Influence of Prescribed Burning on a Pinus nigra subsp. Laricio Forest: Heat Transfer and Tree Vitality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Prescribed Burning Instrumentation
2.3. Meteorological Measurements
2.4. Physiological Measurements
2.5. Data Analysis
3. Results
3.1. Prescribed Burning Characteristics
3.2. Sap Flow
3.3. Chlorophyll Fluorescence
3.4. Gas Exchange
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Quézel, P.; Médail, F. Ecologie et Biogéographie des Forêts du Bassin Méditerranéen; Editions Scientifiques et Médicales Elsevier SAS: Paris, France, 2003. [Google Scholar]
- Pausas, J.; Vallejo, V.R. The role of fire in European Mediterranean ecosystems. In Remote Sensing of Large Wildfires; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 1999; pp. 3–16. [Google Scholar]
- Prichard, S.J.; Stevens-Rumann, C.S.; Hessburg, P.F. Tamm Review: Shifting global fire regimes: Lessons from reburns and research need. For. Ecol. Manag. 2017, 396, 217–233. [Google Scholar] [CrossRef]
- Duane, A.; Aquilué, N.; Canelles, Q.; Morán-Ordoñez, A.; De Cáceres, M.; Brotons, L. Adapting prescribed burns to future climate change in Mediterranean landscapes. Sci. Total Environ. 2019, 677, 68–83. [Google Scholar] [CrossRef]
- Moreira, F.; Ascoli, D.; Safford, H.; Adams, M.A.; Moreno, J.M.; Pereira, J.C.; Catry, F.; Armesto, J.; Bond, W.J.; González, M.E.; et al. Wildfire management in Mediterranean-type regions: Paradigm change needed. Environ. Res. Lett. 2019, 15, 011001. [Google Scholar] [CrossRef]
- Moreno, J.M.; Arianoutsou, M.; González-Cabán, A.; Mouillot, F.; Oechel, W.C.; Spano, D.; Thonicke, K.; Vallejo, V.R.; Vélez, R. Forest Fires under Climate, Social and Economic Changes in Europe, the Mediterranean and Other Fire-Affected Areas of the World: FUME: Lessons Learned and Outlook; Calyptra Pty: Adelaïde, Australia, 2014; p. 32. [Google Scholar]
- Haines, T.; Busby, R.; Cleaves, D. Prescribed Burning in the South: Trends, Purpose, and Barriers. South. J. Appl. For. 2001, 25, 149–153. [Google Scholar] [CrossRef] [Green Version]
- Rigolot, E. Le feu “domestiqué”: Outil de gestion des espaces méditerranéens. For. Médit. 2003, 24, 37–44. [Google Scholar]
- Fernandes, P.; Botelho, H. Analysis of the prescribed burning practice in the pine forest of northwestern Portugal. J. Environ. Manag. 2004, 70, 15–26. [Google Scholar] [CrossRef] [PubMed]
- Fernández, C.; Vega, J.A.; Fonturbel, T. Does fire severity influence shrub resprouting after spring prescribed burning? Acta Oecol. 2013, 48, 30–36. [Google Scholar] [CrossRef]
- Fulé, P.Z.; Cocke, A.E.; Heinlein, T.A.; Covington, W.W. Effects of an Intense Prescribed Forest Fire: Is It Ecological Restoration? Restor. Ecol. 2004, 12, 220–230. [Google Scholar] [CrossRef]
- Fernandes, P.M.; Botelho, H.S. A review of prescribed burning effectiveness in fire hazard reduction. Int. J. Wildland Fire 2003, 12, 117–128. [Google Scholar] [CrossRef] [Green Version]
- Espinosa, J.; Palheiro, P.; Loureiro, C.; Ascoli, D.; Esposito, A.; Fernandes, P. Fire-severity mitigation by prescribed burning assessed from fire-treatment encounters in maritime pine stands. Can. J. For. Res. 2019, 49, 205–211. [Google Scholar] [CrossRef]
- Fernandes, P.; Davies, G.M.; Ascoli, D.; Fernández, C.; Moreira, F.; Rigolot, E.; Stoof, C.; Vega, J.A.; Molina, D. Prescribed burning in southern Europe: Developing fire management in a dynamic landscape. Front. Ecol. Environ. 2013, 11. [Google Scholar] [CrossRef] [Green Version]
- Vander Yacht, A.L.V.; Keyser, P.D.; Barrioz, S.A.; Kwit, C.; Stambaugh, M.C.; Clatterbuck, W.K.; Jacobs, R. Litter to glitter: Promoting herbaceous groundcover and diversity in mid-southern USA oak forests using canopy disturbance and fire. Fire Ecol. 2020, 16, 17. [Google Scholar] [CrossRef]
- North, M.; Stephens, S.L.; Collins, B.M.; Agee, J.K.; Aplet, G.; Franklin, J.F.; Fulé, P.Z. Reform forest fire management. Science 2015, 349, 1280–1281. [Google Scholar] [CrossRef]
- North, M.P.; York, R.A.; Collins, B.M.; Hurteau, M.D.; Jones, G.M.; Knapp, E.E.; Kobziar, L.; McCann, H.; Meyer, M.D.; Stephens, S.L.; et al. Pyrosilviculture Needed for Landscape Resilience of Dry Western United States Forests. J. For. 2021, 1–25. [Google Scholar] [CrossRef]
- Hunter, M.E.; Robles, M.D. Tamm review: The effects of prescribed fire on wildfire regimes and impacts: A framework for comparison. For. Ecol. Manag. 2020, 475, 118435. [Google Scholar] [CrossRef]
- Harrington, M.G. Duff mound consumption and cambium injury for centuries-old western larch from prescribed burning in western Montana. Int. J. Wildland Fire 2013, 22, 359–367. [Google Scholar] [CrossRef]
- Ryan, K.C.; Knapp, E.E.; Varner, J.M. Prescribed fire in North American forests and woodlands: History, current practice, and challenges. Front. Ecol. Environ. 2013, 11, e15–e24. [Google Scholar] [CrossRef]
