Invertebrate Assemblages on Biscogniauxia Sporocarps on Oak Dead Wood: An Observation Aided by Squirrels
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Data Collection
2.3. Data Analysis
3. Results
4. Discussion
Supplementary Materials
Funding
Acknowledgments
Conflicts of Interest
References
- Stokland, J.N.; Siitonen, J.; Jonsson, B.G. Biodiversity in Dead Wood; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Seibold, S.; Bässler, C.; Brandl, R.; Gossner, M.M.; Thorn, S.; Ulyshen, M.D.; Müller, J. Experimental studies of dead-wood biodiversity—A review identifying global gaps in knowledge. Biol. Conserv. 2015, 191, 139–149. [Google Scholar] [CrossRef]
- Rayner, A.D.M.; Boddy, L. Fungal Decomposition of Wood: Its Biology and Ecology; John Wiley & Sons: Chichester, UK, 1988. [Google Scholar]
- Fukasawa, Y.; Hyodo, F.; Kawakami, S. Foraging association between myxomycetes and fungal communities on coarse woody debris. Soil Biol. Biochem. 2018, 121, 95–102. [Google Scholar] [CrossRef]
- Hanski, I. Fungivory: Fungi, insects and Ecology. In Insect–Fungus Interactions; Wilding, N., Collins, N.M., Hammond, P.M., Webber, J.F., Eds.; Academic Press: London, UK, 1989. [Google Scholar]
- Currah, R.S.; Smreciu, E.A.; Lehesvirta, T.; Niemi, M.; Larsen, K.W. Fungi in the winter diets of northern flying squirrels and red squirrels in the boreal mixedwood forest of northern Alberta. Can. J. Bot. 2000, 78, 1514–1520. [Google Scholar]
- Elliott, T.F.; Elliott, K. Vertebrate consumption and dispersal of the Nothofagaceae associated ascomycete Cyttaria. Austral. Ecol. 2019, 44, 747–751. [Google Scholar] [CrossRef]
- Schigel, D.S. Fungivory and host associations of Coleoptera: A bibliography and review of research approaches. Mycology 2012, 3, 258–272. [Google Scholar] [CrossRef]
- Buxton, C.M.G. British Diptera associated with fungi. III. Flies of all families reared from about 150 species of fungi. Entomol. Mon. Mag. 1960, 96, 61–94. [Google Scholar]
- Elton, C.S. The Pattern of Animal Communities; Methuen and Co.: Slingsby, UK, 1966. [Google Scholar]
- Jonsell, M.; Nordlander, G. Host selection patterns in insects breeding in bracket fungi. Ecol. Entomol. 2004, 29, 697–705. [Google Scholar] [CrossRef]
- Yamashita, S.; Hijii, N. The role of fungal taxa and developmental stage of mushrooms in determining the composition of the mycophagous insect community in a Japanese forest. Eur. J. Entomol. 2007, 104, 225–233. [Google Scholar] [CrossRef] [Green Version]
- Nakamori, T.; Suzuki, A. Surface properties of the mushroom Strobilurus ohshimae result in food differentiation by collembolan species. Eur. J. Soil Biol 2008, 44, 478–482. [Google Scholar] [CrossRef]
- Yamashita, S.; Ando, K.; Hoshina, H.; Ito, N.; Katayama, Y.; Kawanabe, M.; Maruyama, M.; Itioka, T. Food web structure of the fungivorous insect community on bracket fungi in a Bornean tropical rain forest. Ecol. Entomol. 2015, 40, 390–400. [Google Scholar] [CrossRef]
- Kobayashi, T.; Sota, T. Evolution of host use in fungivorous ciid beetles (Coleoptera: Ciidae): Molecular phylogeny focusing on Japanese taxa. Mol. Phylogen Evol. 2021, 162, 107197. [Google Scholar] [CrossRef] [PubMed]
- Tuno, N. Insect feeding on spores of a bracked fungus, Elfvingia applanata (Pers.) Karst. (Ganodermataceae, Aphyllophorales). Ecol. Res. 1999, 14, 97–103. [Google Scholar] [CrossRef]
- Kadowaki, K.; Keschen, R.A.B.; Beggs, J.R. No evidence for a Ganoderma spore dispersal mutualism in an obligate spore-feeding beetle Zearagytodes maculifer. Fung Biol. 2011, 115, 768–774. [Google Scholar] [CrossRef] [PubMed]
- Persson, Y.; Ihrmark, K.; Stenlid, J. Do bark beetles facilitate the establishment of rot fungi in Norway spruce? Fung. Ecol. 2011, 4, 262–269. [Google Scholar] [CrossRef]
