Sustainable Forest Management Evaluation Using Carbon Credits: From Production to Environmental Forests
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Review
2.2. Framework for the Research Design
2.3. Simulation Framework for Evaluating the Carbon Absorption Function of Production Forests
2.3.1. Basic Unit of Carbon Absorption
2.3.2. Management Costs of Production Forests
2.3.3. Setting Carbon Credit Prices in the Simulation
3. Results
3.1. Challenges in Sustainable Management of Japanese Forests
3.1.1. Changes in the Forestry and Lumber Industries in Japan
3.1.2. Forest Age Structure
3.1.3. Forest Management
3.2. Verification of the Market Carbon Trade Hypothesis
3.2.1. Calculation of Carbon Absorption and Management Cost by Age
3.2.2. Evaluation of Pay Ability by Carbon Credit
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Beer, C.; Reichstein, M.; Tomelleri, E.; Ciais, P.; Jung, M.; Carvalhais, N.; Rödenbeck, C.; Arain, M.A.; Baldocchi, D.; Bonan, G.B.; et al. Terrestrial gross carbon dioxide uptake: Global distribution and covariation with climate. Science 2010, 329, 834–838. [Google Scholar] [CrossRef] [Green Version]
- Seto, K.C.; Güneralp, B.; Hutyra, L.R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl. Acad. Sci. USA 2012, 109, 16083–16088. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baccini, A.; Goetz, S.J.; Walker, W.S.; Laporte, N.T.; Sun, M.; Sulla-Menashe, D.; Hackler, J.; Beck, P.S.A.; Dubayah, R.; Friedl, M.A.; et al. Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nat. Clim. Chang. 2012, 2, 182–185. [Google Scholar] [CrossRef]
- Saatchi, S.S.; Harris, N.L.; Brown, S.; Lefsky, M.; Mitchard, E.T.A.; Salas, W.; Zutta, B.R.; Buermann, W.; Lewis, S.L.; Hagen, S.; et al. Benchmark map of forest carbon stocks in tropical regions across three continents. Proc. Natl. Acad. Sci. USA 2011, 108, 9899–9904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindenmayer, D.B.; Franklin, J.F.; Lõhmus, A.; Baker, S.C.; Bauhus, J.; Beese, W.; Brodie, A.; Kiehl, B.; Kouki, J.; Pastur, G.M.; et al. A major shift to the retention approach for forestry can help resolve some global forest sustainability issues. Conserv. Lett. 2012, 5, 421–431. [Google Scholar] [CrossRef] [Green Version]
- Gustafsson, L.; Baker, S.C.; Bauhus, J.; Beese, W.J.; Brodie, A.; Kouki, J.; Lindenmayer, D.B.; Lohmus, A.; Pastur, G.M.; Messier, C.; et al. Retention Forestry to Maintain Multifunctional Forests: A World Perspective. Bioscience 2012, 62, 633–645. [Google Scholar] [CrossRef] [Green Version]
- Hartley, M.J. Rationale and methods for conserving biodiversity in plantation forests. For. Ecol. Manag. 2002, 155, 81–95. [Google Scholar] [CrossRef]
- Mori, A.S.; Kitagawa, R. Retention forestry as a major paradigm for safeguarding forest biodiversity in productive landscapes: A global meta-analysis. Biol. Conserv. 2014, 175, 65–73. [Google Scholar] [CrossRef]
- Pastur, G.M.; Lencinas, M.V.; Cellini, J.M.; Peri, P.L.; Soler Esteban, R.S. Timber management with variable retention in Nothofagus pumilio forests of Southern Patagonia. For. Ecol. Manag. 2009, 258, 436–443. [Google Scholar] [CrossRef]
