Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = Pinus nigra subsp. laricio

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 570 KiB  
Article
Anti-Obesity and Weight Management-Related Antioxidant Potential Properties of Calabrian Pine Extracts: Pinus nigra Subsp. laricio (Poir.) Maire
by Mary Fucile, Carmine Lupia, Martina Armentano, Mariangela Marrelli, Ludovica Zicarelli, Claudia-Crina Toma, Giancarlo Statti and Filomena Conforti
Plants 2025, 14(6), 851; https://doi.org/10.3390/plants14060851 - 8 Mar 2025
Viewed by 1080
Abstract
Natural extracts derived from plants have gained attention as potential therapeutic agents for obesity management. Some natural extracts were demonstrated to inhibit pancreatic lipase and alpha amylase, potentially influencing nutrient absorption and contributing to weight management. Pinus nigra subsp. laricio (Poir.) Maire, commonly [...] Read more.
Natural extracts derived from plants have gained attention as potential therapeutic agents for obesity management. Some natural extracts were demonstrated to inhibit pancreatic lipase and alpha amylase, potentially influencing nutrient absorption and contributing to weight management. Pinus nigra subsp. laricio (Poir.) Maire, commonly known as the Calabrian pine or larch pine, is a subspecies of the black pine native to the mountains of southern Italy and Corsica. This study investigated the phytochemical content and antioxidant (DPPH and β-carotene bleaching assays) and enzymatic (lipase and amylase inhibition) activities of ethanolic extracts from apical shoots and branches, fractionated into n-hexane, dichloromethane, and ethyl acetate. All the extracts were also subjected to a preliminary evaluation of their anti-inflammatory potential by measuring the ability to inhibit nitric oxide (NO) production in RAW 264.7 macrophages. The ethyl acetate branch fraction exhibited the strongest antioxidant activity (DPPH IC50 15.67 ± 0.16 μg/mL), while the total branch extract best inhibited pancreatic lipase (IC50 0.62 mg/mL). Amylase inhibition was strongest in the ethyl acetate apical shoot fraction (IC50 22.05 ± 0.29 µg/mL). The branches’ hexane and dichloromethane fractions showed the greatest anti-inflammatory potential, inhibiting NO production in RAW 264.7 cells with IC50 values comparable to the positive control. Full article
Show Figures

Figure 1

12 pages, 3392 KiB  
Article
Identification of Pinosylvin in Pinus nigra subsp. laricio: A Naturally Occurring Stilbenoid Suppressing LPS-Induced Expression of Pro-Inflammatory Cytokines and Mediators and Inhibiting the JAK/STAT Signaling Pathway
by Maria Rosaria Perri, Michele Pellegrino, Mariangela Marrelli, Stefano Aquaro, Fabiola Cavaliere, Fedora Grande, Maria Antonietta Occhiuzzi, Carmine Lupia, Claudia-Crina Toma, Filomena Conforti and Giancarlo Statti
Pharmaceuticals 2023, 16(5), 718; https://doi.org/10.3390/ph16050718 - 9 May 2023
Cited by 7 | Viewed by 2405
Abstract
Stilbenoids, a group of phytoalexin polyphenols produced by plants as a defence mechanism in response to stress conditions, are known for their anti-inflammatory potential. Pinosylvin, a naturally occurring molecule traditionally found in pinus trees, was here identified in Pinus nigra subsp. laricio var. [...] Read more.
Stilbenoids, a group of phytoalexin polyphenols produced by plants as a defence mechanism in response to stress conditions, are known for their anti-inflammatory potential. Pinosylvin, a naturally occurring molecule traditionally found in pinus trees, was here identified in Pinus nigra subsp. laricio var. calabrica from Southern Italy through HPLC analysis. Both this molecule and its well-known analogue resveratrol, the most famous wine polyphenol, were compared for their in vitro potential anti-inflammatory activity. Pinosylvin significantly inhibited the release of pro-inflammatory cytokines (TNF-α and IL-6) and NO mediator in LPS-stimulated RAW 264.7 cells. Moreover, its ability to inhibit the JAK/STAT signaling pathway was assessed: Western blot analyses showed a downregulation of both phosphorylated JAK2 and STAT3 proteins. Finally, in order to verify whether this biological activity could be attributed to a direct interaction of pinosylvin with JAK2, a molecular docking study was performed, confirming the capability of pinosylvin to bind the active site of the protein. Full article
(This article belongs to the Section Natural Products)
Show Figures

