Effect of Soil Diversity on Forest Plant Species Abundance: A Case Study from Central-European Highlands
Abstract
1. Introduction
2. Material and Methods
2.1. Investigated Area
2.2. Data
2.3. Statistical Evaluation
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Thom, D.; Rammer, W.; Dirnböck, T.; Müller, J.; Kobler, J.; Katzensteiner, K.; Helm, N.; Seidl, R. The impacts of climate change and disturbance on spatio-temporal trajectories of biodiversity in a temperate forest landscape. J. Appl. Ecol. 2017, 54, 28–38. [Google Scholar] [CrossRef]
- Vávrová, E.; Cudlín, O.; Vavříček, D.; Cudlín, P. Ground vegetation dynamics in mountain spruce (Picea abies/L./Karsten) forests recovering after air pollution stress impact. Plant Ecol. 2009, 205, 305–321. [Google Scholar] [CrossRef]
- Pimm, S.L. Biodiversity: Climate Change or Habitat Loss—Which Will Kill More Species? Curr. Biol. 2008, 18, R117–R119. [Google Scholar] [CrossRef]
- De La Riva, E.G.; Lloret, F.; Pérez-Ramos, I.M.; Marañón, T.; Saura-Mas, S.; Díaz-Delgado, R.; Villar, R. The importance of functional diversity in the stability of Mediterranean shrubland communities after the impact of extreme climatic events. J. Plant Ecol. 2017, 10, 281–293. [Google Scholar] [CrossRef]
- Kier, G.; Mutke, J.; Dinerstein, E.; Ricketts, T.H.; Küper, W.; Kreft, H.; Barthlott, W. Global patterns of plant diversity and floristic knowledge. J. Biogeogr. 2005, 32, 1107–1116. [Google Scholar] [CrossRef]
- Whittaker, R.J.; Willis, K.J.; Field, R. Scale and species richness: Towards a general hierarchical theory of species diversity. J. Biogeogr. 2001, 28, 453–470. [Google Scholar] [CrossRef]
- Cox, C.B. The biogeographic regions reconsidered. J. Biogeogr. 2001, 28, 511–523. [Google Scholar]
- Carnaval, A.C.; Moritz, C. Historical climate modelling predicts patterns of current biodiversity in the Brazilian Atlantic forest. J. Biogeogr. 2008, 35, 1187–1201. [Google Scholar] [CrossRef]
- Zeng, C.; Yang, L.; Zhu, A.-X.; Rossiter, D.G.; Liu, J.; Liu, J.; Qin, C.; Wang, D. Mapping soil organic matter concentration at different scales using a mixed geographically weighted regression method. Geoderma 2016, 281, 69–82. [Google Scholar] [CrossRef]
- Barthlott, W.; Biedinger, N.; Braun, G.; Feig, F.; Kier, G.; Mutke, J. Terminological and methodological aspects of the mapping and analysis of global biodiversity. Acta Bot. Fenn. 1999, 162, 103–110. [Google Scholar]
- Weigelt, P.; Steinbauer, M.J.; Cabral, J.S.; Kreft, H. Late Quaternary climate change shapes island biodiversity. Nature 2016, 532, 99–102. [Google Scholar] [CrossRef]
- Olson, D.M.; Dinerstein, E.; Wikramanayake, E.D.; Burgess, N.D.; Powell, G.V.N.; Underwood, E.C.; D’Amico, J.A.; Itoua, I.; Strand, H.E.; Morrison, J.C.; et al. Terrestrial Ecoregions of the World: A New Map of Life on Earth. BioScience 2001, 51, 933–938. [Google Scholar] [CrossRef]
- Qian, H.; Song, J.-S.; Krestov, P.; Guo, Q.; Wu, Z.; Shen, X.; Guo, X. Large-scale phytogeographical patterns in East Asia in relation to latitudinal and climatic gradients. J. Biogeogr. 2003, 30, 129–141. [Google Scholar] [CrossRef]
- Hisano, M.; Searle, E.B.; Chen, H.Y.H. Biodiversity as a solution to mitigate climate change impacts on the functioning of forest ecosystems. Biol. Rev. 2018, 93, 439–456. [Google Scholar] [CrossRef]