- Kitabayashi, K.; Tuno, N. Soil burrowing Muscina angustifrons (Diptera: Muscidae) larvae excrete spores capable of forming mycorrhizae underground. Mycoscience 2018, 59, 252–258. [Google Scholar] [CrossRef] [Green Version]
- Seibold, S.; Müller, J.; Baldrian, P.; Cadotte, M.W.; Stursová, M.; Biedermann, P.H.W.; Krah, F.S.; Bässler, C. Fungi associated with beetles dispersing from dead wood—Let’s take the beetle bus! Fung. Ecol. 2019, 39, 100–108. [Google Scholar] [CrossRef]
- Takahashi, K.H.; Tuno, N.; Kagaya, T. The relative importance of spatial aggregation and resource partitioning on the coexistence of mycophagous insects. Oikos 2005, 109, 125–134. [Google Scholar] [CrossRef]
- Kadowaki, K. Species coexistence patterns in a mycophagous insect community inhabiting the wood-decaying bracket fungus Cryptoporus volvatus. Eur. J. Entomol. 2010, 107, 89–99. [Google Scholar] [CrossRef] [Green Version]
- Komonen, A.; Penttila, R.; Lindgren, M.; Hanski, I. Forest fragmentation truncates a food chain based on an old-growth forest bracket fungus. Oikos 2000, 90, 119–126. [Google Scholar] [CrossRef]
- Komonen, A.; Kouki, J. Occurrence and abundance of fungus-dwelling beetles (Ciidae) in boreal forests and clearcuts: Habitat associations at two spatial scales. Anim. Biodiv. Conserv. 2005, 28, 137–147. [Google Scholar]
- Joseph, R.; Keyhani, N.O. Fungal mutualisms and pathosystems: Life and death in the ambrosia beetle mycangia. Appl. Microbiol. Biotechnol. 2021, 105, 3393–3410. [Google Scholar] [CrossRef]
- Pažoutová, S.; Srutka, P.; Holusa, J.; Chudickova, M.; Kolarik, M. Diversity of xylariaceous symbionts in Xiphydria woodwasps: Role of vector and a host tree. Fung. Ecol. 2010, 3, 392–401. [Google Scholar] [CrossRef]
- Visser, A.A.; Ros, V.I.D.; de Beer, Z.W.; Debets, A.J.M.; Hartog, E.; Kuyper, T.W.; Læssøe, T.; Slippers, B.; Aanen, D.K. Level of specificity of Xylaria species associated with fungus-growing termites: A phylogenetic approach. Mol. Ecol. 2009, 18, 553–567. [Google Scholar] [CrossRef]
- Xiao, G.; Ying, S.H.; Zheng, P.; Wang, Z.L.; Zhang, S.; Xie, X.Q.; Shang, Y.; St Leger, R.J.; Zhao, G.P.; Wang, C.; et al. Genomic perspectives on the evolution of fungal entomopathogenicity in Beauveria bassiana. Sci. Rep. 2012, 2, 483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stone, L.B.L.; Bidochka, M.J. The multifunctional lifestyles of Metarhizium: Evolution and applications. Appl. Microbiol. Biotechnol. 2020, 104, 9935–9945. [Google Scholar] [CrossRef] [PubMed]
- Nikoh, N.; Fukatsu, T. Interkingdom host jumping underground: Phylogenetic analysis of entomoparasitic fungi of the genus Cordyceps. Mol. Biol. Evol. 2000, 17, 629–638. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, N.; Okada, T.; Tomaru, N.; Nishimura, N.; Nakagawa, M. Forest dynamics of stands damaged by Japanese oak wilt in the Kaisho forest, Aichi Prefecture. J. Jap. For. Soc. 2016, 98, 273–278. [Google Scholar] [CrossRef] [Green Version]
- Nishikawa, S.; Kubo, M.; Ozaki, Y. Mass mortality due to the spread of oak wilt disease in a 19-ha secondary Quercus serrata forest within Sambe Forest at Shimane University. Bull Fac. Life Env. Sci. Shimane Univ. 2018, 23, 21–26. [Google Scholar]
- Endoh, R.; Suzuki, M.; Okada, G.; Takeuchi, Y.; Futai, K. Fungus symbionts colonizing the galleries of the ambrosia beetle Platypus quercivorus. Microb. Ecol. 2011, 62, 106–120. [Google Scholar] [CrossRef]
- Masuya, H.; Manabe, R.; Ohkuma, M.; Endoh, R. Draft genome sequence of Raffaelea quercivora JCM 11526, a Japanese oak wilt pathogen associated with the Platypodid beetle, Platypus quecivorus. Genome Announc. 2016, 4, e00755-16. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, T.; Oguro, M.; Akiba, M.; Taki, H.; Kitajima, H.; Ishihara, H. Mushroom yield of cultivated shiitake (Lentinula edodes) and fungal communities in logs. J. Res. 2020, 25, 269–275. [Google Scholar] [CrossRef]
