Carbon Sequestration Potential of Agroforestry Systems in Degraded Landscapes in West Java, Indonesia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
District | Location | Average Temperature (°C) | Average Rainfall (mm) | Humidity (%) | Elevation (m) | Total Land Area (ha)/Total Degraded Land Area (ha) |
---|---|---|---|---|---|---|
Banjar | 7.37° S 108.53° E | 28.5 | 1600 | 69–85 | 31–79 | 13,195/ 620 (4.70%) |
Ciamis | 6.75° S 108.38° E | 27 | 2800 | 68–87 | 31–768 | 159,763/ 24,259 (15.19%) |
Garut | 7.22° S 107.9° E | 25.5 | 3294 | 73–85 | 100–1500 | 309,601/ 96,730 (31.24%) |
Tasikmalaya | 7.33° S 108.2° E | 26 | 2171 | 50–73 | 0–2000 | 289,203/ 61,110 (21.13%) |
Pangandaran | 7.54° S 108.50° E | 26.5 | 2750 | 85–89 | 0–2500 | 112,765/ 13,167 (11.68%) |
2.2. Data Collection and Analysis
3. Results
3.1. System Characteristics
3.2. Carbon Stock
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abu Hammad, A.; Tumeizi, A. Land degradation: Socioeconomic and environmental causes and consequences in the eastern Mediterranean. Land Degrad. Dev. 2012, 23, 216–226. [Google Scholar] [CrossRef]
- Dubois, O. The State of the World’s Land and Water Resources for Food and Agriculture: Managing Systems at Risk; Earthscan: London, UK, 2011; p. 285. [Google Scholar]
- Olsson, L.; Barbosa, H.; Bhadwal, S.; Cowie, A.; Delusca, K.; Flores-Renteria, D.; Hermans, K.; Jobbagy, E.; Kurz, W.; Li, D. Land Degradation: IPCC Special Report on Climate Change, Desertification, Land 5 Degradation, Sustainable Land Management, Food Security, and 6 Greenhouse Gas fluxes in Terrestrial Ecosystems; IPCC: Geneva, Switzerland, 2019. [Google Scholar]
- Kementerian Lingkungan Hidup dan Kehutanan. Statistik Lingkungan Hidup dan Kehutanan 2018; Kementerian Lingkungan Hidup dan Kehutanan: Jakarta, Indonesia, 2019. [Google Scholar]
- MoEF & UNCCD. Indonesia—Land Degradation Neutrality National Report; Ministry of Environment and Forestry & UNCCD: Jakarta, Indonesia, 2015. [Google Scholar]
- FAO. State of the World’s Forests 2016: Forests and Agriculture: Land-Use Challenges and Opportunities; Food Agriculture Organization of the United Nations: Rome, Italy, 2016. [Google Scholar]
- Santoro, A.; Venturi, M.; Bertani, R.; Agnoletti, M. A Review of the Role of Forests and Agroforestry Systems in the FAO Globally Important Agricultural Heritage Systems (GIAHS) Programme. Forests 2020, 11. [Google Scholar] [CrossRef]
- Baumert, K.A.; Herzog, T.; Pershing, J. Navigating the Numbers: Greenhouse Gas Data and International Climate Policy; World Resources Institute: Washington, DC, USA, 2005. [Google Scholar]
- Government of Indonesia. First Nationally Determined Contribution Republic of Indonesia; Government of Indonesia: Jakarta, Indonesia, 2016. [Google Scholar]
- Kementerian Lingkungan Hidup dan Kehutanan. Rencana Strategis Direktorat Jenderal Pengendalian DAS and Hutan Lindung Tahun 2020–2024; Kementerian Lingkungan Hidup dan Kehutanan: Jakarta, Indonesia, 2020. [Google Scholar]
- Reed, J.; van Vianen, J.; Barlow, J.; Sunderland, T. Have integrated landscape approaches reconciled societal and environmental issues in the tropics? Land Use Policy 2017, 63, 481–492. [Google Scholar] [CrossRef]