- Eales, J.; Haddaway, N.R.; Bernes, C.; Cooke, S.J.; Jonsson, B.G.; Kouki, J.; Petrokofsky, G.; Taylor, J.J. What is the effect of prescribed burning in temperate and boreal forest on biodiversity, beyond pyrophilous and saproxylic species? A systematic review. Environ. Évid. 2018, 7, 19. [Google Scholar] [CrossRef]
- Dey, D.C.; Schweitzer, C.J. A Review on the Dynamics of Prescribed Fire, Tree Mortality, and Injury in Managing Oak Natural Communities to Minimize Economic Loss in North America. Forests 2018, 9, 461. [Google Scholar] [CrossRef] [Green Version]
- Ashby, M.A.; Heinemeyer, A. Prescribed burning impacts on ecosystem services in the British uplands: A methodological critique of the EMBER project. J. Appl. Ecol. 2020, 57, 2112–2120. [Google Scholar] [CrossRef] [Green Version]
- Prunicki, M.; Kelsey, R.; Lee, J.; Zhou, X.; Smith, E.; Haddad, F.; Wu, J.; Nadeau, K. The impact of prescribed fire versus wildfire on the immune and cardiovascular systems of children. Allergy 2019, 74, 1989–1991. [Google Scholar] [CrossRef] [PubMed]
- Butler, B.W.; Webb, B.W.; Jimenez, D.; Reardon, J.A.; Jones, J.L. Thermally induced bark swelling in four North American tree species. Can. J. For. Res. 2005, 35, 452–460. [Google Scholar] [CrossRef]
- Butler, B.W.; Dickinson, M.B. Tree Injury and Mortality in Fires: Developing Process-Based Models. Fire Ecol. 2010, 6, 55–79. [Google Scholar] [CrossRef]
- Pimont, F.; Dupuy, J.L.; Rigolot, E.; Duché, Y. Les Effets du Passage d’un feu Dans un Peuplement Arboré. Synthèse des Connaissances et Applications pour le Gestionnaire Forestier Méditerranéen; Forêt Méditerranéenne t. XXXV N°1 Mars 2014-14; Association Forêt Méditerranéenne: Marseille, France, 2014. [Google Scholar]
- Keyser, T.L.; McDaniel, V.L.; Klein, R.N.; Drees, D.G.; Burton, J.A.; Forder, M.M. Short-term stem mortality of 10 deciduous broadleaved species following prescribed burning in upland forests of the Southern US. Int. J. Wildland Fire 2018, 27, 42. [Google Scholar] [CrossRef] [Green Version]
- Peterson, D.; Sackett, S.; Robinson, L.; Haase, S. The Effects of Repeated Prescribed Burning on Pinus ponderosa Growth. Int. J. Wildland Fire 1994, 4, 239–247. [Google Scholar] [CrossRef] [Green Version]
- Beghin, R.; Cherubini, P.; Battipaglia, G.; Siegwolf, R.; Saurer, M.; Bovio, G. Tree-ring growth and stable isotopes (13C and 15N) detect effects of wildfires on tree physiological processes in Pinus sylvestris L. Trees 2011, 25, 627–636. [Google Scholar] [CrossRef]
- Battipaglia, G.; Strumia, S.; Esposito, A.; Giuditta, E.; Sirignano, C.; Altieri, S.; Rutigliano, F.A. The effects of prescribed burning on Pinus halepensis Mill. as revealed by dendrochronological and isotopic analyses. For. Ecol. Manag. 2014, 334, 201–208. [Google Scholar] [CrossRef]
- Valor, T.; González-Olabarria, J.R.; Piqué, M. Assessing the impact of prescribed burning on the growth of European pines. For. Ecol. Manag. 2015, 343, 101–109. [Google Scholar] [CrossRef]
- Bauer, G.; Speck, T.; Blömer, J.; Bertling, J.; Speck, O. Insulation capability of the bark of trees with different fire adaptation. J. Mater. Sci. 2010, 45, 5950–5959. [Google Scholar] [CrossRef]
- Odhiambo, B.; Meincken, M.; Seifert, T. The protective role of bark against fire damage: A comparative study on selected introduced and indigenous tree species in the Western Cape, South Africa. Trees 2014, 28, 555–565. [Google Scholar] [CrossRef]
- Pausas, J.G. Bark thickness and fire regime. Funct. Ecol. 2015, 29, 315–327. [Google Scholar] [CrossRef]
- Madrigal, J.; Souto-García, J.; Calama, R.; Guijarro, M.; Picos, J.; Hernando, C. Resistance of Pinus pinea L. bark to fire. Int. J. Wildland Fire 2019, 28, 342. [Google Scholar] [CrossRef]
- Jones, J.L.; Webb, B.W.; Jimenez, D.; Reardon, J.; Butler, B. Development of an advanced one-dimensional stem heating model for application in surface fires. Can. J. For. Res. 2004, 34, 20–30. [Google Scholar] [CrossRef]
- Jones, J.L.; Webb, B.W.; Butler, B.W.; Dickinson, M.; Jimenez, D.; Reardon, J.; Bova, A.S. Prediction and measurement of thermally induced cambial tissue necrosis in tree stems. Int. J. Wildland Fire 2006, 15, 3–17. [Google Scholar] [CrossRef]
- Schoonenberg, T.; Pinard, M.; Woodward, S. Responses to mechanical wounding and fire in tree species characteristic of seasonally dry tropical forest of Bolivia. Can. J. For. Res. 2003, 33, 330–338. [Google Scholar] [CrossRef]
- Balfour, D.A.; Midgley, J.J. Fire induced stem death in an African acacia is not caused by canopy scorching. Austral Ecol. 2006, 31, 892–896. [Google Scholar] [CrossRef]
- Van Mantgem, P.; Schwartz, M. Bark heat resistance of small trees in Californian mixed conifer forests: Testing some model assumptions. For. Ecol. Manag. 2003, 178, 41–352. [Google Scholar] [CrossRef]
- Dickinson, M.B.; Johnson, E.A. Temperature-dependent rate models of vascular cambium cell mortality. Can. J. For. Res. 2004, 34, 546–559. [Google Scholar] [CrossRef]
- Michaletz, S.T.; Johnson, E.A.; Tyree, M.T. Moving beyond the cambium necrosis hypothesis of post-fire tree mortality: Cavitation and deformation of xylem in forest fires. New Phytol. 2012, 194, 254–263. [Google Scholar] [CrossRef]