Figure 1

20 pages, 2399 KiB  
Article
Monoterpene Synthase Genes and Monoterpene Profiles in Pinus nigra subsp. laricio
by Enrica Alicandri, Stefano Covino, Bartolomeo Sebastiani, Anna Rita Paolacci, Maurizio Badiani, Agostino Sorgonà and Mario Ciaffi
Plants 2022, 11(3), 449; https://doi.org/10.3390/plants11030449 - 6 Feb 2022
Cited by 3 | Viewed by 2733
Abstract
In the present study, we carried out a quantitative analysis of the monoterpenes composition in different tissues of the non-model conifer Pinus nigra J.F. Arnold subsp. laricio Palib. ex Maire (P. laricio, in short). All the P. laricio tissues examined showed [...] Read more.
In the present study, we carried out a quantitative analysis of the monoterpenes composition in different tissues of the non-model conifer Pinus nigra J.F. Arnold subsp. laricio Palib. ex Maire (P. laricio, in short). All the P. laricio tissues examined showed the presence of the same fourteen monoterpenes, among which the most abundant were β-phellandrene, α-pinene, and β-pinene, whose distribution was markedly tissue-specific. In parallel, from the same plant tissues, we isolated seven full-length cDNA transcripts coding for as many monoterpene synthases, each of which was found to be attributable to one of the seven phylogenetic groups in which the d1-clade of the canonical classification of plants’ terpene synthases can be subdivided. The amino acid sequences deduced from the above cDNA transcripts allowed to predict their putative involvement in the biosynthesis of five of the monoterpenes identified. Transcripts profiling revealed a differential gene expression across the different tissues examined, and was found to be consistent with the corresponding metabolites profiles. The genomic organization of the seven isolated monoterpene synthase genes was also determined. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Graphical abstract

20 pages, 3118 KiB  
Article
Diterpene Resin Acids and Olefins in Calabrian Pine (Pinus nigra subsp. laricio (Poiret) Maire) Oleoresin: GC-MS Profiling of Major Diterpenoids in Different Plant Organs, Molecular Identification and Expression Analysis of Diterpene Synthase Genes
by Enrica Alicandri, Stefano Covino, Bartolomeo Sebastiani, Anna Rita Paolacci, Maurizio Badiani, Francesco Manti, Carmelo Peter Bonsignore, Agostino Sorgonà and Mario Ciaffi
Plants 2021, 10(11), 2391; https://doi.org/10.3390/plants10112391 - 5 Nov 2021
Cited by 9 | Viewed by 3457
Abstract
A quali-quantitative analysis of diterpenoid composition in tissues obtained from different organs of Pinus nigra subsp. laricio (Poiret) Maire (Calabrian pine) was carried out. Diterpene resin acids were the most abundant diterpenoids across all the examined tissues. The same nine diterpene resin acids [...] Read more.
A quali-quantitative analysis of diterpenoid composition in tissues obtained from different organs of Pinus nigra subsp. laricio (Poiret) Maire (Calabrian pine) was carried out. Diterpene resin acids were the most abundant diterpenoids across all the examined tissues. The same nine diterpene resin acids were always found, with the abietane type prevailing on the pimarane type, although their quantitative distribution was found to be remarkably tissue-specific. The scrutiny of the available literature revealed species specificity as well. A phylogeny-based approach allowed us to isolate four cDNAs coding for diterpene synthases in Calabrian pine, each of which belonging to one of the four groups into which the d3 clade of the plants’ terpene synthases family can be divided. The deduced amino acid sequences allowed predicting that both monofunctional and bifunctional diterpene synthases are involved in the biosynthesis of diterpene resin acids in Calabrian pine. Transcript profiling revealed differential expression across the different tissues and was found to be consistent with the corresponding diterpenoid profiles. The isolation of the complete genomic sequences and the determination of their exon/intron structures allowed us to place the diterpene synthase genes from Calabrian pine on the background of current ideas on the functional evolution of diterpene synthases in Gymnosperms. Full article
(This article belongs to the Special Issue Plant Analytical Chemistry)
Show Figures