- Loreau, M. Linking biodiversity and ecosystems: Towards a unifying ecological theory. Philos. Trans. R. Soc. B 2010, 365, 49–60. [Google Scholar] [CrossRef] [PubMed]
- Hooper, D.U.; Chapin, F.S., III; Ewel, J.J.; Hector, A.; Inchausti, P.; Lavorel, S.; Lawton, J.H.; Lodge, D.M.; Loreau, M.; Naeem, S.; et al. Effects of biodiversity on ecosystem functioning: A concensus of current knowledge. Ecol. Monogr. 2005, 75, 3–35. [Google Scholar] [CrossRef]
- Yachi, S.; Loreau, M. Biodiversity and ecosystem productivity in a fluctuating environment: The insurance hypothesis. Proc. Natl. Acad. Sci. USA 1999, 96, 1463–1468. [Google Scholar] [CrossRef]
- Loreau, M.; de Mazancourt, C. Biodiversity and ecosystem stability: A synthesis of underlying mechanisms. Ecol. Lett. 2013, 16, 106–115. [Google Scholar] [CrossRef]
- Chapin, F.S., III; Zavaleta, E.S.; Eviner, V.T.; Naylor, R.L.; Vitousek, P.M.; Reynolds, H.L.; Hooper, D.U.; Lavorel, S.; Sala, O.E.; Hobbie, S.E.; et al. Consequences of changing biodiversity. Nature 2000, 405, 234–242. [Google Scholar] [CrossRef]
- Loreau, M. Ecosystem development explained by competition within and between material cycles. Proc. R. Soc. Lond. B 1998, 265, 33–38. [Google Scholar] [CrossRef]
- Augusto, L.; Ranger, J.; Binkley, D.; Rothe, A. Impact of several common tree species of European temperate forests on soil fertility. Ann. For. Sci. 2002, 59, 233–253. [Google Scholar] [CrossRef]
- Dempster, M.; Dunlop, P.; Scheib, A.; Cooper, M. Principal component analysis of the geochemistry of soil developed on till in Northern Ireland. J. Maps 2013, 9, 373–389. [Google Scholar] [CrossRef]
- Solomou, A.D.; Sfougaris, A. Predicting Woody Plant Diversity as Key Component of Ecosystems: A Case Study in Central Greece. Int. J. Agric. Environ. Inf. Syst. 2019, 10, 1–20. [Google Scholar] [CrossRef]
- Ortiz, A.M.D.; Outhwaite, C.L.; Dalin, C.; Newbold, T. A review of the interactions between biodiversity, agriculture, climate change, and international trade: Research and policy priorities. One Earth 2021, 4, 88–101. [Google Scholar] [CrossRef]
- Proutsos, N.; Solomou, A.; Karetsos, G.; Tsagari, K.; Mantakas, G.; Kaoukis, K.; Bourletsikas, A.; Lyrintzis, G. The Ecological Status of Juniperus foetidissima Forest Stands in the Mt. Oiti-Natura 2000 Site in Greece. Sustainability 2021, 13, 3544. [Google Scholar] [CrossRef]
- Giam, X. Global biodiversity loss from tropical deforestation. Proc. Natl. Acad. Sci. USA 2017, 114, 5775–5777. [Google Scholar] [CrossRef] [PubMed]
- Plexida, S.; Solomou, A.; Poirazidis, K.; Sfougaris, A. Factors affecting biodiversity in agrosylvopastoral ecosystems with in the Mediterranean Basin: A systematic review. J. Arid Environ. 2018, 151, 125–133. [Google Scholar] [CrossRef]
- Ibañez, J.J.; De-Alba, S.; Bermúdez, F.F.; García-Álvarez, A. Pedodiversity concepts and tools. Catena 1995, 24, 215–232. [Google Scholar] [CrossRef]
- Guo, Y.; Gong, P.; Amundson, R. Pedodiversity in the United States of America. Geoderma 1995, 117, 99–115. [Google Scholar] [CrossRef]
- Bohn, F.J.; Huth, A. The importance of forest structure to biodiversity–productivity relationships. R. Soc. Open Sci. 2017, 4, 160521. [Google Scholar] [CrossRef] [PubMed]
- Lukac, M. Soil biodiversity and environmental change in European forests. Cent. Eur. For. J. 2017, 63, 59–65. [Google Scholar] [CrossRef]