- Kayll, A.J. A Technique for Studying the Fire Tolerance of Living Tree Trunks; No. 1012; Queen’s Printer: Ottawa, ON, Canada, 1963. [Google Scholar]
- Uhl, C.; Kauffman, J.B. Deforestation, Fire Susceptibility, and Potential Tree Responses to Fire in the Eastern Amazon. Ecology 1990, 71, 437–449. [Google Scholar] [CrossRef]
- Pinard, M.A.; Huffman, J. Fire resistance and bark properties of trees in a seasonally dry forest in eastern Bolivia. J. Trop. Ecol. 1997, 13, 727–740. [Google Scholar] [CrossRef]
- Bova, A.S.; Dickinson, M. Linking surface-fire behavior, stem heating, and tissue necrosis. Can. J. For. Res. 2005, 35, 814–822. [Google Scholar] [CrossRef]
- Lawes, M.J.; Richards, A.; Dathe, J.; Midgley, J.J. Bark thickness determines fire resistance of selected tree species from fire-prone tropical savanna in north Australia. Plant Ecol. 2011, 212, 2057–2069. [Google Scholar] [CrossRef]
- Jiménez, E.; Fernández, C.; Vega, J.A. Response of Pinus pinaster Ait. trees to controlled localised application of heat to stem and crown. Trees 2017, 31, 1203–1213. [Google Scholar] [CrossRef]
- Bär, A.; Michaletz, S.T.; Mayr, S. Fire effects on tree physiology. New Phytol. 2019, 223, 1728–1741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fahnestock, G.R.; Hare, R.C. Heating of tree trunks in surface fires. J. For. 1964, 62, 799–805. [Google Scholar]
- Costa, J.; Oliveira, L.; Viegas, D.; Neto, L. On the Temperature Distribution inside a Tree under Fire Conditions. Int. J. Wildland Fire 1991, 1, 87–96. [Google Scholar] [CrossRef]
- Sackett, S.S.; Haase, S.M. Measuring Soil and Tree Temperatures during Prescribed Fires with Thermocouple Probes; Gen. Tech. Rep. PSW-GTR-131; Pacific Southwest Research Station, Forest Service, U.S. Department of Agriculture: Albany, CA, USA, 1992; p. 15. [Google Scholar]
- Ducrey, M.; Duhoux, F.; Huc, R.; Rigolot, E. The ecophysiological and growth responses of Aleppo pine (Pinus halepensis) to controlled heating applied to the base of the trunk. Can. J. For. Res. 1996, 26, 1366–1374. [Google Scholar] [CrossRef]
- Gutsell, S.L.; Johnson, E.A. How fire scars are formed: Coupling a disturbance process to its ecological effect. Can. J. For. Res. 1996, 26, 166–174. [Google Scholar] [CrossRef]
- Bova, A.S.; Dickinson, M.B. An inverse method to estimate stem surface heat flux in wildland fires. Int. J. Wildland Fire 2009, 18, 711–721. [Google Scholar] [CrossRef] [Green Version]
- Battipaglia, G.; Savi, T.; Ascoli, D.; Castagneri, D.; Esposito, A.; Mayr, S.; Nardini, A. Effects of prescribed burning on ecophysiological, anatomical and stem hydraulic properties in Pinus pinea L. Tree Physiol. 2016, 36, 1019–1031. [Google Scholar] [CrossRef] [Green Version]
- Espinosa, J.; de Rivera, O.R.; Madrigal, J.; Guijarro, M.; Hernando, C. Predicting potential cambium damage and fire resistance in Pinus nigra Arn. ssp. salzmannii. For. Ecol. Manag. 2020, 474, 118372. [Google Scholar] [CrossRef]
- Reich, P.B.; Abrams, M.D.; Ellsworth, D.S.; Kruger, E.L.; Tabone, T.J. Fire Affects Ecophysiology and Community Dynamics of Central Wisconsin Oak Forest Regeneration. Ecology 1990, 71, 2179–2190. [Google Scholar] [CrossRef]
- Stephens, S.L.; Finney, M.A. Prescribed fire mortality of Sierra Nevada mixed conifer tree species: Effects of crown damage and forest floor combustion. For. Ecol. Manag. 2002, 162, 261–271. [Google Scholar] [CrossRef]
- Skov, K.R.; Kolb, T.E.; Wallin, K.F. Tree size and drought affect ponderosa pine physiological response to thinning and burning treatments. For. Sci. 2004, 50, 81–91. [Google Scholar]
- Cannac, M.; Ferrat, L.; Morandini, F.; Chiaramonti, N.; Santoni, P.A.; Pasqualini, V. Bioindicators for the short-term response of Pinus laricio needles to thermal pruning. In Proceedings of the 4th International Wildland Fire Conference, Seville, Spain, 13–17 May 2007. [Google Scholar]
- Cannac, M.C.; Pasqualini, V.; Greff, S.; Fernandez, C.; Ferrat, L. Characterization of Phenolic Compounds in Pinus laricio Needles and Their Responses to Prescribed Burnings. Molecules 2007, 12, 1614–1622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cannac, M.; Pasqualini, V.; Barboni, T.; Morandini, F.; Ferrat, L. Phenolic compounds of Pinus laricio needles: A bioindicator of the effects of prescribed burning in function of season. Sci. Total Environ. 2009, 407, 4542–4548. [Google Scholar] [CrossRef]
- Ferrat, L.; Morandini, F.; Baconnais, I.; Silvani, X.; Berti, L.; Pasqualini, V. Impact of thermal stress on Pinus laricio: Determining tolerance levels to prescribed burning through field experimentation. In Proceedings of the 24th Tall Timbers Fire Ecology Conference: The Future of Prescribed Fire: Public Awareness, Health, and Safety; Robertson, K.M., Galley, K.E.M., Masters, R.E., Eds.; Tall Timbers Research Station: Tallahassee, FL, USA, 2010; pp. 127–134. Available online: https://talltimbers.org/product/proceedings-24th-tall-timbers-fire-ecology-conference/ (accessed on 14 July 2021).