- Ozaki, K.; Akashi, N.; Unno, A.; Sato, S.; Sayama, K.; Nagasaka, A.; Nagasaka, Y.; Yamada, K.; Yamaura, Y. Retention forestry to manage forests for timber production and biodiversity conservation—A review to promote the effective application in Japan. Jpn. J. Ecol. 2018, 68, 101–123. [Google Scholar]
- Barreto, P.; Amaral, P.; Vidal, E.; Uhl, C. Costs and benefits of forest management for timber production in eastern Amazonia. Forest Ecol. Manag. 1998, 108, 9–26. [Google Scholar] [CrossRef]
- Arnott, J.T.; Beese, W.J. Alternatives to clearcutting in BC Coastal Montane Forests. For. Chron. 1997, 73, 670–678. [Google Scholar] [CrossRef] [Green Version]
- Ministry of Environment, Japan. Offset Credit (J-VER) System. 2020. Available online: http://offset.env.go.jp/j-ver/pref.html (accessed on 15 March 2021). (In Japanese)
- Hurteau, M.D.; Koch, G.W.; Hungate, B.A. Carbon protection and fire risk reduction: Toward a full accounting of forest carbon offsets. Front. Ecol. Environ. 2008, 6, 493–498. [Google Scholar] [CrossRef] [Green Version]
- Malmsheimer, R.W.; Bowyer, J.L.; Fried, J.S.; Gee, E.; Izlar, R.L.; Miner, R.A.; Munn, I.A.; Oneil, E.; Stewart, W.C. Managing forests because carbon matters: Integrating energy, products, and land management policy. J. For. 2011, 109, 7–48. [Google Scholar]
- Bradshaw, C.J.A.; Bowman, D.M.J.S.; Bond, N.R.; Murphy, B.P.; Moore, A.D.; Fordham, D.A.; Thackway, R.; Lawes, M.J.; McCallum, H.; Gregory, S.D.; et al. Brave new green world—Consequences of a carbon economy for the conservation of Australian biodiversity. Biol. Conserv. 2013, 161, 71–90. [Google Scholar] [CrossRef]
- Fletcher, L.S.; Kittredge, D.; Stevens, T. Forest Landowners’ Willingness to Sell Carbon Credits: A Pilot Study. N. J. Appl. For. 2009, 26, 35–37. [Google Scholar] [CrossRef] [Green Version]
- Preece, N.D.; van Oosterzee, P.V.; Hidrobo Unda, G.C.; Lawes, M.J. National carbon model not sensitive to species, families and site characteristics in a young tropical reforestation project. For. Ecol. Manag. 2017, 392, 115–124. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). IPCC Special Report on Land Use Land-Use Change and Forestry. 1998. Available online: https://www.grida.no/climate/ipcc/land_use/index.htm (accessed on 15 March 2021).
- Food and Agriculture Organization of the United Nations (FAO). Global Forest Resources Assessment 2020 Main Report; FAO: Rome, Italy, 2020. [Google Scholar]
- Butchart, S.H.M.; Walpole, M.; Collen, B.; Van Strien, A.; Scharlemann, J.P.W.; Almond, R.E.A.; Baillie, J.E.M.; Bomhard, B.; Brown, C.; Bruno, J.; et al. Global biodiversity: Indicators of recent declines. Science 2010, 328, 1164–1168. [Google Scholar] [CrossRef] [PubMed]
- Lindner, M.; Maroschek, M.; Netherer, S.; Kremer, A.; Barbati, A.; Garcia-Gonzalo, J.; Seidl, R.; Delzon, S.; Corona, P.; Kolström, M.; et al. Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. For. Ecol. Manag. 2009, 259, 698–709. [Google Scholar] [CrossRef]
- Seidl, R.; Thom, D.; Kautz, M.; Martin-Benito, D.; Peltoniemi, M.; Vacchiano, G.; Wild, J.; Ascoli, D.; Petr, M.; Honkaniemi, J.; et al. Forest disturbances under climate change. Nat. Clim. Chang. 2017, 7, 395–402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development. 2015. Available online: https://sustainabledevelopment.un.org/content/documents/21252030%20Agenda%20for%20Sustainable%20Development%20web.pdf (accessed on 15 March 2021).