- Schröter, D.; Cramer, W.; Leemans, R.; Prentice, I.C.; Araújo, M.B.; Arnell, N.W.; Bondeau, A.; Bugmann, H.; Carter, T.R.; Gracia, C.A.; et al. Ecosystem Service Supply and Vulnerability to Global Change in Europe. Science 2005, 310, 1333–1337. [Google Scholar] [CrossRef] [PubMed]
- Fotheringham, A.S.; Brunsdon, C.; Charlton, M. Geographically Weighted Regression: The Analysis of Spatially Varying Relationships; John Wiley & Sons: Chichester, UK, 2002. [Google Scholar]
- Chytrý, M. Vegetation of the Czech Republic: Diversity, ecology, history and dynamics. Preslia 2012, 84, 427–504. [Google Scholar]
- Neuhäuslová, Z.; Blažková, D.; Grulich, V.; Husová, M.; Chytrý, M.; Jeník, J.; Jirásek, J.; Kolbek, J.; Kropáč, Z.; Ložek, V.; et al. Map of Potential Natural Vegetation of the Czech Republic; Academia: Prague, Czech Republic, 1998. [Google Scholar]
- Zouhar, V. Dřevinná skladba. In Oblastní Plány Rozvoje Lesů 2; ÚHÚL Brandýs nad Labem, Česká lesnická společnost, Ministerstvo zemědělství České Republiky: Praha, Czech Republic, 2018; pp. 20–22. [Google Scholar]
- Céza, V.; Čermáková, E.; Kochová, T.; Mertl, J.; Pokorný, J.; Přech, J.; Rollerová, M.; Vlčková, V. Zpráva o Životním Prostředí České Republiky 2018; CENIA: Praha, Czech Republic, 2019. [Google Scholar]
- Culek, M. Biogeographical provinces, subprovinces and bioregions of the Czech Republic. J. Landsc. Ecol. 2013, 6, 5–16. [Google Scholar] [CrossRef][Green Version]
- Divíšek, J.; Chytrý, M.; Grulich, V.; Poláková, L. Landscape classification of the Czech Republic based on the distribution of natural habitats. Preslia 2014, 86, 209–231. [Google Scholar]
- Bošeľa, M.; Redmond, J.; Kučera, M.; Marim, G.; Adolt, R.; Gschwantner, T.; Petráš, R.; Korhonen, K.; Kuliešis, A.; Kulbokas, G.; et al. Stem quality assessment in European National Forest Inventories: An opportunity for harmonised reporting? Ann. For. Sci. 2016, 73, 635–648. [Google Scholar] [CrossRef]
- Vlčková, V.; Buček, A.; Machar, I.; Kiliánová, H. The Application of Geobiocoenological Landscape Typology in the Modelling of Climate Change Implications. J. Landsc. Ecol. 2015, 8, 69–81. [Google Scholar] [CrossRef]
- Kubalíková, L. Geomorphological heritage and Geoconservation in the Czech Republic. In Landscapes and Landforms of the Czech Republic; Pánek, T., Hradecký, J., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2016; pp. 387–398. [Google Scholar]
- Simon, J. Management strategies on territories with special status of protection in the Czech Republic. J. For. Sci. 2004, 50, 510–513. [Google Scholar] [CrossRef]
- Cudlín, P.; Pechanec, V.; Štěrbová, L.; Cudlín, O.; Purkyt, J. Integrated approach to the mitigation of biodiversity lost in Central Europe. In Ecological Integrity and Land Use. Sovereignty, Governance, Displacements and Land Grabs; Westra, L., Bosselmann, K., Zabrano, V., Eds.; Nova Science Publishers: New York, NY, USA, 2019; pp. 75–86. [Google Scholar]
- Adolt, R.; Ene, L.; Fejfar, J.; Kohn, I.; Morneau, F.; Pesty, B.; Reidel, T.; Lanz, A. Scalable pan-European model-assisted biomass estimation. In A Century of National Forest Inventories—Informing Past, Present and Future Decisions; Tomppo, E., McRoberts, R., Fernandez, C.A., Alberdi, I., Breidenbach, J., Eds.; Norsk Institutt for Bioøkonomi Ås: Ås, Norway, 2019; Available online: https://nibio.pameldingssystem.no/auto/1/NFI-100-abstract/220_abstract-oslo-2019_v2.pdf (accessed on 22 May 2019).