- Tokimoto, K.; Komatsu, M.; Fukumasa-Nakai, Y. Establishing the selection method for the Lentinula edodes strains resistant to Trichoderma spp. Proc. Jpn. Acad 1994, 70, 112–116. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.Y.; Kwon, H.W.; Yun, Y.H.; Kim, S.H. Identification and characterization of Trichoderma species damaging Shiitake mushroom bed-logs infested by Camptomyia pest. J. Microbiol Biotechnol 2016, 26, 909–917. [Google Scholar] [CrossRef] [PubMed]
- Kurosawa, Y.; Hisamatsu, S.; Sasaji, H. The coleoptera of Japan in color Vol.III; Hoikusha: Tokyo, Japan, 1998. (In Japanese) [Google Scholar]
- Ueno, S.; Kurosawa, Y.; Sato, M. The coleoptera of Japan in color Vol.II; Hoikusha: Tokyo, Japan, 1999. (In Japanese) [Google Scholar]
- Hayashi, M.; Morimoto, K.; Kimoto, S. The coleoptera of Japan in color Vol.IV; Hoikusha: Tokyo, Japan, 2002. (In Japanese) [Google Scholar]
- Ishikawa, T.; Takai, M.; Yasunaga, T. A Field Guide to Japanese Bugs: Terrestrial Heteropterans; Zenkoku Noson Kyoiku Kyokai: Tokyo, Japan, 2012; Volume 3. (In Japanese) [Google Scholar]
- Terayama, M.; Kubota, S.; Eguchi, K. Encyclopedia of Japanese Ants; Asakura Shoten: Tokyo, Japan, 2014. (In Japanese) [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; The R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Oksanen, J.; Blanchet, F.G.; Kindt, R.; Legendre, P.; Minchin, P.R.; O’Hara, R.B.; Simpson, G.L.; Solymos, P.; Stevens, M.H.H.; Szoecs, E.; et al. Vegan: Community Ecology Package; R Package Version 2.5-7; 2020; Available online: https://cran.r-project.org/web/packages/vegan/index.html.
- Anderson, M.J. A new method for non parametric multivariate analysis of variance. Austral Ecol. 2001, 26, 32–46. [Google Scholar]
- Ulyshen, M.D. Saproxylic Insects: Diversity, Ecology and Conservation; Springer: Cham, Switzerland, 2019. [Google Scholar]
- McKeever, S. The biology of the Golden-mantled ground squirrel, Citellus lateralis. Ecol. Monogr. 1964, 34, 383–401. [Google Scholar] [CrossRef]
- Maser, C.; Maser, Z. Interactions among squirrels, mycorrhizal fungi, and coniferous forests in Oregon. Great Basin Nat. 1988, 48, 358–369. [Google Scholar]
- Stadler, M. Importance of secondary metabolites in the Xylariaceae as parameters for assessment of their taxonomy, phylogeny, and functional biodiversity. Curr. Res. Environ. Appl. Mycol. 2011, 1, 75–133. [Google Scholar] [CrossRef]
- Cork, S.J.; Kenagy, G.J. Nutritional value of hypogeous fungus for a forest-dwelling ground squirrel. Ecology 1989, 70, 577–586. [Google Scholar] [CrossRef]
- Crowson, R.A. The associations of Coleoptera with Ascomycetes. In Fungus-Insect Relationships; Wheeler, Q., Blackwell, M., Eds.; Columbia University Press: New York, NY, USA, 1984; pp. 257–285. [Google Scholar]
- Katanoda, I.; Sato, Y.; Morita, S.; Okubo, H. Adult emergence and oviposition preference of Mesosa longipennis for Chinese Quercus acutissima. Kyushu J. Res. 2005, 58, 105–108. (In Japanese) [Google Scholar]
- Gossner, M.M.; Damken, C. Diversity and ecology of saproxylic Hemiptera. In Saproxylic Insects: Diversity, Ecology and Conservation (Zoological Monographs 1); Ulyshen, M.D., Ed.; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Powell, J.A.; Mitter, C.; Farrell, B. Evolution of larval food preferences in Lepidoptera. In Lepidoptera, Moths and Butterflies Volume 1: Evolution, Systematics, and Biogeography; Kristensen, N.P., Ed.; de Gruyter: Berlin, Germany, 1998; pp. 403–422. [Google Scholar]
- Powell, J.A. Apomyelois bistriatella: A moth which feeds in an ascomycete fungus (Lepidoptera: Pyralidae). J. N. Y. Entomol. Soc. 1967, 75, 190–194. [Google Scholar]