- Chazdon, R.L. Beyond deforestation: Restoring forests and ecosystem services on degraded lands. Science 2008, 320, 1458–1460. [Google Scholar] [CrossRef] [Green Version]
- Groot, A.; Lussier, J.-M.; Mitchell, A.K.; MacIsaac, D.A. A silvicultural systems perspective on changing Canadian forestry practices. The Forestry Chronicle. For. Chron. 2005, 81, 50–55. [Google Scholar] [CrossRef] [Green Version]
- Asner, G.P.; Powell, G.V.N.; Mascaro, J.; Knapp, D.E.; Clark, J.K.; Jacobson, J.; Kennedy-Bowdoin, T.; Balaji, A.; Paez-Acosta, G.; Victoria, E.; et al. High-resolution forest carbon stocks and emissions in the Amazon. Proc. Natl. Am. Sci. USA 2010, 107, 16738–16742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harris, N.L.; Brown, S.; Hagen, S.C.; Saatchi, S.S.; Petrova, S.; Salas, W.; Hansen, M.C.; Potapov, P.V.; Lotsch, A. Baseline Map of Carbon Emissions from Deforestation in Tropical Regions. Science 2012, 336, 1573–1576. [Google Scholar] [CrossRef]
- Lewis, S.L.; Lopez-Gonzalez, G.; Sonke, B.; Affum-Baffoe, K.; Baker, T.R.; Ojo, L.O.; Phillips, O.L.; Reitsma, J.M.; White, L.; Comiskey, J.A.; et al. Increasing carbon storage in intact African tropical forests. Nature 2009, 457, 1003–1007. [Google Scholar] [CrossRef]
- Keith, H.; Mackey, B.G.; Lindenmayer, D.B. Re-evaluation of forest biomass carbon stocks and lessons from the world’s most carbon-dense forests. PNAS 2009, 106, 11635–11640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsumoto, M. Carbon accumulation and carbon absorption by Japanese forests. Jpn. For. Soc. 2001, 33, 30–36. (In Japanese) [Google Scholar] [CrossRef]
- Chave, J.; Andalo, C.; Brown, S.; Cairns, M.A.; Chambers, J.Q.; Eamus, D.; Folster, H.; Fromard, F.; Higuchi, N.; Kira, T.; et al. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 2005, 145, 87–99. [Google Scholar] [CrossRef]
- Jenkins, J.C.; Chojnacky, D.C.; Heath, L.S.; Birdsey, R.A. National-scale biomass estimators for United States tree species. For. Sci. 2003, 49, 12–35. [Google Scholar]
- Forestry and Forest Products Research Institute (FFPRI). How to Capture Forest Carbon Absorption. Available online: http://www.ffpri.affrc.go.jp/research/dept/22climate/kyuushuuryou/ (accessed on 15 March 2021). (In Japanese)
- Canadell, J.G.; Raupach, M.R. Managing forests for climate change mitigation. Science 2008, 320, 1456–1457. [Google Scholar] [CrossRef] [Green Version]
- Fahey, T.J.; Woodbury, P.B.; Battles, J.J.; Goodale, C.L.; Hamburg, S.P.; Ollinger, S.V.; Woodall, C.W. Forest carbon storage: Ecology, management, and policy. Front. Ecol. Environ. 2010, 8, 245–252. [Google Scholar] [CrossRef] [Green Version]
- Kurz, W.A.; Dymond, C.C.; White, T.M.; Stinson, G.; Shaw, C.H.; Rampley, G.J.; Smyth, C.; Simpson, B.N.; Neilson, E.T.; Trofymow, J.A.; et al. CBM-CFS3: A model of carbon-dynamics in forestry and land-use change implementing IPCC standards. Ecol. Model. 2009, 220, 480–504. [Google Scholar] [CrossRef]
