguez, Y.; Martín-Vertedor, D.; Ferrero-García, J.J. Mark-recapture of Cerambyx welensii in dehesa woodlands: Dispersal behaviour, population density, and mass trapping efficiency with low trap densities. Entomol. Exper. Appl. 2013, 149, 273–281. [Google Scholar] [CrossRef]
- Sánchez-Osorio, I.; Tapias, R.; Domínguez, L.; López-Pantoja, G. Intraspecific variability of olfactory responses in Cerambyx welensii Küster (Coleoptera, Cerambycidae). Influence of anatomical, physiological and experimental factors. Invest. Agrar. Sist. Y Recur. For. 2009, 18, 140–151. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Osorio, I.; Tapias, R.; Domínguez, L.; López, G. Caracterización de la respuesta electroantenográfica de Cerambyx welensii Küster y Prinobius germari Dejean (Coleoptera, Cerambycidae). Investig. Agraria. Sist. Y Recur. For. 2007, 16, 95–106. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Osorio, I.; Domínguez, L.; López-Pantoja, G.; Tapias, R. Antennal response of Prinobius myardi to synthetic tree volatiles. Silva Fenn. 2015, 49, 1305. [Google Scholar] [CrossRef] [Green Version]
- Loreto, F. Distribution of isoprenoid emitters in the Quercus genus around the world: Chemo-taxonomical implications and evolutionary considerations based on the ecological function of the trait. Perspect. Plant Ecol. Evol. Syst. 2002, 5, 185–192. [Google Scholar] [CrossRef]
- Niinemets, U.; Reichstein, M.; Staudt, M.; Seufert, G.; Tenhunen, J.D. Stomatal constraints may affect emission of oxygenated monoterpenoids from the foliage of Pinus pinea. Plant Physiol. 2002, 130, 1371–1385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blanch, J.S.; Peñuelas, J.; Sardans, J.; Llusia, J. Drought, warming and soil fertilization effects on leaf volatile terpene concentrations in Pinus halepensis and Quercus ilex. Acta Physiol. Plant. 2009, 31, 207–218. [Google Scholar] [CrossRef]
- Delfine, S.; Csiky, O.; Seufert, G.; Loreto, F. Fumigation with exogenous monoterpenes of a non-isoprenoid-emitting oak (Quercus suber): Monoterpene acquisition, translocation, and effect on the photosynthetic properties at high temperatures. New Phytol. 2000, 146, 27–36. [Google Scholar] [CrossRef]
- Llusià, J.; Peñuelas, J.; Asensio, D.; Munné-Bosch, S. Airborne limonene confers limited thermotolerance to Quercus ilex. Physiol. Plant. 2005, 123, 40–48. [Google Scholar] [CrossRef]
- Staudt, M.; Mir, C.; Joffre, R.; Rambal, S.; Bonin, A.; Landais, D.; Lumaret, R. Isoprenoid emissions of Quercus spp. (Q. suber and Q. ilex) in mixed stands contrasting in interspecific genetic introgression. New Phytol. 2004, 163, 573–584. [Google Scholar] [CrossRef]
- Loreto, F.; Pollastri, S.; Fineschi, S.; Velikova, V. Volatile isoprenoids and their importance for protection against environmental constraints in the Mediterranean area. Environ. Exp. Bot. 2014, 103, 99–106. [Google Scholar] [CrossRef]
- Sánchez-Osorio, I.; López-Pantoja, G.; Tapias, R.; Pareja-Sánchez, E.; Domínguez, L. Monoterpene emission of Quercus suber L. highly infested by Cerambyx welensii Küster. Ann. For. Sci. 2019, 76, 98. [Google Scholar] [CrossRef]
- Sánchez-Osorio, I.; Paramio, A.M.; Lencina, J.L.; Gallego, D.; Domínguez, L. Field attraction of Cerambyx welensii to fermentation odors and host monoterpenes. J. Pest. Sci. 2016, 89, 59–68. [Google Scholar] [CrossRef]
- Fürstenau, B.; Rosell, G.; Guerrero, A.; Quero, C. Electrophysiological and behavioral responses of the black-banded oak borer, Coroebus florentinus, to conspecific and host-plant volatiles. J. Chem. Ecol. 2012, 38, 378–388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paris, C.I.; Llusia, J.; Peñuelas, J. Indirect effects of tending ants on holm oak volatiles and acorn quality. Plant Signal Behav. 2011, 6, 547–550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gabriel, R.; Schäfer, L.; Gerlach, C.; Rausch, T.; Kesselmeier, J. Factors controlling the emissions of volatile organic acids from leaves of Quercus ilex L. (Holm oak). Atmos. Environ. 1999, 33, 1347–1355. [Google Scholar] [CrossRef]