Graphical abstract

17 pages, 2761 KiB  
Article
The Dry and the Wet Case: Tree Growth Response in Climatologically Contrasting Years on the Island of Corsica
by Martin Häusser, Sonja Szymczak, Isabel Knerr, Jörg Bendix, Emilie Garel, Frédéric Huneau, Katja Trachte, Sébastien Santoni and Achim Bräuning
Forests 2021, 12(9), 1175; https://doi.org/10.3390/f12091175 - 30 Aug 2021
Cited by 8 | Viewed by 2886
Abstract
Stem radial variations of Corsican Black pine (Pinus nigra Arnold subsp. laricio Maire) and Maritime pine (Pinus pinaster Aiton) were monitored to quantify the impact of two meteorologically contrasting consecutive years. On the French island of Corsica, in the western Mediterranean [...] Read more.
Stem radial variations of Corsican Black pine (Pinus nigra Arnold subsp. laricio Maire) and Maritime pine (Pinus pinaster Aiton) were monitored to quantify the impact of two meteorologically contrasting consecutive years. On the French island of Corsica, in the western Mediterranean basin, the year 2017 was extremely dry, while 2018 was exceptionally wet. We attached electric band dendrometers to 36 pines along an east–west transect, spanning the central mountain range, and set up automated weather stations at all five sites, ranging from 10 m asl to 1600 m asl. Stem radial variations (SRV) were separated into irreversible growth (GRO) and tree water deficit (TWD) periods. During the drought of 2017, the most severe tree water deficits occurred in the western part of the island, whereas trees at higher elevations were more affected than at lower elevations. A prolonged decrease of SRV, even close to the tree line, suggests bimodal growth and reveals high plasticity of growth patterns in both Corsican pines. Stem radial variations correlated significantly with precipitation and temperature. The positive correlations of GRO with precipitation and the negative correlations of TWD with temperature imply that high evapotranspiration led to the intense period of TWD in 2017. A novel approach was used to further investigate the growth/climate relationship by including synoptic-scale pressure situations. This revealed that an elevation gradient in GRO per weather pattern was only present in the wet year and that even rarely occurring weather patterns can have a substantial impact on tree growth. This novel approach provides a more comprehensive insight into meteorological drivers of tree growth patterns by incorporating different scales of the climatic system. Full article
Show Figures

Figure 1

11 pages, 1633 KiB  
Article
Molecular-Based Reappraisal of a Historical Record of Dothistroma Needle Blight in the Centre of the Mediterranean Region
by Chiara Aglietti, Alessandra Benigno, Edoardo Scali, Paolo Capretti, Luisa Ghelardini and Salvatore Moricca
Forests 2021, 12(8), 983; https://doi.org/10.3390/f12080983 - 24 Jul 2021
Cited by 6 | Viewed by 2795
Abstract
In this work, we rechecked, using species-specific Loop mediated isothermal AMPlification (LAMP) diagnostic assays followed by sequencing of fungal isolates at the beta-2-tubulin (tub2) gene region, a historical and never confirmed report of Dothistroma needle blight (DNB) in the introduced Monterey pine ( [...] Read more.
In this work, we rechecked, using species-specific Loop mediated isothermal AMPlification (LAMP) diagnostic assays followed by sequencing of fungal isolates at the beta-2-tubulin (tub2) gene region, a historical and never confirmed report of Dothistroma needle blight (DNB) in the introduced Monterey pine (Pinus radiata D. Don) in the mountains in the extreme tip of southern Italy. The report dates back to the mid-1970s, and predates the molecular-based taxonomic revision of the genus Dothistroma that defined the species accepted today. In the fall of 2019, symptomatic needles of Monterey pine and Corsican pine (Pinus nigra subsp. laricio (Poir.) Palib. ex Maire) were sampled in the area of the first finding. The applied diagnostic methods revealed the presence of Dothistroma septosporum (Dorogin) M. Morelet on both pine species. In this way, we: (i) confirmed the presence of the disease; (ii) clarified the taxonomic identity of the causal agent now occurring at that site; (iii) validated the species-specific LAMP diagnostic protocol we recently developed for Dothistroma for use on a portable field instrument, and (iv) showed that the pathogen now also attacks the native P. nigra subsp. laricio, a species particularly susceptible to the disease, indigenous to the mountains of Calabria, which is one of the very few areas where the species’ genetic resources are conserved. Comparative genetic analysis of the rare populations of D. septosporum found in the central Mediterranean region and in the native range of P. nigra subsp. laricio could help to clarify the history of the spread of the pathogen in southern Europe and better evaluate the risk it poses to the conservation of native pine species. Full article
(This article belongs to the Special Issue Forest Pathology and Entomology)
Show Figures