- Morse, W.C.; Schedlbauer, J.L.; Sesnie, S.E.; Finegan, B.; Harvey, C.A.; Hollenhorst, S.J.; Kavanagh, K.L.; Stoian, D.; Wulfhorst, J.D. Consequences of environmental service payments for forest retention and recruitment in a Costa Rican biological corridor. Ecol. Soc. 2009, 14, 23. [Google Scholar] [CrossRef] [Green Version]
- Kayo, C.; Amano, K.; Shimada, K. Evaluation of the forest management procedure in Japan based on long-term carbon mass balance. Environ. Syst. Res. 2006, 34, 235–243. [Google Scholar] [CrossRef] [Green Version]
- Ellison, D.; Lundblad, M.; Petersson, H. Carbon accounting and the climate politics of forestry. Environ. Sci. Policy 2011, 14, 1062–1078. [Google Scholar] [CrossRef] [Green Version]
- Ajiki, K. Changes of National Forest Management after the 1980′s and Regional Characteristic. Bulletin Faculty of Humanities and Social Sciences. Mie Univ. 2010, 27, 1–21. Available online: https://mie-u.repo.nii.ac.jp/?action=repository_uri&item_id=1539&file_id=17&file_no=1 (accessed on 15 March 2021). (In Japanese).
- Ministry of Agriculture, Forestry and Fisheries, Japan. Forestry Management Statistics Survey, Confirmation Report 2013 Forestry Management Statistics Survey Report. Available online: https://www.e-stat.go.jp/stat-search/file-download?statInfId=000029151864&fileKind=0 (accessed on 15 March 2021). (In Japanese)
- Ministry of Foreign Affairs, Japan. Submission of Japan’s Intended Nationally Determined Contribution. Available online: https://www.mofa.go.jp/mofaj/files/000090898.pdf (accessed on 15 March 2021).
- Tokyo Metropolitan Government. Guidelines for Calculating Renewable Energy Credits in Total Volume Reduction Obligations and Emissions Trading Schemes. Available online: https://www.kankyo.metro.tokyo.lg.jp/climate/large_scale/rules/.cat9740.files/201904_guideline_saiene_credit_santei.pdf (accessed on 15 March 2021). (In Japanese)
- Tokyo Metropolitan Government. Policy from 2020 on Major Systems for Climate Change Countermeasures. Available online: https://www.kankyo.metro.tokyo.lg.jp/climate/large_scale/overview/after2020/outline.files/bessi02_.pdf (accessed on 15 March 2021). (In Japanese)
- Tokyo Metropolitan Government. Tokyo Emissions Trading Seminar: About the Total Amount Reduction Obligation and the Transaction Price of the Emissions Trading System. 2020. Available online: https://www.kankyo.metro.tokyo.lg.jp/climate/large_scale/trade/index.files/sateikakaku1216.pdf (accessed on 15 March 2021). (In Japanese)
- United Nations University Institute for the Advanced Study of Sustainability. The International Partnership for the Satoyama initiative: Information Booklet and 2016 Annual Report. Available online: https://satoyama-initiative.org/wp-content/uploads/2018/02/IPSI-2016-AR-and-booklet-final-compressed.pdf (accessed on 15 March 2021).
