A STELLA-Based Model to Simultaneously Predict Hydrological Processes, N Uptake and Biomass Production in a Eucalyptus Plantation
Abstract
1. Introduction
2. Materials and Methods
2.1. Model Description
2.2. STELLA Model
2.3. Model Calibration and Validation
2.4. Model Scenario
3. Results and Discussion
3.1. Annual Variations of Water Use, N Uptake, and NPP
3.2. ANPP vs. Water Use
3.3. ANPP vs. N Uptake
3.4. Woody Biomass Production
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dye, P.J. Climate, forest and streamflow relationships in South African afforested catchments. Comm. Rev. 1996, 75, 31–38. [Google Scholar]
- Gonzalez, R.; Treasure, T.; Wright, J.; Saloni, D.; Phillips, R.; Abtb, R.; Jameel, H. Exploring the potential of eucalyptus for energy production in the Southern United States: Financial analysis of delivered biomass, Part I. Biomass Bioenergy 2011, 35, 755–766. [Google Scholar] [CrossRef]
- Albaugh, J.M.; Dye, P.J.; King, J.S. Eucalyptus and water use in South Africa. Int. J. For. Res. 2013, 2013, 852540. [Google Scholar]
- Callaham, M.A., Jr.; Stanturf, J.A.; Hammond, W.J.; Rockwood, D.L.; Wenk, E.S.; O’Brien, J.J. Survey to evaluate escape of Eucalyptus spp. seedlings from plantations in Southeastern USA. Int. J. For. Res. 2013, 2013, 946374. [Google Scholar]
- Valadão, M.B.X.; Carneiro, K.M.S.; Ribeiro, F.P.; Inkotte, J.; Rodrigues, M.I.; Mendes, T.R.; Vieira, D.A.; Matias, R.A.; Lima, M.B.; Miguel, E.P.; et al. Modeling Biomass and Nutrients in a Eucalyptus Stand in the Cerrado. Forests 2020, 11, 1097. [Google Scholar] [CrossRef]
- Sachs, R.M.; Gilpin, D.W.; Mock, T. Short-rotation eucalyptus as a biomass fuel. Calif. Agric. 1980, 34, 18–20. [Google Scholar]
- Hakamada, R.; Hubbard, R.M.; Ferraz, S.; Stape, J.L.; Lemos, C. Biomass production and potential water stress increase with planting density in four highly productive clonal Eucalyptus genotypes. South. For. 2017, 79, 251–257. [Google Scholar] [CrossRef]
- Dye, P.J. Estimating water use by Eucalyptus grandis with the Penman-Monteith equation. In Proceedings of the Vancouver Symposium of Forest Hydrology and Watershed Management; Swanson, R.H., Bernier, P.Y., Woodard, P.D., Eds.; IAHS Publication: Oxfordshire, UK, 1987; pp. 329–337. [Google Scholar]
- Olbrich, B.W.; Le Roux, D.; Poulter, A.G.; Bond, W.J.; Stock, W.D. Variation in water use efficiency and 13C levels in Eucalyptus grandis clones. J. Hydrol. 1993, 150, 615–633. [Google Scholar] [CrossRef]
- Soares, J.V.; Almeida, A.C. Modeling the water balance and soil water fluxes in a fast-growing Eucalyptus plantation in Brazil. J. Hydrol. 2001, 253, 130–147. [Google Scholar] [CrossRef]
- Scott, D.F.; Lesch, F. Streamflow responses to afforestation with Eucalyptus grandis and Pinus patula and to felling in the Mokobulaan experimental catchments, South Africa. J. Hydrol. 1997, 199, 360–377. [Google Scholar] [CrossRef]
- Calder, I.R.; Hall, R.L.; Adlard, P.G. Growth and Water Use of Forest Plantations; John Wiley and Sons: Chichester, UK, 1992; p. 381. [Google Scholar]
- Morris, J.; Zhang, N.N.; Yang, Z.J.; Collopy, J.; Xu, D.P. Water use by fast-growing Eucalyptus urophylla plantations in southern China. Tree Physiol. 2004, 24, 1035–1044. [Google Scholar] [CrossRef]
- Poore, M.E.D.; Fries, C. The Ecological Effects of Eucalyptus; FAO Forestry Paper No. 59; Food and Agriculture Organization: Rome, Italy, 1985; p. 87. [Google Scholar]
- White, K.; Ball, J.; Kashio, M. Proceedings of the regional expert consultation on Eucalyptus, October 1993; RAPA Publication 1995/6; FAO Regional Office for Asia and the Pacific: Bangkok, Thailand, 1995; p. 196. [Google Scholar]
- Casson, A. The Controversy Surrounding Eucalypts in Social Forestry Programs of Asia; Economics Division Working Paper 97/1; National Centre for Development Studies, Australian National University: Canberra, Australia, 1997; p. 46. [Google Scholar]