- Affleck, D.L.R.; Gregoire, T.G.; Valentine, H.T. Edge effects in line intersect sampling with segmented transects. J. Agric. Biol. Environ. Stat. 2005, 10, 460–477. [Google Scholar] [CrossRef]
- Schad, P.; van Huysteen, C.; Michéli, E.; Vargas, R. (Eds.) World Reference Base for Soil Resources 2014. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2014. [Google Scholar]
- Gauger, T.; Anshelm, F.; Schuster, H.; Erisman, J.W.; Vermeulen, A.T.; Draaijers, G.P.J.; Bleeker, A.; Nagel, H.D. Mapping of Ecosystem Specific Long-Term Trends in Deposition Loads and Concentrations of Air Pollutants in Germany and Their Comparison with Critical Loads and Critical Levels; Umweltbundesamt: Berlin, Germany, 2002. [Google Scholar]
- Samec, P.; Zapletal, M.; Horáček, M. Forest transformation urgency for topsoil diversity optimization during environmental change. J. Landsc. Ecol. 2020, 13, 82–106. [Google Scholar]
- Frego, K.A. Bryophytes as potential indicators of forest integrity. For. Ecol. Manag. 2007, 242, 65–75. [Google Scholar] [CrossRef]
- Kubát, K.; Hrouda, L.; Chrtek, J., Jr.; Kaplan, Z.; Kirchner, J.; Štěpánek, J. (Eds.) Klíč ke Květeně České Republiky; Academia: Praha, Czech Republic, 2002. [Google Scholar]
- Gollini, I.; Lu, B.; Charlton, M.; Brundson, C.; Harris, P. GWmodel: An R Package for Exploring Spatial Heterogeneity using Geographically Weighted Models. J. Stat. Softw. 2015, 63, 1–52. [Google Scholar] [CrossRef]
- Finstad, K. Response Interpolation and Scale Sensitivity: Evidence against 5-Point Scales. J. Usability Stud. 2010, 5, 104–110. [Google Scholar]
- Pauli, H.; Gottfried, M.; Dullinger, S.; Abdaladze, O.; Akhalkatsi, M.; Alonso, J.L.B.; Coldea, G.; Dick, J.; Erchbamer, B.; Calzado, R.F.; et al. Recent Plant Diversity Changes on Europe’s Mountain Summits. Science 2012, 336, 353–355. [Google Scholar] [CrossRef]
- Gégout, J.-C.; Križová, E. Comparison of indicator values of forest understorey plant species in Western Carpathians (Slovakia) and Vosges Mountains (France). For. Ecol. Manag. 2003, 182, 1–11. [Google Scholar]