- ICRAF. Restoring Land with Agroforestry: New Guide Published; ICRAF: Bogor, Indonesia, 2021; Volume 2021. [Google Scholar]
- Hillbrand, A. What is the Potential of Agroforestry to Restore Degraded Land in Guatemala? FAO: Rome, Italy, 2021. [Google Scholar]
- Rahman, S.A.; Baral, H. Nature-based solution for balancing the food, energy, and environment trilemma: Lessons from Indonesia. In Nature-Based Solutions for Resilient Ecosystems and Societies; Dhyani, S., Gupta, A., Karki, M., Eds.; Springer: Singapore, 2020; pp. 69–82. [Google Scholar] [CrossRef]
- Samsudin, Y.B.; Puspitaloka, D.; Rahman, S.A.; Chandran, A.; Baral, H. Community-Based Peat Swamp Restoration Through Agroforestry in Indonesia. In Agroforestry for Degraded Landscapes; Dagar, J.C., Gupta, S.R., Teketay, D., Eds.; Springer: Singapore, 2020; pp. 349–365. [Google Scholar] [CrossRef]
- Maimunah, S.; Rahman, S.A.; Samsudin, Y.B.; Artati, Y.; Simamora, T.I.; Andini, S.; Lee, S.M.; Baral, H. Assessment of Suitability of Tree Species for Bioenergy Production on Burned and Degraded Peatlands in Central Kalimantan, Indonesia. Land 2018, 7. [Google Scholar] [CrossRef] [Green Version]
- Miccolis, A.; Peneireiro, F.; Marques, H.; Vieira, D.; Arcoverde, M.; Hoffmann, M.; Rehder, T.; Pereira, A. Agroforestry Systems for Ecological Restoration: How to Reconcile Conservation and Production. Options for Brazil’s Cerrado and Caatinga Biomes. Instituto Sociedade, População e Natureza–ISPN/World Agroforestry Centre (ICRAF); Instituto Sociedade, População e Natureza: Brasilia, Brazil, 2016. [Google Scholar]
- Rahman, S.A.; Sunderland, T.; Kshatriya, M.; Roshetko, J.M.; Pagella, T.; Healey, J.R. Towards productive landscapes: Trade-offs in tree-cover and income across a matrix of smallholder agricultural land-use systems. Land Use Policy 2016, 58, 152–164. [Google Scholar] [CrossRef] [Green Version]
- Garrity, D.P. Agroforestry and the achievement of the Millennium Development Goals. Agrofor. Syst. 2004, 61, 5–17. [Google Scholar] [CrossRef]
- Garrity, D.P.; Amoroso, V.B.; Koffa, S.; Catacutan, D.; Buenavista, G.; Fay, P.; Dar, W. Landcare on the Poverty-Protection Interface in an Asian Watershed. Conserv. Ecol. 2002, 6, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Rahman, S.A.; Jacobsen, J.B.; Healey, J.R.; Roshetko, J.M.; Sunderland, T. Finding alternatives to swidden agriculture: Does agroforestry improve livelihood options and reduce pressure on existing forest? Agrofor. Syst. 2017, 91, 185–199. [Google Scholar] [CrossRef] [Green Version]
- Murniati, D.; Garrity, D.P.; Gintings, A.N. The contribution of agroforestry systems to reducing farmers’ dependence on the resources of adjacent national parks: A case study from Sumatra, Indonesia. Agrofor. Syst. 2001, 52, 171–184. [Google Scholar] [CrossRef]
- Snelder, D.J.; Lasco, R.D. Smallholder Tree Growing for Rural Development and Environmental Services. Lessons from Asia; Springer Science & Business Media: Berlin, Germany, 2008; Volume 5. [Google Scholar]
- Jose, S. Agroforestry for ecosystem services and environmental benefits: An overview. Agrofor. Syst. 2009, 76, 1–10. [Google Scholar] [CrossRef]