- Takeuchi, K. Rebuilding the relationship between people and nature: The Satoyama Initiative. Ecol. Res. 2010, 25, 891–897. [Google Scholar] [CrossRef] [Green Version]
- Forestry Agency, Management Division, Forestry Labor Countermeasures Office, Japan. Status of Securing Forestry Labor Force. Available online: https://www.mhlw.go.jp/file/05-Shingikai-11201000-Roudoukijunkyoku-Soumuka/0000185117.pdf (accessed on 15 March 2021). (In Japanese)
- Ministry of Land, Infrastructure, Transport and Tourism, Japan. On the Situation of Living in Japan. pp. 19–20. Available online: https://www.mlit.go.jp/policy/shingikai/content/001308853.pdf (accessed on 15 March 2020). (In Japanese)
- Ministry of Agriculture, Forestry and Fisheries, Japan. Forest and Forestry White Paper: Trends in Forests and Forestry in 2018. 2018; p. 97. Available online: https://www.rinya.maff.go.jp/j/kikaku/hakusyo/30hakusyo/attach/pdf/zenbun-13.pdf (accessed on 15 March 2021). (In Japanese)
- Ministry of Agriculture, Forestry and Fisheries, Japan. Forest Area by Tree Species and Age Class in 2017. Available online: https://www.rinya.maff.go.jp/j/keikaku/genkyou/h29/attach/pdf/4-22.pdf (accessed on 15 March 2021). (In Japanese)
- Ministry of Agriculture, Forestry and Fisheries, Japan. Forest Rate and Planted Forest Rate by Prefecture (as of 31 March 2017). Available online: https://www.rinya.maff.go.jp/j/kikaku/hakusyo/29hakusyo/attach/pdf/zenbun-4.pdf (accessed on 15 March 2021). (In Japanese)
- Foley, J.A.; De Fries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tokyo Electric Power Company Holdings. Review of the Response to Power Outage Restoration Following Typhoon No. 15 (Interim Report). 2019. Available online: https://www.tepco.co.jp/press/release/2019/pdf4/191031j0201.pdf (accessed on 15 March 2021). (In Japanese)
- Guo, M.; Song, W.; Buhain, J. Bioenergy and biofuels: History, status, and perspective. Renew. Sustain. Energy Rev. 2015, 42, 712–725. [Google Scholar] [CrossRef]
- Schulze, E.-D.; Körner, C.; Law, B.E.; Haberl, H.; Luyssaert, S. Large-scale bioenergy from additional harvest of forest biomass is neither sustainable nor greenhouse gas neutral. GCB Bioenergy 2012, 4, 611–616. [Google Scholar] [CrossRef]
- Millar, C.I.; Stephenson, N.L. Temperate forest health in an era of emerging mega disturbance. Science 2015, 349, 823–826. [Google Scholar] [CrossRef]
- Porter-Bolland, L.; Ellis, E.A.; Guariguata, M.R.; Ruiz-Mallén, I.; Negrete-Yankelevich, S.; Reyes-García, V. Community managed forests and forest protected areas: An assessment of their conservation effectiveness across the tropics. For. Ecol. Manag. 2012, 268, 6–17. [Google Scholar] [CrossRef]
- Agrawal, A.; Gibson, C.C. Enchantment and disenchantment: The role of community in natural resource conservation. World Dev. 1999, 27, 629–649. [Google Scholar] [CrossRef]