- Holzinger, R.; Sandoval-Soto, L.; Rottenberge, S.; Crutzen, P.J.; Kesselmeier, J. Emissions of volatile organic compounds from Quercus ilex L. measured by Proton Transfer Reaction Mass Spectrometry under different environmental conditions. J. Geophys. Res. 2000, 105, 20573–20579. [Google Scholar] [CrossRef]
- Monaco, P.; Previtera, L. Isoprenoids from the leaves of Quercus suber. J. Nat. Prod. 1984, 47, 673–676. [Google Scholar] [CrossRef]
- Rocha, S.; Delgadillo, I.; Correia, A. GC-MS study of volatiles of normal and microbiologically attacked cork from Quercus suber L. J. Agric. Food. Chem. 1996, 44, 865–871. [Google Scholar] [CrossRef]
- Busta, L.; Serra, O.; Kim, O.T.; Molinas, M.; Peré-Fossoul, I.; Figueras, M.; Jetter, R. Oxidosqualene cyclases involved in the biosynthesis of triterpenoids in Quercus suber cork. Sci. Rep. 2020, 10, 8011. [Google Scholar] [CrossRef]
- Quero, C.; Vidal, B.; Guerrero, Á. EAG responses increase of Spodoptera littoralis antennae after a single pheromone pulse. Nat. Prod. Commun. 2014, 9, 1099–1101. [Google Scholar] [CrossRef] [Green Version]
- Mair, P.; Wilcox, R.R. Robust Statistical Methods in R Using the WRS2 Package. Behav. Res. Methods 2020, 52, 464–488. [Google Scholar] [CrossRef]
- Wende, B.; Gossner, M.M.; Grass, I.; Arnstadt, T.; Hofrichter, M.; Floren, A.; Linsenmair, K.E.; Weisser, W.W.; Steffan-Dewenter, I. Trophic level, successional age and trait matching determine specialization of deadwood-based interaction networks of saproxylic beetles. Proc. R. Soc. B 2017, 284, 1854. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramos-Robles, M.; Vargas-Cardoso, O.R.; Corona-López, A.M.; Flores-Palacios, A.; Toledo-Hernández, V.H. Spatio-temporal variation of Cerambycidae-host tree interaction networks. PLoS ONE 2020, 15, 228880. [Google Scholar] [CrossRef] [Green Version]
- Yasui, H. Chemical communication in mate location and recognition in the white-spotted longicorn beetle, Anoplophora malasiaca (Coleoptera: Cerambycidae). Appl. Entomol. Zool. 2009, 44, 183–194. [Google Scholar] [CrossRef] [Green Version]
- Webster, B.; Bruce, T.; Pickett, J.; Hardie, J. Volatiles functioning as host cues in a blend become nonhost cues when presented alone to the black bean aphid. Anim. Behav. 2010, 79, 451–457. [Google Scholar] [CrossRef]
- Bracho-Nunez, A.; Knothe, N.M.; Welter, S.; Staudt, M.; Costa, M.R.; Liberato, M.A.R.; Piedade, M.T.F.; Kesselmeier, J. Leaf level emissions of volatile organic compounds (VOC) from some Amazonian and Mediterranean plants. Biogeosciences 2013, 10, 5855–5873. [Google Scholar] [CrossRef] [Green Version]
- Pearse, I.S.; Gee, W.S.; Beck, J.J. Headspace volatiles from 52 oak species advertise induction, species identity, and evolution, but not defense. J. Chem. Ecol. 2013, 39, 90–100. [Google Scholar] [CrossRef] [PubMed]
- Brockerhoff, E.G.; Grant, G.G. Correction for differences in volatility among olfactory stimuli and effect on EAG responses of Dioryctria abietivorella to plant volatiles. J. Chem. Ecol. 1999, 25, 1353–1366. [Google Scholar] [CrossRef]
- Germinara, G.S.; Ganassi, S.; Pistillo, M.O.; Di Domenico, C.; De Cristofaro, A.; Di Palma, A.M. Antennal olfactory responses of adult meadow spittlebug, Philaenus spumarius, to volatile organic compounds (VOCs). PLoS ONE 2017, 12, 190454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez-Osorio, I.; Tapias, R.; Domínguez, L.; López-Pantoja, G.; González, M.d.M. Electroantennographic Responses of Cerambyx welensii Küster to Host-Related Volatiles. Forests 2021, 12, 1168. https://doi.org/10.3390/f12091168
Sánchez-Osorio I, Tapias R, Domínguez L, López-Pantoja G, González MdM. Electroantennographic Responses of Cerambyx welensii Küster to Host-Related Volatiles. Forests. 2021; 12(9):1168. https://doi.org/10.3390/f12091168
Chicago/Turabian StyleSánchez-Osorio, Israel, Raúl Tapias, Luis Domínguez, Gloria López-Pantoja, and María del Mar González. 2021. "Electroantennographic Responses of Cerambyx welensii Küster to Host-Related Volatiles" Forests 12, no. 9: 1168. https://doi.org/10.3390/f12091168
APA StyleSánchez-Osorio, I., Tapias, R., Domínguez, L., López-Pantoja, G., & González, M. d. M. (2021). Electroantennographic Responses of Cerambyx welensii Küster to Host-Related Volatiles. Forests, 12(9), 1168. https://doi.org/10.3390/f12091168