- Idol, T.; Haggar, J.; Cox, L. Ecosystem Services from Smallholder Forestry and Agroforestry in the Tropics. In Integrating Agriculture, Conservation and Ecotourism: Examples from the Field; Campbell, W.B., Lopez Ortiz, S., Eds.; Springer: Dordrecht, The Netherlands, 2011; pp. 209–270. [Google Scholar] [CrossRef]
- Lasco, R.D.; Delfino, R.J.P.; Espaldon, M.L.O. Agroforestry systems: Helping smallholders adapt to climate risks while mitigating climate change. WIREs Clim. Chang. 2014, 5, 825–833. [Google Scholar] [CrossRef]
- Rahman, S.A.; Baral, H.; Sharma, R.; Samsudin, Y.B.; Meyer, M.; Lo, M.; Artati, Y.; Simamora, T.I.; Andini, S.; Leksono, B.; et al. Integrating bioenergy and food production on degraded landscapes in Indonesia for improved socioeconomic and environmental outcomes. Food Energy Secur. 2019, 8, e00165. [Google Scholar] [CrossRef]
- Michon, G. Domesticating Forests: How Farmers Manage Forest Resources; CIFOR: West Java, Indonesia, 2005. [Google Scholar]
- Indrajaya, Y.; Siarudin, M.; Handayani, W. Karbon tersimpan dalam biomassa agroforestry jabon-kapulaga dan rumput gajah di Kecamatan Pakenjeng, Garut, Jawa Barat. J. Penelit. Agrofor. 2014, 2, 67–74. [Google Scholar]
- Takimoto, A.; Nair, P.K.R.; Nair, V.D. Carbon stock and sequestration potential of traditional and improved agroforestry systems in the West African Sahel. Agric. Ecosyst. Environ. 2008, 125, 159–166. [Google Scholar] [CrossRef]
- Rahayu, S.; Lusiana, B.; van Noordwijk, M. Above ground carbon stock assessment for various land use systems in Nunukan, East Kalimantan. In Carbon Stock Monitoring in Nunukan, East Kalimantan: A Spatial and Modelling Approach. Report from the Carbon Monitoring Team of the Forest Resource Management for Carbon Sequestration (FORMACS) Project; Lusiana, B., van Noordwijk, M., Rahayu, S., Eds.; World Agroforestry Center: Bogor, Indonesia, 2005; pp. 21–34. [Google Scholar]
- Roshetko, J.M.; Delaney, M.; Hairiah, K.; Purnomosidhi, P. Carbon stocks in Indonesian homegarden systems: Can smallholder systems be targeted for increased carbon storage? Am. J. Altern. Agric. 2002, 17, 138–148. [Google Scholar]
- Wiryono, W.; Puteri, V.N.U.; Senoaji, G. The diversity of plant species, the types of plant uses and the estimate of carbon stock in agroforestry system in Harapan Makmur Village, Bengkulu, Indonesia. Biodivers. J. Biol. Divers. 2016, 17. [Google Scholar] [CrossRef]
- Besar, N.A.; Suardi, H.; Phua, M.-H.; James, D.; Mokhtar, M.B.; Ahmed, M.F. Carbon Stock and Sequestration Potential of an Agroforestry System in Sabah, Malaysia. Forests 2020, 11. [Google Scholar] [CrossRef] [Green Version]
- Wardah; Toknok, B.; Zulkhaidah. Carbon stock of agroforestry systems at adjacent buffer zone of Lore Lindu National Park, Central Sulawesi. J. Trop. Soils 2013, 16, 123–128. [Google Scholar] [CrossRef]
- Badan Pusat Statistik. Jumlah Penduduk Menurut Kabupaten/Kota (Jiwa) 2020: Badan Pusat Statistik Provinsi Jawa Barat; Badan Pusat Statistik: Jakarta, Indonesia, 2021. [Google Scholar]
- Badan Pusat Statistik. Kabupaten Dalam Angka. Available online: https://jabar.bps.go.id/ (accessed on 13 March 2021).
- Kabupaten Tasikmalaya Dalam Angka. 2021. Available online: https://tasikmalayakab.bps.go.id/publication/2021/02/26/88bd050d058c24b3fde94581/kabupaten-tasikmalaya-dalam-angka-2021.html (accessed on 26 February 2021).
