Topsoil Moisture Depletion and Recharge below Young Norway Spruce, White Birch, and Treeless Gaps at a Mountain-Summit Site
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Root Distribution
2.3. Soil Moisture Measurement
2.4. Soil Moisture Data Processing and Statistical Analyses
3. Results
3.1. The Weather Pattern in Particular Growing Seasons
3.2. Soil Waterlogging and Root Distribution
3.3. The Average Moisture of the Topsoil Layer in the Growing Seasons
3.4. The 2011 Growing Season
3.5. The 2012 Growing Season
3.6. The 2013 Growing Season
3.7. The 2014 Growing Season
3.8. Soil Moisture Differences
3.9. Interception, Evapotranspiration, and Infiltration
4. Discussion
4.1. Precipitation
4.2. Evapotranspiration
4.3. Belowground Biomass Relationship to Soil Water
4.4. Course of Growing Seasons and Soil Water Limits
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Huang, M.B.; Zettl, J.D.; Barbour, S.L.; Elshorbagy, A.; Si, B.C. The impact of soil moisture availability on forest growth indices for variably layered coarse-textured soils. Ecohydrology 2013, 6, 214–227. [Google Scholar] [CrossRef]
- Manrique-Alba, A.; Ruiz-Yanetti, S.; Moutahir, H.; Novak, K.; De Luis, M.; Bellot, J. Soil moisture and its role in growth-climate relationships across an aridity gradient in semiarid Pinus halepensis forests. Sci. Total Environ. 2017, 574, 982–990. [Google Scholar] [CrossRef]
- Kurz-Besson, C.B.; Lousada, J.L.; Gaspar, M.J.; Correia, I.E.; David, T.S.; Soares, P.M.M.; Cardoso, R.M.; Russo, A.; Varino, F.; Meriaux, C.; et al. Effects of recent minimum temperature and water deficit increases on Pinus pinaster radial growth and wood density in Southern Portugal. Front. Plant Sci. 2016, 7, 1170. [Google Scholar] [CrossRef] [PubMed]
- Porporato, A.; D’Odorico, P.; Laio, F.; Ridolfi, L.; Rodriguez-Iturbe, I. Ecohydrology of water-controlled ecosystems. Adv. Water Resour. 2002, 25, 1335–1348. [Google Scholar] [CrossRef]
- Bos, M.G.; Kselik, R.A.L.; Allen, R.G.; Molden, D.J. Effective precipitation. In Water Requirements for Irrigation and the Environment; Springer: Berlin, Germany, 2009. [Google Scholar]
- Gardon, F.R.; de Toledo, R.M.; Brentan, B.M.; dos Santos, R.F. Rainfall interception and plant community in young forest restorations. Ecol. Indic. 2020, 109, 105779. [Google Scholar] [CrossRef]
- Nolz, R. A review on the quantification of soil water balance components as a basis for agricultural water management with a focus on weighing lysimeters and soil water sensors/Ein Überblick über die Ermittlung von Wasserhaushaltsgrößen als Basis für die landeskulturelle Wasserwirtschaft mit Fokus auf Lysimeter und Bodenwassersensoren. Die Bodenkult. J. Land Manag. Food Environ. 2016, 67, 133–144. [Google Scholar]
- Iida, S.; Ohta, T.; Matsumoto, K.; Nakai, T.; Kuwada, T.; Kononov, A.V.; Maximov, T.C.; van der Molen, M.K.; Dolman, H.; Tanaka, H.; et al. Evapotranspiration from understory vegetation in an eastern Siberian boreal larch forest. Agric. For. Meteorol. 2009, 149, 1129–1139. [Google Scholar] [CrossRef]
- Tie, Q.; Hu, H.; Tian, F.; Holbrook, N.M. Comparing different methods for determining forest evapotranspiration and its components at multiple temporal scales. Sci. Total. Environ. 2018, 633, 12–29. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, A.; Ellsworth, T.; Meek, B. Effect of Root systems on preferential flow in swelling soils. Commun. Soil Sci. Plant Anal. 1995, 26, 2655–2666. [Google Scholar] [CrossRef]