- O’Brien, J.J.; Hiers, J.K.; Mitchell, R.J.; Varner, J.M.; Mordecai, K.; Iii, J.M.V. Acute Physiological Stress and Mortality Following Fire in a Long-Unburned Longleaf Pine Ecosystem. Fire Ecol. 2010, 6, 1–12. [Google Scholar] [CrossRef]
- Cannac, M.; Ferrat, L.; Barboni, T.; Chiaramonti, N.; Morandini, F.; Pasqualini, V. Identification of flavonoids in Pinus Laricio needles and changes occurring after prescribed burning. Chemoecology 2011, 21, 9–17. [Google Scholar] [CrossRef]
- Lavoir, A.V.; Ormeño, E.; Pasqualini, V.; Ferrat, L.; Greff, S.; Lecareux, C.; Vilà, B.; Mevy, J.P.; Fernandez, C. Does Prescribed Burning Affect Leaf Secondary Metabolites in Pine Stands? J. Chem. Ecol. 2013, 39, 398–412. [Google Scholar] [CrossRef] [PubMed]
- Renninger, H.J.; Clark, K.L.; Skowronski, N.; Schäfer, K.V.R. Effects of a prescribed fire on water use and photosynthetic capacity of pitch pines. Trees 2013, 27, 1115–1127. [Google Scholar] [CrossRef]
- Wei, R.; Yang, G.; Zhang, J.; Wang, X.; Zhou, X. The thermal insulation properties of oak (Quercus mongolica) bark and the applicability of stem heating models. Int. J. Wildland Fire 2019, 28, 969. [Google Scholar] [CrossRef]
- Feeney, S.R.; Kolb, T.E.; Covington, W.W.; Wagner, M.R. Influence of thinning and burning restoration treatments on presettlement ponderosa pines at the Gus Pearson Natural Area. Can. J. For. Res. 1998, 28, 1295–1306. [Google Scholar] [CrossRef]
- Alonso, M.; Rozados, M.J.; Vega, J.A.; Pérez-Gorostiaga, P.; Cuiñas, P.; Fontúrbel, M.T.; Fernández, C. Biochemical responses of Pinus pinaster trees to fire-induced trunk girdling and crown scorch: Secondary metabolites and pigments as needle chemical indicators. J. Chem. Ecol. 2002, 28, 687–700. [Google Scholar] [CrossRef]
- Rigolot, E. Predicting postfire mortality of Pinus halepensis Mill. and Pinus pinea L. Plant Ecol. 2004, 171, 139–151. [Google Scholar] [CrossRef]
- Fernandes, P.M.; Vega, J.A.; Jiménez, E.; Rigolot, E. Fire resistance of European pines. For. Ecol. Manag. 2008, 256, 246–255. [Google Scholar] [CrossRef]
- Cannac, M.; Barboni, T.; Ferrat, L.; Bighelli, A.; Castola, V.; Costa, J.; Trecul, D.; Morandini, F.; Pasqualini, V. Oleoresin flow and chemical composition of Corsican pine (Pinus nigra subsp. laricio) in response to prescribed burnings. For. Ecol. Manag. 2009, 257, 1247–1254. [Google Scholar] [CrossRef]
- Espinosa, J.; Madrigal, J.; De La Cruz, A.; Guijarro, M.; Jimenez, E.; Hernando, C. Short-term effects of prescribed burning on litterfall biomass in mixed stands of Pinus nigra and Pinus pinaster and pure stands of Pinus nigra in the Cuenca Mountains (Central-Eastern Spain). Sci. Total Environ. 2018, 618, 941–951. [Google Scholar] [CrossRef] [PubMed]
- Kremens, R.L.; Smith, A.M.S.; Dickinson, M. Fire Metrology: Current and Future Directions in Physics-Based Measurements. Fire Ecol. 2010, 6, 13–35. [Google Scholar] [CrossRef]
- Peterson, D.; Ryan, K.C. Modeling postfire conifer mortality for long-range planning. Environ. Manag. 1986, 10, 797–808. [Google Scholar] [CrossRef]
- Chatziefstratiou, E.K.; Bohrer, G.; Bova, A.S.; Subramanian, R.; Frasson, R.P.D.M.; Scherzer, A.; Butler, B.W.; Dickinson, M. FireStem2D—A Two-Dimensional Heat Transfer Model for Simulating Tree Stem Injury in Fires. PLoS ONE 2013, 8, e70110. [Google Scholar] [CrossRef] [Green Version]
- O’Brien, J.J.; Hiers, J.K.; Varner, J.M.; Hoffman, C.M.; Dickinson, M.B.; Michaletz, S.T.; Loudermilk, E.L.; Butler, B.W. Advances in Mechanistic Approaches to Quantifying Biophysical Fire Effects. Curr. For. Rep. 2018, 4, 161–177. [Google Scholar] [CrossRef]
- Dickinson, M.; Johnson, E. Fire effects on trees. In Forest Fires: Behavior and Ecological Effects; Johnson, E.A., Miyanishi, K., Eds.; Academic: New York, NY, USA, 2001; pp. 477–525. [Google Scholar]
- Carter, M.C.; Foster, C.D. Prescribed burning and productivity in southern pine forests: A review. For. Ecol. Manag. 2004, 191, 93–109. [Google Scholar] [CrossRef]
- Lu, P.; Urban, L.; Zhao, P. Granier’s thermal dissipation probe (TDP) method for measuring sap flow in trees: Theory and practice. Acta Bot. Sin. Engl. Ed. 2004, 46, 631–646. [Google Scholar]
- Delzon, S.; Loustau, D. Age-related decline in stand water use: Sap flow and transpiration in a pine forest chronosequence. Agric. For. Meteorol. 2005, 129, 105–119. [Google Scholar] [CrossRef]