- Lee, Y.-B.; An, S.J.; Park, C.G.; Kim, J.; Han, S.; Kwak, Y.-S. Oak tree canker disease supports arthropod diversity in a natural ecosystem. Plant Path. J. 2014, 30, 43–50. [Google Scholar] [CrossRef] [Green Version]
- Jacobsen, R.M.; Birkemore, T.; Sverdrup-Thygeson, A. Priority effects of early successional insects influence late successional fungi in dead wood. Ecol. Evol. 2015, 5, 4896–4905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshimoto, J.; Kakutani, T.; Nishida, T. Influence of resource abundance on the structure of the insect community attracted to fermented tree sap. Ecol. Res. 2005, 20, 405–414. [Google Scholar] [CrossRef]
- Park, M.S.; Fong, J.J.; Lee, H.; Shin, S.; Lee, S.; Lee, N.; Lim, Y.W. Determination of coleopteran insects associated with spore dispersal of Cryptoporus volvatus. J. Asia-Pac. Entomol 2014, 17, 647–651. [Google Scholar] [CrossRef]
- Lawrence, J.F. Coleoptera associated with an Hypoxylon species (Ascomycetes: Xylariaceae) on oak. Coleopt. Bull. 1977, 31, 309–312. [Google Scholar]
- Seibold, S.; Bässler, C.; Baldrian, P.; Thorn, S.; Müller, J.; Gossner, M.M. Wood resource and not fungi attract early-successional saproxylic species of Heteroptera—An experimental approach. Insent. Conserv. Divers. 2014, 7, 533–542. [Google Scholar] [CrossRef]
- Nardi, J.B.; Bee, C.M.; Miller, L.A.; Taylor, S.J. Distinctive features of the alimentary canal of a fungus-feeding hemipteran, Mezira granulata (Heteroptera: Aradidae). Arthropod Struct. Dev. 2009, 38, 206–215. [Google Scholar] [CrossRef] [PubMed]
- Wikars, L.-O. The wood-decaying fungus Daldinia loculata (Xylariaceae) as an indicator of fire-dependent insects. Ecol. Bull. 2001, 49, 263–268. [Google Scholar]
- Vogel, S.; Alvarez, B.; Bässler, C.; Müller, J.; Thorn, S. The red-belted bracket (Fomitopsis pinicola) colonizes spruce trees early after bark beetle attack and persists. Fung. Ecol. 2017, 27, 182–188. [Google Scholar] [CrossRef]
- FFPRI. Naragare Boujo No Shintenkai; Forestry and Forest Products Research Institute: Tsukuba, Japan, 2015; ISBN 978-4-905304-48-7. (In Japanese) [Google Scholar]
- Fukasawa, Y.; Matsukura, K.; Stephan, J.; Makoto, K.; Suzuki, S.N.; Kominami, Y.; Takagi, M.; Tanaka, N.; Takemoto, S.; Kinuura, H.; et al. Patterns of community composition and diversity in latent fungi of living Quercus serrata trunks across a range of oak wilt prevalence and climate variables in Japan. Fung. Ecol. 2021, in press. [Google Scholar] [CrossRef]
Variable | Estimate |
---|---|
Diameter | –0.03 ** |
Position (bottom) | –0.34 ** |
Teleomorph | 0.02 * |
Anamorph | – |
d.f. (null) | 444 |
Null deviance | 814.12 |
d.f. (residual) | 441 |
Residual deviance | 770.35 |
AIC | 1517.1 |
Variable | Laemophloeus | Librodor | Neuroctenus |
---|---|---|---|
Diameter | 0.18 | 0.32 * | 0.20 ** |
Anamorph area | 0.97 * | 1.17 | – |
Teleomorph area | 0.08 * | 0.24 * | 0.51 ** |
d.f. (null) | 63 | 63 | 63 |
Null deviance | 51.98 | 71.98 | 86.46 |
d.f. (residual) | 60 | 60 | 61 |
Residual deviance | 24.47 | 22.51 | 41.33 |
AIC | 32.47 | 30.51 | 47.33 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fukasawa, Y. Invertebrate Assemblages on Biscogniauxia Sporocarps on Oak Dead Wood: An Observation Aided by Squirrels. Forests 2021, 12, 1124. https://doi.org/10.3390/f12081124
Fukasawa Y. Invertebrate Assemblages on Biscogniauxia Sporocarps on Oak Dead Wood: An Observation Aided by Squirrels. Forests. 2021; 12(8):1124. https://doi.org/10.3390/f12081124
Chicago/Turabian StyleFukasawa, Yu. 2021. "Invertebrate Assemblages on Biscogniauxia Sporocarps on Oak Dead Wood: An Observation Aided by Squirrels" Forests 12, no. 8: 1124. https://doi.org/10.3390/f12081124