- Sporbert, M.; Keil, P.; Seidler, G.; Bruelheide, H.; Jandt, U.; Aćić, S.; Biurrun, I.; Campos, J.A.; Čarni, A.; Chytrý, M.; et al. Testing macroecological abundance patterns: The relationship between local abundance and range size, range position and climatic suitability among European vascular plants. J. Biogeogr. 2020, 47, 2210–2222. [Google Scholar] [CrossRef]
- Lal, R. Forest soils and carbon sequestration. For. Ecol. Manag. 2005, 220, 242–258. [Google Scholar] [CrossRef]
- Cools, N.; Vesterdal, L.; De Vos, B.; Vanguelova, E.; Hansen, K. Tree species is the major factor explaining C:N ratios in European forest soils. For. Ecol. Manag. 2014, 311, 3–16. [Google Scholar] [CrossRef]
- Bakker, M.R.; Brunner, I.; Ashwood, F.; Bjarnadottir, B.; Bolger, T.; Børja, I.; Carnol, M.; Cudlín, P.; Dalsgaard, L.; Erktan, A.; et al. Belowground Biodiversity Relates Positively to Ecosystem Services of European Forests. Front. For. Glob. Chang. 2019, 2, 6. [Google Scholar] [CrossRef]
- Wurtzebach, Z.; Schultz, C. Measuring Ecological Integrity: History, Practical Applications, and Research Opportunities. BioScience 2016, 66, 446–457. [Google Scholar] [CrossRef]
Diversity | Average ± SD | Min–Max | H′ ± SD | H′min–H′max | E | A |
---|---|---|---|---|---|---|
BGMB (km2) | 22.13 ± 43.49 | 0.00–506.91 | 2.56 ± 0.88 | 0.01–4.17 | 0.34 | −0.72 |
FSG (n) | 25 ± 43 | 1–409 | 2.50 ± 0.76 | 0.00–4.41 | 0.41 | −0.26 |
FSC (1) | - | - | 10.45 ± 2.40 | 0.00–15.31 | 2.81 | −0.80 |
pH [−logc(H+)] | 4.84 ± 0.86 | 4.11–7.57 | 1.07 ± 0.46 | 0.00–1.92 | −0.12 | −0.44 |
CEC (cmol+/kg) | 12.08 ± 12.27 | 2.70–421.10 | 1.38 ± 0.42 | 0.00–2.12 | 2.04 | −1.15 |
BS (%) | 33.71 ± 33.73 | 7.40–99.95 | 1.66 ± 0.47 | 0.00–2.26 | 3.41 | −1.69 |
Corg (%) | 2.02 ± 3.92 | 0.29–9.91 | 1.29 ± 0.53 | 0.00–2.36 | −0.60 | −0.24 |
Nt (%) | 0.13 ± 0.16 | 0.03–0.32 | 1.41 ± 0.44 | 0.00–2.36 | 0.44 | −0.45 |
Al2O3 (g/kg) | 29.71 ± 17.98 | 8.35–81.07 | 0.53 ± 0.57 | 0.00–2.12 | 0.25 | 1.04 |
CaO (g/kg) | 3.08 ± 17.89 | 0.13–87.70 | 0.80 ± 0.57 | 0.00–2.00 | −0.89 | 0.28 |
MgO (g/kg) | 5.71 ± 7.52 | 0.92–17.80 | 1.18 ± 0.61 | 0.00–2.28 | −0.58 | −0.29 |
P2O5 (g/kg) | 0.75 ± 0.82 | 0.21–3.68 | 1.12 ± 0.40 | 0.00–2.25 | 0.93 | −0.28 |
Tree (%) | 44.17 ± 10.45 | 24.49–69.19 | 2.65 ± 0.71 | 1.14–4.06 | −0.55 | −0.22 |
Shrub (%) | 18.43 ± 9.90 | 1.17–57.90 | 3.32 ± 0.63 | 0.59–4.31 | 2.90 | −1.13 |
Herb (%) | 17.93 ± 7.41 | 4.69–37.61 | 4.54 ± 0.76 | 1.44–5.88 | 2.79 | −1.29 |