- Kota Banjar Dalam Angka. 2020. Available online: https://banjarkota.bps.go.id/publication/2020/04/27/d433ab1e85911408c2d935a8/kota-banjar-dalam-angka-2020.html (accessed on 27 April 2020).
- Kabupaten Pangandaran Dalam Angka. 2020. Available online: https://pangandarankab.bps.go.id/publication/2020/04/27/3aa1afc640f74adeb926edd7/kabupaten-pangandaran-dalam-angka-2020.html (accessed on 27 April 2020).
- Nair, P.R. An Introduction to Agroforestry; Springer Science & Business Media: Berlin, Germany, 1993. [Google Scholar]
- Siarudin, M.; Indrajaya, Y. Struktur tegakan dan cadangan karbon hutan rakyat pola agroforestry manglid (Manglieta glauca Bl) di Tasikmalaya, Jawa Barat. J. Penelit. Agrofor. 2014, 2, 45–56. [Google Scholar]
- Siarudin, M.; Indrajaya, Y. Dinamika cadangan karbon sistem agroforestri gmelina (gmelina arborea roxb.) pada hutan rakyat di Tasikmalaya Dan Banjar, Jawa Barat. J. Penelit. Agrofor. 2014, 4, 37–46. [Google Scholar]
- Siarudin, M. Traditional cropping pattern and management of home garden: Lesson learnt from Ciamis Regency, West Java Province, Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2019, 250. [Google Scholar] [CrossRef]
- Hairiah, K.; Dewi, S.; Agus, F.; Velarde, S.; Ekadinata, A.; Rahayu, S.; Van Noodwijk, M. Measuring Carbon Stocks Accross Land Use Systems; ICRAF: Bogor, Indonesia, 2011. [Google Scholar]
- Reyes, T.D., Jr.; Ludevese, E.G. Rapid Carbon Stock Appraisal (RACSA) Implementation in Wahig-Inabanga Watershed, Bohol, Philippines. Int. J. Environ. Rural Dev. 2015, 6, 102–109. [Google Scholar] [CrossRef]
- Van Noordwijk, M. World Agroforestry Centre (ICRAF) Southeast Asia Program; Rapid Carbon Stock Appraisal (RaCSA): Bogor, Indonesia, 2007. [Google Scholar]
- Gusli, S.; Sumeni, S.; Sabodin, R.; Muqfi, I.H.; Nur, M.; Hairiah, K.; Useng, D.; van Noordwijk, M. Soil Organic Matter, Mitigation of and Adaptation to Climate Change in Cocoa–Based Agroforestry Systems. Land 2020, 9, 323. [Google Scholar] [CrossRef]
- Chave, J.; Andalo, C.; Brown, S.; Cairns, M.A.; Chambers, J.Q.; Eamus, D.; Fölster, H.; Fromard, F.; Higuchi, N.; Kira, T.; et al. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 2005, 145, 87–99. [Google Scholar] [CrossRef]
- Arifanti, V.; Dharmawan, I.; Wicaksono, D. Potensi cadangan karbon tegakan hutan sub montana di Taman Nasional Gunung Halimun Salak. J. Penelit. Sos. Ekon. Kehutan. 2014, 11, 13–31. [Google Scholar] [CrossRef] [Green Version]
- Siarudin, M.; Indrajaya, Y. Persamaan allometrik jabon (Neolamarckia cadamba Miq) untuk pendugaan biomassa di atas tanah pada Hutan Rakyat Kecamatan Pakenjeng Kabupaten Garut. J. Penelit. Hutan Tanam. 2014, 11, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Zanne, A.E.; Lopez-Gonzalez, G.; Coomes, D.A.; Ilic, J.; Jansen, S.; Lewis, S.L.; Miller, R.B.; Swenson, N.G.; Wiemann, M.C.; Chave, J. Global Wood Density Database. 2009. Available online: https://datadryad.org/stash/dataset/doi:10.5061/dryad.234 (accessed on 30 June 2015).