- Sagra, J.; Moya, D.; Plaza-Álvarez, P.; Lucas-Borja, M.; González-Romero, J.; Heras, J.D.L.; Alfaro-Sánchez, R.; Ferrandis, P. Prescribed fire effects on early recruitment of Mediterranean pine species depend on fire exposure and seed provenance. For. Ecol. Manag. 2019, 441, 253–261. [Google Scholar] [CrossRef]
- Hulme, M.; Barrow, E.M.; Arnell, N.W.; Harrison, P.A.; Johns, T.C.; Downing, T.E. Relative impacts of human-induced climate change and natural climate variability. Nature 1999, 397, 688–691. [Google Scholar] [CrossRef]
- Giorgi, F.; Lionello, P. Climate change projections for the Mediterranean region Glob. Planet Chang. 2008, 63, 90–104. [Google Scholar] [CrossRef]
- Prévosto, B.; Bousquet-Mélou, A.; Ripert, C.; Fernandez, C. Effects of different site preparation treatments on species diversity, composition, and plant traits in Pinus halepensis woodlands. Plant Ecol. 2011, 212, 627–638. [Google Scholar] [CrossRef] [Green Version]
- Michaletz, S.T.; Johnson, E.A. How forest fires kill trees: A review of the fundamental biophysical processes. Scand. J. For. Res. 2007, 22, 500–515. [Google Scholar] [CrossRef]
- Byram, G.M. Combustion of forest fuels. In Forest Fire: Control and Use; Davis, K.P., Ed.; McGraw-Hill: New York, NY, USA, 1959; pp. 61–89. [Google Scholar]
- Warren, C.R.; Ethier, G.J.; Livingston, N.J.; Grant, N.J.; Turpin, D.H.; Harrison, D.L.; Black, T.A. Transfer conductance in second growth Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) canopies. Plant Cell Environ. 2003, 26, 1215–1227. [Google Scholar] [CrossRef]
- Warren, C.R. Why does photosynthesis decrease with needle age in Pinus pinaster? Trees 2006, 20, 157–164. [Google Scholar] [CrossRef]
- Sperlich, D.; Chang, C.T.; Penuelas, J.; Gracia, C.; Sabaté, S. (Santi) Seasonal variability of foliar photosynthetic and morphological traits and drought impacts in a Mediterranean mixed forest. Tree Physiol. 2015, 35, 501–520. [Google Scholar] [CrossRef]
- Granier, A. Une nouvelle méthode pour la mesure du flux de sève brute dans le tronc des arbres. Ann. Sci. For. 1985, 42, 193–200. [Google Scholar] [CrossRef]
- Granier, A.; Gross, P. Mesure du flux de sève brute dans le tronc du Douglas par une nouvelle méthode thermique. Ann. Sci. For. 1987, 44, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Maxwell, K.; Johnson, G.N. Chlorophyll fluorescence—A practical guide. J. Exp. Bot. 2000, 51, 659–668. [Google Scholar] [CrossRef] [PubMed]
- Flexas, J.; Bota, J.; Escalona, J.M.; Sampol, B.; Medrano, H. Effects of drought on photosynthesis in grapevines under field conditions: An evaluation of stomatal and mesophyll limitations. Funct. Plant Biol. 2002, 29, 461–471. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Gu, L.; Dickinson, R.E.; Pallardy, S.G.; Baker, J.; Cao, Y.; DaMatta, F.M.; Dong, X.; Ellsworth, D.; Van Goethem, D.; et al. Asymmetrical effects of mesophyll conductance on fundamental photosynthetic parameters and their relationships estimated from leaf gas exchange measurements. Plant Cell Environ. 2013, 37, 978–994. [Google Scholar] [CrossRef] [PubMed]
- Farquhar, G.D.; Von Caemmerer, S.; Berry, J.A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 1980, 149, 78–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- von Caemmerer, S. Biochemical Models of Leaf Photosynthesis; Csiro Publishing: Collingwood, Australia, 2000; p. 165. [Google Scholar]
- Gu, L.; Pallardy, S.G.; Tu, K.; Law, B.; Wullschleger, S. Reliable estimation of biochemical parameters from C3 leaf photosynthesis-intercellular carbon dioxide response curves. Plant Cell Environ. 2010, 33, 1852–1874. [Google Scholar] [CrossRef]
- Lapa, G.; Morandini, F.; Ferrat, L. Sap flow and photosynthetic response to climate and drought of Pinus nigra in a Mediterranean natural forest. Trees 2017, 31, 1711–1721. [Google Scholar] [CrossRef]
- Reid, A.M.; Robertson, K.M.; Hmielowski, T.L. Predicting litter and live herb fuel consumption during prescribed fires in native and old-field upland pine communities of the southeastern United States. Can. J. For. Res. 2012, 42, 1611–1622. [Google Scholar] [CrossRef]
- Tihay-Felicelli, V.; Santoni, P.-A.; Barboni, T.; Leonelli, L. Autoignition of Dead Shrub Twigs: Influence of Diameter on Ignition. Fire Technol. 2016, 52, 897–929. [Google Scholar] [CrossRef]
- Prichard, S.J.; Kennedy, M.; Wright, C.; Cronan, J.; Ottmar, R. Predicting forest floor and woody fuel consumption from prescribed burns in southern and western pine ecosystems of the United States. For. Ecol. Manag. 2017, 405, 328–338. [Google Scholar] [CrossRef] [Green Version]