Moss (%) | 21.04 ± 15.24 | 1.75–67.00 | 1.70 ± 0.82 | 0.00–3.03 | −0.29 | −0.74 |
Plant (%) | 76.05 ± 28.35 | 47.75–100.00 | 12.20 ± 1.85 | 4.85–15.79 | 1.73 | −0.93 |
Component | Diversity | BGMB | FSG | FSC | pH | CEC | BS | Corg | Nt | Al2O3 | CaO | MgO | P2O5 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Abiotic | BGMB | - | 0.29 | 0.18 | −0.02 | 0.36 | 0.40 | 0.06 | 0.13 | −0.24 | −0.05 | 0.05 | 0.40 |
FSG | - | - | 0.62 | 0.19 | 0.49 | 0.43 | 0.44 | 0.43 | 0.36 | −0.03 | 0.56 | 0.14 | |
Biotic | Tree | −0.18 | −0.16 | 0.15 | 0.38 | 0.08 | −0.12 | −0.04 | 0.06 | 0.08 | 0.51 | −0.13 | −0.17 |
Shrub | 0.37 | 0.19 | 0.44 | 0.51 | 0.34 | 0.38 | 0.04 | 0.22 | 0.03 | 0.41 | 0.09 | 0.19 | |
Herb | 0.48 | 0.09 | 0.27 | 0.33 | 0.27 | 0.31 | 0.08 | 0.22 | −0.18 | 0.30 | −0.09 | 0.19 | |
Moss | 0.59 | 0.31 | 0.15 | −0.08 | 0.21 | 0.43 | 0.05 | 0.03 | −0.02 | −0.34 | 0.25 | 0.32 | |
Plant | 0.52 | 0.18 | 0.38 | 0.42 | 0.35 | 0.40 | 0.05 | 0.20 | −0.04 | 0.31 | 0.05 | 0.22 |
X | Y | A | A0 | ϵ | w | AQ | AIC | R2 |
---|---|---|---|---|---|---|---|---|
BGMB | FSG | 0.22 ± 0.06 | 1.95 ± 0.19 | 0.02 ± 0.69 | 51.49 ± 3.95 | 0.36 | 228 | 0.11 ± 0.04 |
FSC | 0.55 ± 0.78 | 9.13 ± 2.22 | −0.06 ± 2.02 | 14.67 ± 2.46 | 0.08 | 467 | 0.28 ± 0.05 | |
TPD | 1.14 ± 0.73 | 9.38 ± 2.00 | 0.00 ± 1.20 | 9.23 ± 2.09 | 0.05 | 363 | 0.59 ± 0.19 | |
Soil group | FSC | 2.04 ± 0.05 | 5.18 ± 0.10 | −0.01 ± 1.87 | 72.38 ± 1.79 | 0.63 | 440 | 0.39 ± 0.01 |
TPD | 0.36 ± 0.86 | 11.10 ± 2.49 | 0.09 ± 1.14 | 6.31 ± 1.84 | 0.03 | 365 | 0.62 ± 0.18 | |
Soil chemistry | TPD | 0.34 ± 0.30 | 8.54 ± 3.70 | 0.02 ± 1.19 | 8.82 ± 1.97 | 0.04 | 364 | 0.59 ± 0.20 |
Formula | Atribute | BGMB | FSG | Tree | Shrub | Herb | Moss | Plant |
---|---|---|---|---|---|---|---|---|
Parameter | pH | −0.38 ± 0.21 | −0.23 ± 0.07 | 0.40 ± 0.28 | 0.40 ± 0.12 | 0.14 ± 0.19 | −0.19 ± 0.29 | 0.74 ± 0.37 |
CEC | 0.74 ± 0.11 | 0.37 ± 0.10 | −0.04 ± 0.27 | 0.17 ± 0.06 | 0.19 ± 0.10 | 0.38 ± 0.48 | 0.65 ± 0.11 | |
BS | 0.47 ± 0.07 | 0.43 ± 0.03 | −0.21 ± 0.18 | 0.22 ± 0.04 | 0.33 ± 0.12 | 0.57 ± 0.38 | 0.91 ± 0.25 | |
Corg | −0.22 ± 0.27 | 0.47 ± 0.10 | −0.09 ± 0.13 | −0.32 ± 0.02 | −0.20 ± 0.14 | 0.08 ± 0.45 | −0.54 ± 0.51 | |