- Brümmer, C.; Black, T.A.; Jassal, R.S.; Grant, N.J.; Spittlehouse, D.L.; Chen, B.; Nesic, Z.; Amiro, B.D.; Arain, M.A.; Barr, A.G.; et al. How climate and vegetation type influence evapotranspiration and water use efficiency in Canadian forest, peatland and grassland ecosystems. Agric. For. Meteorol. 2012, 153, 14–30. [Google Scholar] [CrossRef]
- Gribovszki, Z.; Kalicz, P.; Palocz-Andresen, M.; Szalay, D.; Varga, T. Hydrological role of Central European forests in changing climate-review. Idojaras 2019, 123, 535–550. [Google Scholar]
- Hríbik, M.; Vida, T.; Skvarenina, J.; Skvareninova, J.; Ivan, L. Hydrological effects of Norway spruce and European beech on snow cover in a Mid-Mountain Region of the Polana Mts., Slovakia. J. Hydrol. Hydromech. 2012, 60, 319–332. [Google Scholar] [CrossRef] [Green Version]
- Peck, A.; Mayer, H. Influence of stand parameters on evaporation in forests. Forstwiss. Cent. 1996, 115, 1–9. [Google Scholar] [CrossRef]
- Reynolds, E.R.C.; Henderson, C.S. Rainfall interception by beech, larch and Norway spruce. Forestry 1967, 40, 165–184. [Google Scholar] [CrossRef]
- Soubie, R.; Heinesch, B.; Granier, A.; Aubinet, M.; Vincke, C. Evapotranspiration assessment of a mixed temperate forest by four methods: Eddy covariance, soil water budget, analytical and model. Agric. For. Meteorol. 2016, 228, 191–204. [Google Scholar] [CrossRef] [Green Version]
- Clausnitzer, F.; Kostner, B.; Schwarzel, K.; Bernhofer, C. Relationships between canopy transpiration, atmospheric conditions and soil water availability—Analyses of long-term sap-flow measurements in an old Norway spruce forest at the Ore Mountains/Germany. Agric. For. Meteorol. 2011, 151, 1023–1034. [Google Scholar] [CrossRef]
- Saha, A.K.; Sternberg, L.D.O.; Ross, M.S.; Miralles-Wilhelm, F. Water source utilization and foliar nutrient status differs between upland and flooded plant communities in wetland tree islands. Wetl. Ecol. Manag. 2010, 18, 343–355. [Google Scholar] [CrossRef]
- Brooks, K.N.; Ffolliott, P.F.; Gregersen, H.M.; DeBano, L.F. Hydrology and the Management of Watersheds, 3rd ed.; Blackwell: Ames, IA, USA, 2003. [Google Scholar]
- Boldrin, D.; Leung, A.K.; Bengough, A.G. Hydrologic reinforcement induced by contrasting woody species during summer and winter. Plant Soil 2018, 427, 369–390. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Fu, B.; Zhang, L.; Xu, Z. Soil moisture–plant interactions: An ecohydrological review. J. Soils Sediments 2019, 19, 1–9. [Google Scholar] [CrossRef]
- Abdallah, M.A.B.; Durfee, N.; Mata-González, R.; Ochoa, C.G.; Noller, J.S. Water use and soil moisture relationships on western juniper trees at different growth stages. Water 2020, 12, 1596. [Google Scholar] [CrossRef]
- Mata-González, R.; Abdallah, M.A.B.; Ochoa, C.G. Water use by mature and sapling western juniper (Juniperus occidentalis) trees. Rangel. Ecol. Manag. 2021, 74, 110–113. [Google Scholar] [CrossRef]
- Válek, Z. Lesní dřeviny Jako Vodohospodářský a Protierozní činitel [Forest Tree Species as Water Management and Erosion Control Factor]; Státní Zemědělské Nakladatelství: Praha, Czech Republic, 1977. [Google Scholar]
- Lutter, R.; Tullus, A.; Kanal, A.; Tullus, T.; Vares, A.; Tullus, H. Growth development and plant-soil relations in midterm silver birch (Betula pendula Roth) plantations on previous agricultural lands in hemiboreal Estonia. Eur. J. For. Res. 2015, 134, 53–667. [Google Scholar] [CrossRef]
- Mainiero, R.; Kazda, M.; Schmid, I. Fine root dynamics in 60-year-old stands of Fagus sylvatica and Picea abies growing on haplic luvisol soil. Eur. J. For. Res. 2010, 129, 1001–1009. [Google Scholar] [CrossRef]