- IPCC. IPCC Guideline 2006 Guidelines for National Green House Gas Inventories; IPCC: Geneva, Switzerland, 2006. [Google Scholar]
- Ashokkumar, K.; Murugan, M.; Dhanya, M.K.; Warkentin, T.D. Botany, traditional uses, phytochemistry and biological activities of cardamom [Elettaria cardamomum (L.) Maton]—A critical review. J. Ethnopharmacol. 2020, 246. [Google Scholar] [CrossRef]
- Wang, X.; Chen, H.; Chang, C.; Jiang, M.; Wang, X.; Xu, L. Study the therapeutic mechanism of Amomum compactum in gentamicin-induced acute kidney injury rat based on a back propagation neural network algorithm. J. Chromatogr. B 2017, 1040, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Sudomo, A.; Handayani, W. Karakteristik tanah pada empat jenis tegakan penyusun agroforestry berbasis kapulaga (Amomum compactum Soland ex Maton). J. Penelit. Agrofor. 2013, 1, 1–11. [Google Scholar]
- Rahman, S.A. Incorporation of Trees in Smallholder Land Use Systems: Farm Characteristics, Rates of Return and Policy Issues Influencing Farmer Adoption; Prifysgol Bangor University: Bangor, UK, 2017. [Google Scholar]
- Mercer, D.E. Adoption of agroforestry innovations in the tropics: A review. Agrofor. Syst. 2004, 61, 311–328. [Google Scholar] [CrossRef]
- Muchane, M.N.; Sileshi, G.W.; Gripenberg, S.; Jonsson, M.; Pumariño, L.; Barrios, E. Agroforestry boosts soil health in the humid and sub-humid tropics: A meta-analysis. Agric. Ecosyst. Environ. 2020, 295. [Google Scholar] [CrossRef]
- Wolde, Z. The Role of Agroforestry in Soil and Water Conservation; LAP Lambert Academic Publishing: Sunnyvale, CA, USA, 2015. [Google Scholar]
- Kiepe, P.; Rao, M.R. Management of Agroforestry for the Conservation and Utilization of Land and Water Resources. Outlook Agric. 1994, 23, 17–25. [Google Scholar] [CrossRef] [Green Version]
- Brown, L.R. Restoring the Earth: The Earth Restoration Budget. Available online: http://www.earth-policy.org/mobile/books/pb4/PB4ch8_ss7?phpMyAdmin%20=%201d6bec-%201fea35111307d869d19bcd2ce7 (accessed on 20 March 2021).
- Strassburg, B.B.N.; Latawiec, A.E. The Economics of Restoration: Costs, Benefits, Scale and Spatial Aspects. Available online: https://www.slideshare.net/CIFOR/the-economics-of-restoration-costs-benefits-scale-and-spatial-aspects (accessed on 18 June 2018).
- Schahczenski, J.; Hill, H. Agriculture, Climate Change and Carbon Sequestration; ATTRA, Ed.; NCAT: Greensboro, NC, USA, 2009. [Google Scholar]
- World Bank. Carbon Sequestration in Agricultural Soils; The World Bank: Washington, DC, USA, 2012. [Google Scholar]
- Mbow, C.; Van Noordwijk, M.; Luedeling, E.; Neufeldt, H.; Minang, P.A.; Kowero, G. Agroforestry solutions to address food security and climate change challenges in Africa. Curr. Opin. Environ. Sustain. 2014, 6, 61–67. [Google Scholar] [CrossRef] [Green Version]
System | Major Component | Species | Structure | Products | Uses and Management Level |
---|---|---|---|---|---|
Agri silviculture | Trees + crops | Manglid + cardamom (Amomum compactum) | Regular spacing (initial tree spacing 4 m × 2 m or 2 m × 2 m) | Timber (Manglid), food and medicine (cardamom) | Commercial. Medium—high input |