- Heilman, P. Sustaining production: Nutrient dynamics and soils. In Ecophysiology of Short Rotation Forest Crops; Mitchell, C.P., Ford-Robertson, J.B., Hinckley, T., Sennerby-Forsse, L., Eds.; Elsevier Applied Science: London, UK, 1992; pp. 216–230. [Google Scholar]
- Guo, L.B.; Sims, R.E.H.; Horne, D.J. Biomass production and nutrient cycling in Eucalyptus short rotation energy forests in New Zealand: II. Litter fall and nutrient return. Biomass Bioenergy 2002, 30, 393–404. [Google Scholar] [CrossRef]
- Stape, J.L.; Binkley, D.; Ryan, M.D. Eucalyptus production and the supply, use, and efficiency of use of water, light and nitrogen across a geographic gradient in Brazil. For. Ecol. Manag. 2004, 193, 17–31. [Google Scholar] [CrossRef]
- Landsberg, J.J.; Waring, R.H. A generalized model of forest productivity using simplified concepts of radiation-use efficiency, carbon balance and partitioning. For. Ecol. Manag. 1997, 95, 209–228. [Google Scholar] [CrossRef]
- McMurtrie, R.E.; Benson, M.L.; Linder, S.; Running, S.W.; Talsma, T.; Crane, W.J.B.; Myers, B.J. Water/nutrient interactions affecting the productivity of stands of Pinus radiata. For. Ecol. Manag. 1990, 30, 415–423. [Google Scholar] [CrossRef]
- Corbeels, M.; McMurtrie, R.E.; Pepper, D.A.; Mendham, D.S.; Grove, T.S.; O’Connell, A.M. Long-term changes in productivity of eucalypt plantations under different harvest residue and nitrogen management practices: A modelling analysis. For. Ecol. Manag. 2005, 217, 1–18. [Google Scholar] [CrossRef]
- Gonzalez-Garcia, M.; Almeida, A.; Hevia, A.; Majada, J.; Beadle, C. Application of a process-based model for predicting the productivity of Eucalyptus nitens bioenergy plantations in Spain. Glob. Chang. Bioenergy 2016, 8, 194–210. [Google Scholar] [CrossRef]
- Zhang, H.; Feng, Z.; Chen, P.; Chen, X. Development of a tree growth difference equation and its application in forecasting the biomass carbon stocks of Chinese forests in 2050. Forests 2019, 10, 582. [Google Scholar] [CrossRef]
- Sanquetta, C.R.; Wojciechowski, J.; Corte, D.A.P.; Behling, A.; Netto, S.P.; Rodrigues, A.L.; Sanquetta, M.N.I. Comparison of data mining and allometric model in estimation of tree biomass. Bioinformatics 2015, 16, 1–9. [Google Scholar] [CrossRef][Green Version]
- Mendes, T.R.S.; Miguel, E.P.; Vasconcelos, P.G.A.; Valadão, M.B.X.; Rezende, A.V.; Matricardi, E.A.; Angelo, H.; Gatto, A.; Nappo, M.E. Use of aerial image in the estimation of volume and biomass of eucalyptus sp. forest stand. Aust. J. Crop. Sci. 2020, 14, 286–294. [Google Scholar] [CrossRef]
- Ouyang, Y.; Zhang, J.E.; Leininger, T.D.; Frey, B. A STELLA model to estimate water and nitrogen dynamics in a short-rotation woody crop plantation. J. Environ. Qual. 2015, 44, 200–209. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, Y.; Xu, D.P.; Leininger, T.D.; Zhang, N.N. A system dynamic model to estimate hydrological processes and water use in a eucalypt plantation. Ecol. Eng. 2016, 86, 290–299. [Google Scholar] [CrossRef]
- Nobel, P.S. Biophysical Plant Physiology and Ecology; Freeman and Company: San Francisco, CA, USA, 1983. [Google Scholar]
- Zhang, H.; Guan, D.S.; Song, M.W. Biomass and carbon storage of Eucalyptus and Acacia plantations in the Pearl River Delta, South China. For. Ecol. Manag. 2012, 277, 90–97. [Google Scholar] [CrossRef]
- Hillel, D. Introduction to Soil Physics; Academic Press: Orlando, FL, USA, 1982. [Google Scholar]
- Christensen, V.G.; Jian, X.; Ziegler, A.C. Regression Analysis and Real-Time Water-Quality Monitoring to Estimate Constituent Concentrations, Loads, and Yields in the Little Arkansas River, South-Central Kansas, 1995–1999: U.S. Geological Survey Water-Resources Investigations Report 00-4126 2000. p. 36. Available online: https://pubs.er.usgs.gov/publication/wri004126 (accessed on 19 April 2021).