- Scheffer, M.; Carpenter, S.; Foley, J.A.; Folke, C.; Walker, B. Catastrophic shifts in ecosystems. Nature 2001, 413, 591–596. [Google Scholar] [CrossRef] [PubMed]
Period | Years | Type of Maintenance Activity | Normal Costs (Yen/ha) | Normal Costs (USD/ha) | Cost with Retention Approach (USD/ha) |
---|---|---|---|---|---|
Forestation period | 1 | Afforestation | 418,679 | 3806 | - |
2 | Cutting underbrush | 232,502 | 2114 | - | |
3 | 119,760 | 1089 | - | ||
4 | 163,112 | 1482 | - | ||
5 | 9282 | 844 | - | ||
Growth period | 6–10 | Thinning | 47,738 | 434 | 477 |
11–15 | 21,079 | 192 | 211 | ||
16–20 | 17,195 | 156 | 172 | ||
21–25 | 38,195 | 347 | 382 | ||
26–30 | 21,364 | 194 | 214 | ||
31–35 | 12,466 | 113 | 125 | ||
36–40 | 9734 | 88 | 97 | ||
41–45 | 6468 | 59 | 65 | ||
46–50 | 9862 | 90 | 99 | ||
Maturity period | 51– | Maintenance | 9862 | 90 | 99 |
Type | Lowest Price | Highest Price | Average Price | Most Recent Price (March 2020) |
---|---|---|---|---|
Renewable energy credit | JPY 5500 USD 50 | JPY 12,500 USD 114 | JPY 8335 USD 76 | JPY 5600 USD 51 |
Classification | Value of All OECD Member Countries | Value for Japan | |||
---|---|---|---|---|---|
Year | Amount of Wood Production (million m3) | Amount of Forest Accumulation (million m3) | Wood Production/ Accumulation (%) | Wood Production/ Accumulation (%) | Comparison with OECD Average (%) |
2005 | 1046 | 76,529 | 1.37 | 0.38 | 27.74 |
2015 | 1022 | 85,180 | 1.20 | 0.47 | 39.17 |
Logging | Thinning | Cutting Underbrush | Afforestation |
---|---|---|---|
43,825 | 215,771 | 148,833 | 24,401 |
4.47% | 22.01% | 15.19% | 2.49% |
Period | Managing Activities | Years | Accumulated Carbon Amount | Carbon Dioxide Absorption during the Period (t-CO2 ha−1) | Management Cost (USD) | Including Retention Approach Cost (USD) | |
---|---|---|---|---|---|---|---|
Cumulative Carbon Content (t-C ha−1) | Periodic Carbon Accumulation (t-C ha−1) | ||||||
Forestation period | Afforestation | 1 | 0 | 0 | 0.00 | 3806 | 3806 |
Cutting underbrush | 2 | 0 | 0 | 0.00 | 2114 | 2114 | |
3 | 0 | 0 | 0.00 | 1089 | 1089 | ||
4 | 0 | 0 | 0.00 | 1483 | 1483 | ||
5 | 0 | 0 | 0.00 | 844 | 844 | ||
Growth period | Thinning | 6–10 | 2 | 2 | 7.34 | 434 | 477 |
11–15 | 18 | 16 | 58.72 | 192 | 211 | ||
16–20 | 34 | 16 | 58.72 | 156 | 172 | ||
21–25 | 41 | 7 | 25.69 | 347 | 382 | ||
26–30 | 54 | 13 | 47.71 | 194 | 213 | ||
31–35 | 67 | 13 | 47.71 | 113 | 124 | ||
36–40 | 79 | 12 | 44.04 | 88 | 97 | ||
41–45 | 90 | 11 | 40.37 | 59 | 65 | ||
Maintenance | 46–50 | 98 | 8 | 29.36 | 90 | 99 | |
Maturity period | Maintenance | 51–55 | 104 | 6 | 22.02 | 90 | 99 |
56–60 | 110 | 6 | 22.02 | 90 | 99 | ||
61–65 | 115 | 5 | 18.35 | 90 | 99 | ||
66–70 | 119 | 4 | 14.68 | 90 | 99 | ||
71–75 | 120 | 1 | 3.67 | 90 | 99 | ||
76–80 | 124 | 4 | 14.68 | 90 | 99 | ||
81–85 | 128 | 4 | 14.68 | 90 | 99 | ||
86–90 | 129 | 1 | 3.67 | 90 | 99 | ||
91–95 | 130 | 1 | 3.67 | 90 | 99 |