Gmelina + cardamom (Amomum compactum) | Regular spacing (initial tree spacing 2 m × 2 m or 2 m × 1 m) | Timber (Gmelina), food, and medicine (cardamom) | Commercial. Medium—high input | ||
Caddam + Cardamom (Amomum compactum) | Regular spacing (initial tree spacing 4 m × 2 m) | Timber (Caddam), food and medicine (cardamom) | Commercial. Medium—high input | ||
Silvopasture | Trees + pastures | Caddam + elephant grass (Pennisetum purpureum) | Regular spacing (initial tree spacing 4 m × 2 m) | Timber (Caddam), fodder (elephant grass) | Commercial, subsistence. Medium—high input |
Silvofishery | Trees + freshwater fishpond | Various trees + fish | Irregular spacing, trees along the embankment | Timber (trees), food (fish, fruits), soil conservation (trees) | Commercial, subsistence. Medium—high input |
Mixed-tree lots | Trees + natural undergrowth | Various trees + weed | Irregular spacing | Timber (trees), food (fruits), fuelwood (trees) | Subsistence, semi-commercial. Low input |
Agroforestry System | Site | C Stock (Mg ha−1) | Stand Density (Tree ha−1) | Diameter (D) (cm) | Tree BA (m2 ha−1) | Ref | |||
---|---|---|---|---|---|---|---|---|---|
Trees | Understory | Necromass | Total | ||||||
Manglid + cardamom | Tasikmalaya | 42.3 (14.8–106.2) | 0.6 (0.1–0.7) | 1.1 (0.5-2) | 44 (16.7–108) | 1247 (500–2250) | 14.5 (9.3–28.1) | 20.1 (8.8–41.6) | [42] |
Gmelina + cardamom | Tasikmalaya, Banjar, Pangandaran | 61.7 (19–112.8) | 0.8 (0.5–1.1) | 1.4 (0.3–7.7) | 63.7 (20.3–114.4) | 3794 (1550–5850) | 10.1 (5.3–16.3) | 32.4 (13.2–53.9) | [43] |
Caddam + Cardamom * | Garut | 36.8 | 0.1 | 0.06 | 37.0 | 340.0 | 27.2 | 19.8 | [29] |
Caddam + elephant grass * | Garut | 36.8 | 0.2 | - | 37.0 | 340.0 | 27.2 | 19.8 | [29] |
Mixed-tree species and freshwater fishpond | Ciamis | 53.9 (12.7–89.1) | 0.1 | ND | 54.0 (12.8–89.2) | 704.0 (437–1200) | 15.5 (9.4–18.5) | 15.7 (14.8–17.5) | [44] |
Mixed tree lots | Ciamis | 108.6 (85.9–123.2) | 0.3 (0.1–0.5) | ND | 108.9 (86.3–123.4) | 1633 (1000–2000) | 11.9 (8.8–17.1) | 30.2 (24.1–40.6) | [44] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siarudin, M.; Rahman, S.A.; Artati, Y.; Indrajaya, Y.; Narulita, S.; Ardha, M.J.; Larjavaara, M. Carbon Sequestration Potential of Agroforestry Systems in Degraded Landscapes in West Java, Indonesia. Forests 2021, 12, 714. https://doi.org/10.3390/f12060714
Siarudin M, Rahman SA, Artati Y, Indrajaya Y, Narulita S, Ardha MJ, Larjavaara M. Carbon Sequestration Potential of Agroforestry Systems in Degraded Landscapes in West Java, Indonesia. Forests. 2021; 12(6):714. https://doi.org/10.3390/f12060714
Chicago/Turabian StyleSiarudin, Mohamad, Syed Ajijur Rahman, Yustina Artati, Yonky Indrajaya, Sari Narulita, Muhammad Juan Ardha, and Markku Larjavaara. 2021. "Carbon Sequestration Potential of Agroforestry Systems in Degraded Landscapes in West Java, Indonesia" Forests 12, no. 6: 714. https://doi.org/10.3390/f12060714
APA StyleSiarudin, M., Rahman, S. A., Artati, Y., Indrajaya, Y., Narulita, S., Ardha, M. J., & Larjavaara, M. (2021). Carbon Sequestration Potential of Agroforestry Systems in Degraded Landscapes in West Java, Indonesia. Forests, 12(6), 714. https://doi.org/10.3390/f12060714