- Ryberg, K.R. Continuous Water-Quality Monitoring and Regression Analysis to Estimate Constituent Concentrations and Loads in the Sheyenne River, North Dakota, 1980–2006: U.S. Geological Survey Scientific Investigations Report 2007–5153. 2007; p. 22. Available online: https://pubs.usgs.gov/sir/2007/5153/ (accessed on 19 April 2021).
- Nearing, M.A.; Liu, B.Y.; Risse, L.M.; Zhang, X. Curve number and Green-Ampt effective hydraulic conductivities. Water Resour. Bull. 1996, 32, 125–136. [Google Scholar] [CrossRef]
- Ferraz, S.F.B.; Rodrigues, C.B.; Garcia, L.G.; Alvares, C.A.; de Paula Lima, W. Effects of eucalyptus plantations on streamflow in Brazil: Moving beyond the water use debate. For. Ecol. Manag. 2019, 453, 117571. [Google Scholar] [CrossRef]
- He, L.; Chen, J.M.; Pan, Y.; Birdsey, R.; Kattge, J. Relationships between net primary productivity and forest stand age in U.S. forests. Glob. Biogeochem. Cycles 2012, 26, GB3009. [Google Scholar] [CrossRef]
- Drake, J.E.; Davis, S.C.; Raetz, L.M.; DeLucia, E.H. Mechanisms of age-related changes in forest production: The influence of physiological and successional changes. Glob. Chang. Biol. 2011, 17, 1522–1535. [Google Scholar] [CrossRef]
Equation | Constant | Value | Reference |
---|---|---|---|
(1) | a1 | 1.2 × 10−9 | Estimated and calibrated based on Morris et al. [13] |
(1) | a2 | −3.6 × 10−5 | Estimated and calibrated based on Morris et al. [13] |
(1) | a3 | 0.24 | Estimated and calibrated based on Morris et al. [13] |
(1) | a4 | 0.0025 | Estimated and calibrated based on Morris et al. [13] |
(3) | b1 | 3.0 | Ouyang et al. [27] |
(3) | b2 | −0.5 | Ouyang et al. [27] |
(3) | b3 | 12.5 | Ouyang et al. [27] |
(3) | b4 | 2.5 | Ouyang et al. [27] |
(4) | c1 | 9.0 | Estimated and calibrated based on Zhang et al. [30] |
(4) | c2 | −0.0005 | Estimated and calibrated based on Zhang et al. [30] |
(7) | d1 | 2500 | Model calibrated |
(7) | d2 | 0.01 | Model calibrated |
(7) | d3 | 0.00006 | Model calibrated |
(8) | e1 | −1.677 × 10−5 | Estimated and calibrated based on Stape et al. [19] |
(8) | e2 | 0.445 | Estimated and calibrated based on Stape et al. [19] |
(8) | e3 | 3.876 × 10−7 | Estimated and calibrated based on Stape et al. [19] |
(9) | f1 | −4.8 × 10−5 | Estimated and calibrated based on Stape et al. [19] |
(9) | f2 | 1.2 | Estimated and calibrated based on Stape et al. [19] |
(9) | f3 | 4.8 × 10−6 | Estimated and calibrated based on Stape et al. [19] |
Parameter | Value | Source |
---|---|---|
Soil Water | ||
Curve number | 38 | Nearing et al. [34] |
Rainfall (cm/h) | Time series measurements | Ouyang et al. [28] |
Plantation area (cm2) | 1.0 × 10+9 | Assumed |
Soil depth (cm) | 400 | Ouyang et al. [28] |
Soil porosity (cm3/cm3) | 0.35 | Ouyang et al. [28] |