- Wambsganss, J.; Beyer, F.; Freschet, G.T.; Scherer-Lorenzen, M.; Bauhus, J. Tree species mixing reduces biomass but increases length of absorptive fine roots in European forests. J. Ecol. 2021, 1–14. [Google Scholar] [CrossRef]
- Raz-Yaseef, N.; Yakir, D.; Schiller, G.; Cohen, S. Dynamics of evapotranspiration partitioning in a semi-arid forest as affected by temporal rainfall patterns. Agric. For. Meteorol. 2012, 157, 77–85. [Google Scholar] [CrossRef]
- Tužinský, L. Režim vlhkosti a zásob využiteľnej vody v pôde pod lesnými ekosystémami [Moisture and usable water reserves in soil under forest ecosystems]. In Vedecké práce Výskumného Ústavu Lesného Hospodárstva vo Zvolen; Príroda: Bratislava, Slovakia, 1990; pp. 95–110. [Google Scholar]
- Křeček, J.; Nováková, J. Soil water content and plant succession after the harvest of mature spruce stands in a mountain catchment. Ekológia 2009, 28, 213–224. [Google Scholar] [CrossRef]
- Viewegh, J.; Kusbach, A.; Mikeska, M. Czech forest ecosystem classification. J. For. Sci. 2003, 49, 85–93. [Google Scholar] [CrossRef] [Green Version]
- Balcar, V.; Podrázský, V. Založení výsadbového pokusu v hřebenové partii Jizerských hor [Establishment of a tree planting experiment in the ridge part of the Jizerské Mts.]. Zpr. Lesn. Výzkumu 1994, 39, 1–7. [Google Scholar]
- Forrester, D.I.; Tachauer, I.H.H.; Annighoefer, P.; Barbeito, I.; Pretzsch, H.; Ruiz-Peinado, R.; Stark, H.; Vacchiano, G.; Zlatanov, T.; Chakraborty, T.; et al. Generalized biomass and leaf area allometric equations for European tree species incorporating stand structure, tree age and climate. For. Ecol. Manag. 2017, 396, 160–175. [Google Scholar] [CrossRef]
- Balcar, V.; Špulák, O.; Kacálek, D.; Kuneš, I. Klimatické podmínky na výzkumné ploše Jizerka—I. Srážky a půdní vlhkost [Climatic conditions in the Jizerka experimental plot—Precipitation and soil moisture]. Zpr. Lesn. Výzkumu 2012, 57, 74–81. [Google Scholar]
- Tomst TMS Dataloggers. Available online: https://tomst.com/web/cz/systemy/tms/tms-3/ (accessed on 6 January 2020).
- Brinkmann, N.; Eugster, W.; Buchmann, N.; Kahmen, A. Species-specific differences in water uptake depth of mature temperate trees vary with water availability in the soil. Plant Biol. 2019, 21, 71–81. [Google Scholar] [CrossRef] [Green Version]
- Špulák, O.; Kacálek, D. Below-canopy and topsoil temperatures in young Norway spruce and Carpathian birch stands compared to gaps in the mountains. J. For. Sci. 2016, 62, 441–451. [Google Scholar] [CrossRef] [Green Version]
- Will, B.; Rolfes, I. Comparative study of moisture measurements by time domain transmissometry. In Proceedings of the IEEE Sensors, Baltimore, MD, USA, 3–6 November 2013; pp. 1–4. [Google Scholar] [CrossRef]
- Wild, J.; Kopecký, M.; Macek, M.; Šanda, M.; Jankovec, J.; Haase, T. Climate at ecologically relevant scales: A new temperature and soil moisture logger for long-term microclimate measurement. Agric. For. Meteorol. 2019, 268, 40–47. [Google Scholar] [CrossRef]
- Horn, P.S.; Pesce, A.J.; Copeland, B.E. A robust approach to reference interval estimation and evaluation. Clin. Chem. 1998, 44, 622–631. [Google Scholar] [CrossRef] [Green Version]
- Meloun, M.; Hill, M.; Militký, J.; Kupka, K. Analysis of large and small samples of biochemical and clinical data. Clin. Chem. Lab. Med. 2001, 39, 53–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing: Vienna, Austria. 2020. Available online: https://www.R-project.org/ (accessed on 3 March 2021).