- McArthur, A.G. Control Burning in Eucalypt Forests; Number 80; Commonwealth of Australia Forestry and Timber Bureau, ACT: Canberra, Australia, 1962. [Google Scholar]
- Rundel, P.W. The Relationship between Basal Fire Scars and Crown Damage in Giant Sequoia. Ecology 1973, 54, 210–213. [Google Scholar] [CrossRef]
- Cochard, H.; Barigah, T.S.; Herbert, E.; Caupin, F. Cavitation in plants at low temperature: Is sap transport limited by the tensile strength of water as expected from Briggs’ Z-tube experiment? New Phytol. 2006, 173, 571–575. [Google Scholar] [CrossRef] [PubMed]
- Cochard, H.; Lemoine, D.; Améglio, T.; Granier, A. Mechanisms of xylem recovery from winter embolism in Fagus sylvatica. Tree Physiol. 2001, 21, 27–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Méthy, M.; Gillon, D.; Houssard, C. Temperature-induced changes of photosystem II activity in Quercus ilex and Pinus halepensis. Can. J. For. Res. 1997, 27, 31–38. [Google Scholar] [CrossRef]
- Dreyer, E.; Le Roux, X.; Montpied, P.; Daudet, F.A.; Masson, F. Temperature response of leaf photosynthetic capacity in seedlings from seven temperate tree species. Tree Physiol. 2001, 21, 223–232. [Google Scholar] [CrossRef] [Green Version]
- Certini, G. Effects of fire on properties of forest soils: A review. Oecologia 2005, 143, 1–10. [Google Scholar] [CrossRef]
- Valor, T.; Battipaglia, G.; Piqué, M.; Altieri, S.; González-Olabarria, J.R.; Casals, P. The effect of prescribed burning on the drought resilience of Pinus nigra ssp. salzmannii Dunal (Franco) and P. sylvestris L. Ann. For. Sci. 2020, 77, 1. [Google Scholar] [CrossRef]
- Poulos, H.M.; Barton, A.M.; Berlyn, G.P.; Schwilk, D.W.; Faires, C.E.; McCurdy, W.C. Differences in leaf physiology among juvenile pines and oaks following high severity wildfire in an Arizona Sky Island Mountain range. For. Ecol. Manag. 2020, 457, 117704. [Google Scholar] [CrossRef]
Location | Species | Heating Method | Key Words | Authors [ref.] |
---|---|---|---|---|
Stem | ||||
Pinus strobus | gas torch | cambium temperature, heat conduction | Kayll [44] | |
longleaf pines | litter fires: headfires and backfires | leeward and windward trunk sides, lethal cambium temperatures | Fahnestock and Hare [51] | |
Ecclinusa sp., Inga sp., Jacaranda copaia, Pourouma guianensis, Macrolobium angustifolium, Diospyros duckei, Tetragastris altissima, Inga alba, Metrodorea flavida, Xylopia aromatica, Cecropia sciadophylla, Cordia sericalyx, Lecythis idatimon, Lecythis lurida, Manilkara huberi | kerosene-soaked cotton rope | cambium temperature, heat conduction | Uhl and Kauffman [45] | |
Pinus pinaster | straw | temperature distribution | Costa et al. [52] | |
Sequoiadendron giganteum, Pinus lambertiana | natural litter | cambium temperature | Sackett and Haase [53] | |
Pinus ponderosa | litter, prescribed burning | growth, dendroecology, isotopic | Peterson et al. [29] | |
Pinus halepensis | electrical heating strip | physiological and growth responses | Ducrey et al. [54] | |
Laboratory model | flame burner | fire scars, vortices | Gutsell and Johnson [55] | |
Anadenanthera colubrina, Poeppigia procera, Peltogyne heterophylla, Phyllostylon rhamnoides, Caesalpinia floribunda, Aspidosperma rigidum, Chorisia speciosa, Acacia polyphylla, Tabebuia impetiginosa, Centrolobium microchaete, Eriotheca roseorum, Machaerium scleroxylon, Astronium urundeuva, Spondias mombin, Ceiba samauma, Amburana cearensis | kerosene-soaked cotton rope | cambium temperature, heat conduction | Pinard and Huffman [46] | |
Anadenanthera macrocarpa, Aspidosperma macrocarpon, Astronium urundeuva, Centrolobium microchaete, Machaerium scleroxylon, Poeppigia procera | gas torch | stem wounding | Schoonenberg et al. [39] | |
Pinus ponderosa, Pseudotsuga menziesii, Abies concolor, Calocedrus decurrens | electrical heating pad | cambium temperature, heat conduction | Van Mantgem and Schwartz [41] | |
Pinus contorta, Populus tremuloides, Picea engelmannii, Pseudotsuga menziesii | water bath | cambium necrosis | Dickinson and Johnson [42] | |
Pseudotsuga menziesii | kerosene-soaked cotton rope | heat conduction | Jones et al. [37] | |
Pseudotsuga menziesii, Pinus ponderosa, Acer rubrum, Quercus prinus | oven, hot air, gas torch | bark thickness, modelization | Butler et al. [25] | |