Ntot | 0.17 ± 0.28 | 0.16 ± 0.11 | 0.04 ± 0.27 | 0.29 ± 0.09 | 0.26 ± 0.22 | −0.15 ± 0.41 | 0.42 ± 0.70 | |
Al2O3 | −0.05 ± 0.07 | 0.11 ± 0.08 | 0.18 ± 0.21 | −0.14 ± 0.05 | −0.33 ± 0.16 | −0.18 ± 0.28 | −0.47 ± 0.25 | |
CaO | −0.20 ± 0.04 | −0.05 ± 0.03 | 0.40 ± 0.08 | 0.15 ± 0.01 | 0.17 ± 0.03 | −0.54 ± 0.39 | 0.24 ± 0.19 | |
MgO | 0.11 ± 0.15 | 0.42 ± 0.09 | −0.19 ± 0.13 | 0.06 ± 0.09 | −0.08 ± 0.24 | 0.16 ± 0.16 | −0.03 ± 0.40 | |
P2O5 | 0.32 ± 0.08 | −0.21 ± 0.12 | −0.24 ± 0.07 | 0.06 ± 0.07 | 0.05 ± 0.17 | 0.44 ± 0.28 | 0.28 ± 0.36 | |
0 | 1.20 ± 0.36 | 0.41 ± 0.11 | 2.78 ± 0.25 | 2.15 ± 0.10 | 3.58 ± 0.09 | 0.41 ± 0.36 | 8.96 ± 0.28 | |
ϵ | 0.00 ± 0.55 | 0.01 ± 0.42 | 0.00 ± 0.45 | −0.01 ± 0.47 | −0.02 ± 0.62 | −0.01 ± 0.47 | −0.04 ± 1.38 | |
Characteristics | w | 53.24 ± 3.74 | 47.38 ± 4.17 | 38.74 ± 4.23 | 62.91 ± 3.11 | 53.11 ± 3.77 | 37.66 ± 4.13 | 55.57 ± 3.53 |
AQ | 0.38 | 0.32 | 0.24 | 0.48 | 0.37 | 0.24 | 0.40 | |
AIC | 194 | 137 | 156 | 158 | 220 | 165 | 389 | |
R2 | 0.58 ± 0.05 | 0.67 ± 0.02 | 0.57 ± 0.06 | 0.46 ± 0.06 | 0.42 ± 0.10 | 0.66 ± 0.08 | 0.45 ± 0.06 |
Geodiversity | R2 | F | p | SPF | Parameter |
---|---|---|---|---|---|
BGMB | 0.01 | 0.53 | 0.47 | 0.00031 | 0.444 |
Soil group | 0.01 | 1.33 | 0.25 | −0.00065 | 0.591 |
Soil chemistry | 0.00 | 0.02 | 0.89 | −0.00005 | 0.502 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Samec, P.; Volánek, J.; Kučera, M.; Cudlín, P. Effect of Soil Diversity on Forest Plant Species Abundance: A Case Study from Central-European Highlands. Forests 2021, 12, 534. https://doi.org/10.3390/f12050534
Samec P, Volánek J, Kučera M, Cudlín P. Effect of Soil Diversity on Forest Plant Species Abundance: A Case Study from Central-European Highlands. Forests. 2021; 12(5):534. https://doi.org/10.3390/f12050534
Chicago/Turabian StyleSamec, Pavel, Jiří Volánek, Miloš Kučera, and Pavel Cudlín. 2021. "Effect of Soil Diversity on Forest Plant Species Abundance: A Case Study from Central-European Highlands" Forests 12, no. 5: 534. https://doi.org/10.3390/f12050534
APA StyleSamec, P., Volánek, J., Kučera, M., & Cudlín, P. (2021). Effect of Soil Diversity on Forest Plant Species Abundance: A Case Study from Central-European Highlands. Forests, 12(5), 534. https://doi.org/10.3390/f12050534