- Acharya, B.S.; Kharel, G.; Zou, C.B.; Wilcox, B.P.; Halihan, T. Woody plant encroachment impacts on groundwater recharge: A review. Water 2018, 10, 1466. [Google Scholar] [CrossRef] [Green Version]
- Dohnal, M.; Černý, T.; Votrubová, J.; Tesař, M. Rainfall interception and spatial variability of throughfall in spruce stand. J. Hydrol. Hydromech. 2014, 62, 277–284. [Google Scholar] [CrossRef] [Green Version]
- Kantor, P.; Šach, F. Hydrická účinnost mladých náhradních porostů smrku omoriky a břízy bradavičnaté [Hydrological efficiency of substitute young stands of Serbian spruce and European birch]. Lesnictví-Forestry 1988, 34, 1017–1040. [Google Scholar]
- Barbier, S.; Balandier, P.; Gosselin, F. Influence of several tree traits on rainfall partitioning in temperate and boreal forests: A review. Ann. For. Sci. 2009, 66, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Tužinský, L. Spruce and beech forest stands water balance. Ekológia 2000, 19, 198–210. [Google Scholar]
- Scholl, M.; Eugster, W.; Burkard, R. Understanding the role of fog in forest hydrology: Stable isotopes as tools for determining input and partitioning of cloud water in montane forests. Hydrol. Processes 2011, 25, 353–366. [Google Scholar] [CrossRef]
- Krečmer, V.; Fojt, V.; Křeček, J. Horizontální srážky z mlhy v lesích jako položka vodní bilance v horské krajině [Horizontal precitipation from fog in forests as part of the water balance in mountains]. Meteorol. Zpr. 1979, 32, 78–81. [Google Scholar]
- Minďaš, J.; Bartík, M.; Škvareninová, J.; Repiský, R. Functional effects of forest ecosystems on water cycle—Slovakia case study. J. For. Sci. 2018, 64, 331–339. [Google Scholar] [CrossRef] [Green Version]
- Vorčák, J.; Merganič, J.; Škvarenina, J.; Merganičová, K. Contribution to understanding precipitation regime in the mountain spruce forests of Babia hora—Oravské Beskydy using throughfall index. Beskydy 2009, 2, 85–94. [Google Scholar]
- Sprenger, M.; Tetzlaff, D.; Buttle, J.; Laudon, H.; Soulsby, C. Water ages in the critical zone of long-term experimental sites in northern latitudes. Hydrol. Earth Syst. Sci. 2018, 22, 3965–3981. [Google Scholar] [CrossRef] [Green Version]
- Oltchev, A.; Cermak, J.; Nadezhdina, N.; Tatarinov, F.; Tishenko, A.; Ibrom, A.; Gravenhorst, G. Transpiration of a mixed forest stand: Field measurements and simulation using SVAT models. Boreal Environ. Res. 2002, 7, 389–397. [Google Scholar]
- Oltchev, A.; Cermak, J.; Gurtz, J.; Tishenko, A.; Kiely, G.; Nadezhdina, N.; Zappa, M.; Lebedeva, N.; Vitvar, T.; Albertson, J.D.; et al. The response of the water fluxes of the boreal forest region at the Volga’s source area to climatic and land-use changes. Phys. Chem. Earth 2002, 27, 675–690. [Google Scholar] [CrossRef]
- Liuzzo, L.; Viola, F.; Noto, L. Wind speed and temperature trends impacts on reference evapotranspiration in Southern Italy. Theor. Appl. Climatol. 2016, 123, 43–62. [Google Scholar] [CrossRef]
- Granier, A.; Biron, P.; Bréda, N.; Pontailler, J.-Y.; Saugier, B. Transpiration of trees and forest stands: Short and long-term monitoring using sapflow methods. Glob. Chang. Biol. 1996, 2, 265–274. [Google Scholar] [CrossRef]
- Šach, F.; Kantor, P.; Černohous, V. Water budget in a young stands of substitute tree species in immission region of the Trutnov Piedmont in the Czech Republic. Lesn. For. 1994, 40, 211–216. [Google Scholar]
- Wallrup, E.; Saetre, P.; Rydin, H. Deciduous trees affect small-scale floristic diversity and tree regeneration in conifer forests. Scand. J. For. Res. 2006, 21, 399–404. [Google Scholar] [CrossRef]