Acer rubrum, Quercus prinus | kerosene-soaked cotton rope or artificial fuel bed | fire behavior/bark thickness, tissue necrosis | Bova and Dickinson [47] | |
Acacia karroo | gas torch | stem death, xylem conductivity | Balfour and Midgley [40] | |
Acer rubrum, Quercus prinus, Pinus ponderosa, Pseudotsuga menziesii | kerosene-soaked cotton rope or artificial fuel bed | heat conduction, kill depth | Jones et al. [38] | |
Quercus rubrum, Fraxinus americana, Robinia pseudoacacia | radiant heater | heat flux | Bova and Dickinson [56] | |
Fagus sylvatica, Abies alba, Tilia cordata, Pinus sylvestris, Larix decidua, Quercus suber, Sequoiadendron giganteum | Bunsen burner | bark insulation capacity | Bauer et al. [33] | |
Pinus sylvestris | wildfire | dendrochronology, isotopes | Beghin et al. [30] | |
Buchanania obovata, Callitris intratropica, Erythrophleum chlorostachys, Eucalyptus miniata, Corymbia polysciada, Eucalyptus tetrodonta, Terminalia ferdinandiana | paraffin-soaked cotton rope | cambium temperature, heat conduction | Lawes et al. [48] | |
Populus balsamifera | water bath | cavitation and deformation of xylem | Michaletz et al. [43] | |
Pinus halepensis | litter, prescribed burning | dendrochronology, isotopes | Battipaglia et al. [31] | |
Pinus pinaster, Pinus radiata, Pinus elliottii, Eucalyptus cladocalyx, Acacia mearnsii, Ekebergia capensis, Rhus viminalis, Olea africana | electric heat gun | bark thickness, moisture content, heat insulation capacity | Odhiambo et al. [34] | |
Pinus halepensis, Pinus nigra salzmanii, Pinus nigra subsp. nigra, Pinus sylvestris | litter, prescribed burning | growth, dendrochronology | Valor et al. [32] | |
Pinus pinea | litter, prescribed burning | hydraulic conductivity, radial growth | Battipaglia et al. [57] | |
Picea abies, Pinus sylvestris, Fagus sylvatica | submersion in heated water | hydraulic conductivity, xylem | Bar et al. [50] | |
Pinus pinea | mass loss calorimeter | bark thickness, flammability, cambium | Madrigal et al. [36] | |
Pinus nigra | mass loss calorimeter device in a vertical configuration, low-intensity prescribed burning | bark thickness, cambial damage, fire intensity, time of heat exposure | Espinosa et al. [58] | |
Crown | ||||
Acer rubrum, Rubus allegheniensis, Prunus serotine, Quercus ellipsoidalis | litter, prescribed burning | leaf nutrients, physiology, reproduction | Reich et al. [59] | |
Abies concolor, Pinus lambertiana, Pinus ponderosa, Calocedrus decurrens, Sequoiadendron giganteum, Quercus kelloggii | litter, prescribed burning | scorch, tree mortality, models | Stephens and Finney [60] | |
Pinus pinaster | litter, prescribed burning | crown scorch height, fire severity | Fernandes and Botelho [9] | |
Pinus ponderosa | Litter, thinning, prescribed burning | leaf nutrients, photosynthesis, hydraulic conductance | Skov et al. [61] | |
Pinus nigra subsp. laricio | litter, prescribed burning | secondary metabolites, isotopes | Cannac et al. [62] | |
Pinus nigra subsp. laricio | litter, prescribed burning | secondary metabolites | Cannac et al. [63] | |
Pinus nigra subsp. laricio | litter, artificial prescribed burning | secondary metabolites | Cannac et al. [64] | |
Pinus nigra subsp. laricio | litter, artificial prescribed burning | physiology, biochemistry | Ferrat et al. [65] | |
Pinus palustris | litter, prescribed burning | physiology | O’Brien et al. [66] | |
Pinus nigra subsp. laricio | litter, prescribed burning | secondary metabolites | Cannac et al. [67] | |
Pinus halepensis, Pinus nigra subsp. laricio | litter, prescribed burning | secondary metabolites, physiology | Lavoir et al. [68] | |
Pinus rigida | litter, prescribed burning | physiology, isotopes | Renninger et al. [69] | |
Quercus mongolica | butane torch | bark property, cambium, heat transfer, stem heating model | Wei et al. [70] | |
Crown and Stem | ||||
Pinus ponderosa | litter, prescribed burning | physiology, morphology | Feeney et al. [71] | |
Pinus pinaster | gas flame | pigments, tannins, polyphenols | Alonso et al. [72] | |
Pinus halepensis, Pinus pinea | wildfire | tree mortality | Rigolot [73] | |
Pinus sylvestris, Pinus nigra, Pinus canariensis, Pinus radiata, Pinus pinaster, Pinus pinea, Pinus halepensis, Pinus brutia | wildfire, prescribed burning | tree mortality, models, growth | Fernandes et al. [74] | |