Field capacity (cm3/cm3) | 0.31 | Hillel, 1982 [32] |
Wilting point | 0.16 | Ouyang et al. [29] |
Percolation coefficient (1/h) | 0.125 | Ouyang et al. [29] |
Initial soil water content (cm3/cm3) | 0.25 | Assumed |
Soil evaporation rate (cm3/cm2/h) | −10−14t3 + 3 × 10−11t2 + 6 × 10−07t + 0.0005 | Ouyang et al. [29] |
Initial soil water storage (cm3) | 1.2 × 10+11 | Calculated based on initial soil water content |
Nitrogen | ||
Initial dissolved SON (g/ha) | 31,200 | Ouyang et al. [29] |
SON mineralization rate | 0.005 | Ouyang et al. [29] |
Initial dissolved NH4 (g/ha) | 7500 | Ouyang et al. [29] |
Initial dissolved NO3 (g/ha) | 1500 | Ouyang et al. [29] |
NH4 nitrification rate (1/h) | 0.3 | Ouyang et al. [29] |
NH4 volatilization rate (1/h) | 0.00015 | Ouyang et al. [29] |
NH4 adsorption rate (1/h) | 0.0005 | Ouyang et al. [29] |
NO3 denitrification (1/h) | 0.005 | Ouyang et al. [29] |
Litter enzyme hydrolysis rate | 1.00 × 10−6 | Ouyang et al. [29] |
Application of N fertilizers | None | |
Eucalyptus | ||
Initial root water (cm3/ha) | 359,618,230.9 | Ouyang et al. [29] |
Initial stem water (cm3/ha) | 1,027,480,660 | Ouyang et al. [29] |
Initial leaf water (cm3/ha) | 1,027,480,660 | Ouyang et al. [29] |
Canopy transpiration (cm3/cm2/h) | 2 × 10−14t3–6 × 10−10t2 + 4 × 10−6t + 0.0025 | Ouyang et al. [29] |
Forest cover factor | 0.85 | Assumed |
Reflection coefficient | 0.001 | Calibrated based on Nobel [30] |
Diurnal factor | 3exp(−0.5((t − 12.5)/2.5)2) | Ouyang et al. [29] |
Litter fall (1/h) | 0.0006t | Estimated from Zhang et al. [31] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ouyang, Y.; Feng, G.; Renninger, H.; Leininger, T.D.; Parajuli, P.; Grace, J.M. A STELLA-Based Model to Simultaneously Predict Hydrological Processes, N Uptake and Biomass Production in a Eucalyptus Plantation. Forests 2021, 12, 515. https://doi.org/10.3390/f12050515
Ouyang Y, Feng G, Renninger H, Leininger TD, Parajuli P, Grace JM. A STELLA-Based Model to Simultaneously Predict Hydrological Processes, N Uptake and Biomass Production in a Eucalyptus Plantation. Forests. 2021; 12(5):515. https://doi.org/10.3390/f12050515
Chicago/Turabian StyleOuyang, Ying, Gary Feng, Heidi Renninger, Theodor D. Leininger, Prem Parajuli, and Johnny M. Grace. 2021. "A STELLA-Based Model to Simultaneously Predict Hydrological Processes, N Uptake and Biomass Production in a Eucalyptus Plantation" Forests 12, no. 5: 515. https://doi.org/10.3390/f12050515
APA StyleOuyang, Y., Feng, G., Renninger, H., Leininger, T. D., Parajuli, P., & Grace, J. M. (2021). A STELLA-Based Model to Simultaneously Predict Hydrological Processes, N Uptake and Biomass Production in a Eucalyptus Plantation. Forests, 12(5), 515. https://doi.org/10.3390/f12050515