- Alsheimer, M.; Köstner, B.; Falge, E.; Tenhunen, J.D. Temporal and spatial variation in transpiration of Norway spruce stands within a forested catchment of the Fichtelgebirge, Germany. Ann. Sci. For. 1998, 55, 103–123. [Google Scholar] [CrossRef] [Green Version]
- Müller, H. Standortsökologische Wasserhaushaltsuntersuchungen an Vaccinium myrtillus L. [Site-ecological water balance studies on Vaccinium myrtillus L.]. Arch. Forstwes. 1967, 16, 587–590. [Google Scholar]
- Canadell, J.; Jackson, R.B.; Ehleringer, J.R.; Mooney, H.A.; Sala, O.E.; Schulze, E.D. Maximum rooting depth of vegetation types at the global scale. Oecologia 1996, 108, 583–595. [Google Scholar] [CrossRef] [PubMed]
- Pyšek, P. What do we know about Calamagrostis villosa?—A review of the species behaviour in secondary habitats. Preslia 1993, 65, 1–20. [Google Scholar]
- Fiala, K. The role of root system of Calamagrostis epigejos in its successful expansion in alluvial meadows. Ekólogia 2001, 20, 292–300. [Google Scholar]
- Zakopal, V. Charakter půdního prokořenění křivoklátských holin zejména břízou [The nature of the rooting in the soil of clear-felled areas in the Křivoklát region especially by birch]. Sborník Ceskoslov. Akad. Zeměděl Věd. Lesn. 1958, 4, 737–760. [Google Scholar]
- Köstler, J.N.; Brückner, E.; Bibelriether, H. Die Wurzeln der Waldbäume. Untersuchungen zur Morphologie des Waldbäume in Mitteleuropa [Roots of the Forest Trees. Surveys to the Morphology of Forest Trees in the Central Europe]; P. Parey: Hamburg, Germany; Berlin, Germany, 1968. [Google Scholar]
- Mauer, O.; Houšková, K. Zpevňující funkce břízy [Stabilizing function of birch]. In Meliorační a Zpevňující Funkce Lesních Dřevin—Soil Improving and Stabilising Functions of Forest Trees; Kacálek, D., Mauer, O., Podrázský, V., Slodičák, M., Eds.; Lesnická práce: Kostelec nad Černými lesy, Czech Republic, 2017; pp. 115–121. [Google Scholar]
- Smirnov, V.V. Izmenenije syrorostuščej organičeskoj massy v jelovych i jelovo-listvennych drevostojach srednej tajgi [Changing of wetland organic matter in spruce and spruce-broadleaved forest stands of a middle taiga]. AN SSSR Tr. Inst. Lesa 1962, LIII, 103–125. [Google Scholar]
- Hynynen, J.; Niemistö, P.; Viherä-Aarnio, A.; Brunner, A.; Hein, S.; Velling, P. Silviculture of birch (Betula pendula Roth and Betula pubescens Ehrh.) in northern Europe. Forestry 2010, 83, 103–119. [Google Scholar] [CrossRef]
- Lange, B.; Luescher, P.; Germann, P.F. Significance of tree roots for preferential infiltration in stagnic soils. Hydrol. Earth Syst. Sci. 2009, 13, 1809–1821. [Google Scholar] [CrossRef] [Green Version]
- Lange, B.; Germann, P.; Lüscher, P. Einfluss der Wurzeln auf das Wasserspeichervermögen hydromorpher Waldböden [Significance of roots for soil water storage capacity of hydromorphic forest soils]. Schweiz. Z. Forstwes. 2010, 161, 510–516. [Google Scholar] [CrossRef] [Green Version]
- Lüscher, P.; Zürcher, K. Waldwirkung und Hochwasserschutz: Eine differenzierte Betrachtungsweise ist angesagt [Forest effect and flood protection: A differentiated approach is required]. Ber. Bayer. Landesanst. Wald Forstwirtsch. 2003, 40, 30–33. [Google Scholar]
- Yunusa, I.A.M.; Newton, P.J. Plants for amelioration of subsoil constraints and hydrological control: The primer-plant concept. Plant Soil 2003, 257, 261–281. [Google Scholar] [CrossRef]
- Metzger, J.C.; Wutzler, T.; Dalla Valle, N.; Filipzik, J.; Grauer, C.; Lehmann, R.; Roggenbuck, M.; Schelhorn, D.; Weckmuller, J.; Kusel, K.; et al. Vegetation impacts soil water content patterns by shaping canopy water fluxes and soil properties. Hydrol. Process. 2017, 31, 3783–3795. [Google Scholar] [CrossRef]