Period | Years | (a) 2 | (b) 3 | Valuation Price of Carbon Credits | Balance of Payments | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
50 USD 4 | 51 USD 5 | 76 USD 6 | 114 USD 7 | 50 USD 4 | 51 USD 5 | 76 USD 6 | 114 USD 7 | ||||
Forestation period | 1 | 0.00 | 3806 | 0 | 0 | 0 | 0 | −3806 | −3806 | −3806 | −3806 |
2 | 0.00 | 2114 | 0 | 0 | 0 | 0 | −5920 | −5920 | −5920 | −5920 | |
3 | 0.00 | 1089 | 0 | 0 | 0 | 0 | −7009 | −7009 | −7009 | −7009 | |
4 | 0.00 | 1482 | 0 | 0 | 0 | 0 | −8491 | −8491 | −8491 | −8491 | |
5 | 0.00 | 844 | 0 | 0 | 0 | 0 | −9335 | −9335 | −9335 | −9335 | |
Growth period | 6–10 | 7.33 | 477 | 367 | 374 | 557 | 836 | −9446 | −9439 | −9255 | −8977 |
11–15 | 58.67 | 211 | 2933 | 2992 | 4459 | 6688 | −6723 | −6657 | −5007 | −2499 | |
16–20 | 58.67 | 172 | 2933 | 2992 | 4459 | 6688 | −3962 | −3837 | −721 | 4017 | |
21–25 | 25.67 | 382 | 1283 | 1309 | 1951 | 2926 | −3061 | −2910 | 848 | 6561 | |
26–30 | 47.67 | 213 | 2383 | 2431 | 3623 | 5434 | −891 | −693 | 4258 | 11,781 | |
31–35 | 47.67 | 124 | 2383 | 2431 | 3623 | 5434 | 1368 | 1613 | 7755 | 17,090 | |
36–40 | 44.00 | 97 | 2200 | 2244 | 3344 | 5016 | 3470 | 3760 | 11,002 | 22,009 | |
41–45 | 40.33 | 65 | 2017 | 2057 | 3065 | 4598 | 5422 | 5752 | 14,002 | 26,542 | |
46–50 | 29.33 | 90 | 1467 | 1496 | 2229 | 3344 | 6799 | 7158 | 16,142 | 29,796 | |
Maturity period | 51–55 | 22.00 | 99 | 1100 | 1122 | 1672 | 2508 | 7800 | 8182 | 17,715 | 32,206 |
56–60 | 22.00 | 99 | 1100 | 1122 | 1672 | 2508 | 8802 | 9205 | 19,288 | 34,615 | |
61–65 | 18.33 | 99 | 917 | 935 | 1393 | 2090 | 9620 | 10,042 | 20,583 | 36,607 | |
66–70 | 14.67 | 99 | 733 | 748 | 1115 | 1672 | 10,255 | 10,691 | 21,599 | 38,180 | |
71–75 | 3.67 | 99 | 183 | 187 | 279 | 418 | 10,339 | 10,779 | 21,779 | 38,499 | |
76–80 | 14.67 | 99 | 733 | 748 | 1115 | 1672 | 10,974 | 11,429 | 22,795 | 40,073 | |
81–85 | 14.67 | 99 | 733 | 748 | 1115 | 1672 | 11,609 | 12,078 | 23,811 | 41,646 | |
86–90 | 3.67 | 99 | 183 | 187 | 279 | 418 | 11,693 | 12,166 | 23,991 | 41,965 | |
91–95 | 3.67 | 99 | 183 | 187 | 279 | 418 | 11,778 | 12,255 | 24,171 | 42,285 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akita, N.; Ohe, Y. Sustainable Forest Management Evaluation Using Carbon Credits: From Production to Environmental Forests. Forests 2021, 12, 1016. https://doi.org/10.3390/f12081016
Akita N, Ohe Y. Sustainable Forest Management Evaluation Using Carbon Credits: From Production to Environmental Forests. Forests. 2021; 12(8):1016. https://doi.org/10.3390/f12081016
Chicago/Turabian StyleAkita, Noriko, and Yasuo Ohe. 2021. "Sustainable Forest Management Evaluation Using Carbon Credits: From Production to Environmental Forests" Forests 12, no. 8: 1016. https://doi.org/10.3390/f12081016
APA StyleAkita, N., & Ohe, Y. (2021). Sustainable Forest Management Evaluation Using Carbon Credits: From Production to Environmental Forests. Forests, 12(8), 1016. https://doi.org/10.3390/f12081016