Pinus nigra subsp. laricio | litter, prescribed burning | secondary metabolites | Cannac et al. [75] | |
Pinus halepensis, Pinus pinaster, Pinus pinea | wildfire | Tree mortality, scorch, modeling, bark thickness, | Pimont et al. [27] | |
Pinus pinaster | radiation heat flux | physiology, cambium, growth | Jimenez et al. [49] | |
Pinus nigra, Pinus pinaster | litter, prescribed burning | short-term effects, bark thickness, low fire intensity, cambium and bark temperatures, time of heat exposure, litterfall, LAI | Espinosa et al. [76] | |
Synthesis | wildfire | modeling, biophysical processes | Butler and Dickinson [26] | |
Synthesis | wildfire | bark thickness, fire regime | Pausas [35] |
C1 * | C2 * | C3 * | C4 * | C5 | C6 * | C7 * | C8 * | C9 * | C10 | C11 * | C12 | Mean (SD) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DBH (cm) | 15.0 | 14.5 | 13.0 | 12.5 | 12.5 | 13.5 | 19.0 | 18.0 | 21.0 | 21.5 | 20.0 | 21.0 | 16.8 (3.6) |
Height (m) | 11.8 | 13.1 | 8.6 | 6.9 | 7.3 | 11.5 | 8.6 | 8.6 | 10.1 | 8.0 | 10.1 | 12.7 | 9.8 (2.1) |
Age (year) | 45 | 38 | 36 | 29 | 23 | 22 | 29 | 29 | 42 | 42 | 50 | 43 | 35.7 (9.1) |
TDP (mm) | 30 | 30 | 30 | 30 | 30 | 30 | 50 | 50 | 50 | 50 | 50 | 50 | - |
B1 * | B2 * | B3 | B4 | B5 * | B6 * | B7 * | B8 * | B9 * | B10 * | B11 * | B12 | Mean (SD) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DBH (cm) | 16.0 | 16.0 | 12.0 | 12.5 | 14.0 | 13.0 | 17.0 | 17.0 | 20.8 | 17.0 | 23.0 | 19.3 | 16.5 (3.4) |
Height (m) | 9.0 | 8.8 | 10.7 | 8.6 | 7.8 | 7.9 | 12.7 | 9.7 | 11.1 | 13.3 | 11.6 | 13.0 | 10.4 (2.0) |
Age (year) | 28 | 33 | 43 | 24 | 31 | 29 | 41 | 49 | 45 | 35 | 45 | 42 | 37.1 (8.1) |
TDP (mm) | 30 | 30 | 30 | 30 | 30 | 30 | 50 | 50 | 50 | 50 | 50 | 50 | - |
Tree | Bark Thickness (mm) | Basal Diameter (cm) | Bark Tmax (°C) | Time to Peak (s) | Heating Rate (°C min–1) | |
---|---|---|---|---|---|---|
Outer | Inner | |||||
B1 | 18 ± 7 | 20.5 | NA | 53.2 | 998 | 4.11 |
B2 | 13 ± 6 | 17.9 | 999 | 38.6 | 1301 | 1.48 |
B3 | 14 ± 4 | 14.2 | 911 | 38.9 | 922 | 1.63 |
B4 | 18 ± 7 | 16.6 | 1278 | 34.7 | 1028 | 1.10 |
B5 | 20 ± 2 | 17.2 | 955 | 56.6 | 438 | 4.37 |
B6 | 15 ± 5 | 16.9 | 1029 | 30.1 | 1551 | 0.83 |
B7 | 26 ± 2 | 21.8 | 1078 | NA | NA | NA |
B8 | 19 ± 4 | 23.0 | 926 | 24.5 | 1785 | 0.53 |
B9 | 23 ± 3 | 25.3 | 845 | 26.1 | 1947 | 0.60 |
B10 | 15 ± 5 | 25.1 | 951 | 18.5 | 2443 | 0.13 |
B11 | 23 ± 4 | 28.4 | 927 | 27.3 | 1315 | 1.24 |
B12 | 25 ± 11 | 24.5 | 956 | 28.2 | 1535 | 0.97 |
Treatment | Date | |||
---|---|---|---|---|
Parameters | F Value | p-Value | F Value | p-Value |
ΦPSII | 0.747 | 0.388 | 10.539 | <0.0001 |
Fv/Fm | 0.132 | 0.717 | 5.914 | <0.0001 |
qP | 0.129 | 0.720 | 7.842 | <0.0001 |
NPQ | 2.791 | 0.096 | 13.291 | <0.0001 |
A | 7.099 | 0.008 | 22.836 | <0.0001 |
gs | 15.01 | 0.0001 | 18.19 | <0.0001 |
gm | 0.002 | 0.968 | 6.126 | <0.0001 |
Vcmax | 2.541 | 0.112 | 3.597 | <0.0001 |
Jmax | 2.795 | 0.096 | 10.313 | <0.0001 |
TPU | 1.294 | 0.256 | 12.530 | <0.0001 |
Air | Under Bark | ||||||
---|---|---|---|---|---|---|---|
Tmax (°C) | Residence Time (s) | Tmax (°C) | Residence Time (s) | ||||
Tree | >300 °C (s) | >55 °C (s) | >50 °C (s) | >45 °C (s) | >40 °C (s) | ||
B1 | NA | NA | 53.4 | 476 | 918 | 1454 | |
B2 | 999 | 416 | 38.6 | ||||
B3 | 911 | 371 | 38.9 | ||||
B4 | 1278 | 413 | 34.7 | ||||
B5 | 955 | 468 | 56.6 | 248 | 423 | 668 | 1220 |
B6 | 1029 | 333 | 30.1 | ||||
B7 | 1078 | 428 | NA | ||||
B8 | 926 | 220 | 24.5 | ||||
B9 | 845 | 266 | 26.1 | ||||
B10 | 951 | 222 | 18.5 | ||||
B11 | 927 | 233 | 27.3 | ||||
B12 | 956 | 277 | 28.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferrat, L.; Morandini, F.; Lapa, G. Influence of Prescribed Burning on a Pinus nigra subsp. Laricio Forest: Heat Transfer and Tree Vitality. Forests 2021, 12, 915. https://doi.org/10.3390/f12070915
Ferrat L, Morandini F, Lapa G. Influence of Prescribed Burning on a Pinus nigra subsp. Laricio Forest: Heat Transfer and Tree Vitality. Forests. 2021; 12(7):915. https://doi.org/10.3390/f12070915
Chicago/Turabian StyleFerrat, Lila, Frédéric Morandini, and Gauthier Lapa. 2021. "Influence of Prescribed Burning on a Pinus nigra subsp. Laricio Forest: Heat Transfer and Tree Vitality" Forests 12, no. 7: 915. https://doi.org/10.3390/f12070915
APA StyleFerrat, L., Morandini, F., & Lapa, G. (2021). Influence of Prescribed Burning on a Pinus nigra subsp. Laricio Forest: Heat Transfer and Tree Vitality. Forests, 12(7), 915. https://doi.org/10.3390/f12070915