- Jost, G.; Schume, H.; Hager, H.; Markart, G.; Kohl, B. A hillslope scale comparison of tree species influence on soil moisture dynamics and runoff processes during intense rainfall. J. Hydrol. 2012, 420, 112–124. [Google Scholar] [CrossRef]
- Schume, H.; Jost, G.; Katzensteiner, K. Spatio-temporal analysis of the soil water content in a mixed Norway spruce (Picea abies (L.) Karst.)—European beech (Fagus sylvatica L.) stand. Geoderma 2003, 112, 273–287. [Google Scholar] [CrossRef]
- Rothe, A. Einfluss des Baumartenanteils auf Durchwurzelung, Wasserhaushalt, Stoffhaushalt und Zuwachsleistung eines Fichten-Buchen-Mischbestandes am Standort Höglwald [Influence of spruce and beech mixtures on root penetration, water and nutrient balance and growth performance at the Höglwald site]. Forstl. Forschungsber. München 1997, 163, 1–213. [Google Scholar]
- Marschner, H. Mineral Nutrition of Higher Plants; Academic Press: London, UK, 1995. [Google Scholar]
- Bussotti, F.; Pollastrini, M. Traditional and novel indicators of climate change impacts on European forest trees. Forests 2017, 8, 137. [Google Scholar] [CrossRef] [Green Version]
- Sanchez-Salguero, R.; Camarero, J.J.; Grau, J.M.; de la Cruz, A.C.; Gil, P.M.; Minaya, M.; Fernandez-Cancio, A. Analysing atmospheric processes and climatic drivers of tree defoliation to determine forest vulnerability to climate warming. Forests 2017, 8, 13. [Google Scholar] [CrossRef] [Green Version]
Layer | Species/Stand: | Birch | Spruce | Gap |
---|---|---|---|---|
Herbs | Together | 100.0 | 96.7 | 100.0 |
Avenella flexuosa ((L.) Drejer | 4.3 | 5.3 | 10.0 | |
Calamagrostis villosa (Chaix) J. F. Gmel. | 61.0 | 60.0 | 56.7 | |
Molinia caerulea (L.) Moench | 1.0 | |||
Vaccinium myrtillus L. | 33.3 | 31.7 | 28.3 | |
Vaccinium vitis-idaea L. | 1.4 | 0.1 | 5.0 | |
Mosses | Together | 11.7 | 25.0 | 20.0 |
Year | 2011 | 2012 | 2013 | 2014 |
---|---|---|---|---|
Air temperature (°C) | 10.98 (4.73) | 10.88 (5.43) | 9.87 (5.27) | 10.45 (4.04) |
Radiation (Wh m−2) | 306.6 (189.8) | 307.9 (197.6) | 269.6 (215.4) | 232.2 (188.4) |
Rainfall (mm) | 898.8 | 587.6 | 882.4 | 621.8 |
2011 | 2012 | 2013 | 2014 | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
L95% | PL | H95% | R95% | L95% | PL | H95% | R95% | L95% | PL | H95% | R95% | L95% | PL | H95% | R95% | |
Birch | 35.6 | 37.8 | 39.8 | 4.3 | 36.0 | 38.2 | 40.3 | 4.3 | 33.5 | 36.1 | 38.5 | 5.0 | 31.9 | 35.1 | 38.3 | 6.4 |
Spruce | 40.1 | 41.4 | 42.6 | 2.4 | 40.6 | 41.7 | 42.7 | 2.1 | 37.2 | 40.0 | 42.6 | 5.4 | 36.7 | 39.4 | 42.0 | 5.3 |
Gap | 41.7 | 42.8 | 43.9 | 2.3 | 39.4 | 41.1 | 42.8 | 3.4 | 40.3 | 41.9 | 43.5 | 3.3 | 41.8 | 42.9 | 44.1 | 2.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Špulák, O.; Šach, F.; Kacálek, D. Topsoil Moisture Depletion and Recharge below Young Norway Spruce, White Birch, and Treeless Gaps at a Mountain-Summit Site. Forests 2021, 12, 828. https://doi.org/10.3390/f12070828
Špulák O, Šach F, Kacálek D. Topsoil Moisture Depletion and Recharge below Young Norway Spruce, White Birch, and Treeless Gaps at a Mountain-Summit Site. Forests. 2021; 12(7):828. https://doi.org/10.3390/f12070828
Chicago/Turabian StyleŠpulák, Ondřej, František Šach, and Dušan Kacálek. 2021. "Topsoil Moisture Depletion and Recharge below Young Norway Spruce, White Birch, and Treeless Gaps at a Mountain-Summit Site" Forests 12, no. 7: 828. https://doi.org/10.3390/f12070828
APA StyleŠpulák, O., Šach, F., & Kacálek, D. (2021). Topsoil Moisture Depletion and Recharge below Young Norway Spruce, White Birch, and Treeless Gaps at a Mountain-Summit Site. Forests, 12(7), 828. https://doi.org/10.3390/f12070828