Figure 1

23 pages, 3694 KiB  
Article
Influence of Prescribed Burning on a Pinus nigra subsp. Laricio Forest: Heat Transfer and Tree Vitality
by Lila Ferrat, Frédéric Morandini and Gauthier Lapa
Forests 2021, 12(7), 915; https://doi.org/10.3390/f12070915 - 14 Jul 2021
Cited by 3 | Viewed by 2768
Abstract
Surface fuel removal is crucial to facilitate the mitigation of severe fires in forests. Prescribed burning is often used by forest managers, thanks to its low cost and high efficiency in hard-to-reach areas. The determination of heat transfer between fires and trees has [...] Read more.
Surface fuel removal is crucial to facilitate the mitigation of severe fires in forests. Prescribed burning is often used by forest managers, thanks to its low cost and high efficiency in hard-to-reach areas. The determination of heat transfer between fires and trees has rarely been carried out on living species and consequently, their long-term effects on tree physiology are still not fully understood. In this study, a multidisciplinary approach was conducted to evaluate the impact of a late spring (June) prescribed burning on a Mediterranean pine forest (Pinus nigra subsp. laricio). The surface fuels consisted of a 656 g m² needle litter, mixed with a few scattered living herbaceous strata. During the fire spread, measurements of the inner and outer trunk temperatures were made at the base of 12 trees with an average bark thickness of 19.4 ± 7.0 mm. The fireline intensity and flame residence time were in the range of 110–160 kW m−1 and 220–468 s, respectively. Despite a maximum heating rate at the cambial area of 4.37 °C min−1, the temperature of these tissues remained below 60 °C, a critical threshold above which thermal damage will occur. In addition, prior- and post-fire physiological monitoring was performed over a long time period (2.5 years) on 24 trees, using sap flow, chlorophyll fluorescence and gas exchange measurements. All parameters remain highly correlated and indicate that the burned trees did not suffer physiological damage. Moreover, drought resistance strategies were not altered by the prescribed burning. The thermal insulation capability of the bark allowed the functional tissues to experience low heat stress that did not affect tree vitality. Full article
Show Figures

Graphical abstract

22 pages, 7388 KiB  
Article
Profiling Volatile Terpenoids from Calabrian Pine Stands Infested by the Pine Processionary Moth
by Vincenza Foti, Fabrizio Araniti, Francesco Manti, Enrica Alicandri, Angelo Maria Giuffrè, Carmelo Peter Bonsignore, Elvira Castiglione, Agostino Sorgonà, Stefano Covino, Anna Rita Paolacci, Mario Ciaffi and Maurizio Badiani
Plants 2020, 9(10), 1362; https://doi.org/10.3390/plants9101362 - 14 Oct 2020
Cited by 13 | Viewed by 3933
Abstract
Terpenoids make up the biggest and most diversified class of chemical substances discovered in plants, encompassing over 40,000 individual compounds. In conifers, the production of terpenoids, either as oleoresin or emitted as volatile compounds, play an important role in the physical and chemical [...] Read more.
Terpenoids make up the biggest and most diversified class of chemical substances discovered in plants, encompassing over 40,000 individual compounds. In conifers, the production of terpenoids, either as oleoresin or emitted as volatile compounds, play an important role in the physical and chemical defence responses against pathogens and herbivores. In the present work, we examined, for the first time to the best of our knowledge, the terpenic defensive relations of Calabrian pine (Pinus nigra subsp. laricio (Poiret) Maire), facing the attack of the pine processionary moth (Thaumetopoea pityocampa (Denis and Schiffermüller, 1775)), brought about in the open on adult plant individuals growing at two distinct forest sites. Among the volatile terpenoids emitted from pine needles, bornyl acetate [(4,7,7-trimethyl-3-bicyclo[2.2.1]heptanyl) acetate] was the most frequently and selectively associated with the infestation, increasing during the period of most intense trophic activity of the caterpillars (defoliation), and decreasing thereafter. Although further work is needed to clarify whether the observed response reflects defence reactions and/or they are involved in communication among the infested plants and their biotic environment, the present results boost the currently growing interest in the isolation and characterization of plant secondary metabolites that can be used to control pests, pathogens, and weeds. Full article
Show Figures

Graphical abstract

Back to TopTop