Establishment of Regional Phytoremediation Buffer Systems for Ecological Restoration in the Great Lakes Basin, USA. II. New Clones Show Exceptional Promise
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Clone Selection
2.3. Phyto Buffer Establishment and Experimental Design
2.4. Field Measurements
2.5. Health Assessments
2.6. Data Analysis
3. Results
3.1. Survival
3.2. Health
3.3. Biomass and Growth
4. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zalesny, R.S., Jr.; Pilipović, A.; Rogers, E.R.; Burken, J.G.; Hallett, R.A.; Lin, C.-H.; McMahon, B.G.; Nelson, N.D.; Wiese, A.H.; Bauer, E.O.; et al. Establishment of regional phytoremediation buffer systems for ecological restoration in the Great Lakes Basin, USA. I. Genotype × environment interactions. Forests 2021, 12, 430. [Google Scholar] [CrossRef]
- Fuller, K.; Shear, H.; Wittig, J. The Great Lakes: An Environmental Atlas and Resource Book, 3rd ed.; U.S. Environmental Protection Agency: Chicago, IL, USA; Government of Canada: Toronto, ON, Canada, 1995; Volume 95, p. 46, Issue 1 of EPA 905-B.
- GLRI (Great Lakes Restoration Initiative). Action Plan I (2010–2014); GLRI (Great Lakes Restoration Initiative): Washington, DC, USA, 2010; p. 41. [Google Scholar]
- United States Environmental Protection Agency (USEPA). National Water Quality Inventory Report to Congress; United States Environmental Protection Agency (USEPA): Washington, DC, USA, 2017; p. 21, EPA/841/R-16/011.
- United States Environmental Protection Agency (USEPA). National Overview: Facts and Figures on Materials, Wastes and Recycling, 2020; United States Environmental Protection Agency (USEPA): Washington, DC, USA, 2020. Available online: https://www.epa.gov/facts-and-figures-about-materials-waste-and-recycling/national-overview-facts-and-figures-materials#Trends1960-Today (accessed on 14 January 2021).
- Justin, M.Z.; Pajk, N.; Zupanc, V.; Zupančič, M. Phytoremediation of landfill leachate and compost wastewater by irrigation of Populus and Salix: Biomass and growth response. Waste Manag. 2010, 30, 1032–1042. [Google Scholar] [CrossRef] [PubMed]
- Salt, D.E.; Blaylock, M.; Kumar, N.P.B.A.; Dushenkov, V.; Ensley, B.D.; Chet, I.; Raskin, I. Phytoremediation: A Novel Strategy for the Removal of Toxic Metals from the Environment Using Plants. Nat. Biotechnol. 1995, 13, 468–474. [Google Scholar] [CrossRef] [PubMed]
- Rock, S.; Pivetz, B.; Madalinski, K.; Adam, N.; Wilson, T. Introduction to Phytoremediation; U.S. Environmental Protection Agency: Washington, DC, USA, 2000; p. 72, EPA/600/R-99/107 (NTIS PB2000-106690).
- Burken, J.G.; Schnoor, J.L. Predictive Relationships for Uptake of Organic Contaminants by Hybrid Poplar Trees. Environ. Sci. Technol. 1998, 32, 3379–3385. [Google Scholar] [CrossRef]
- Arthur, E.L.; Rice, P.J.; Rice, P.J.; Anderson, T.A.; Baladi, S.M.; Henderson, K.L.D.; Coats, J.R. Phytoremediation—An Overview. Crit. Rev. Plant Sci. 2005, 24, 109–122. [Google Scholar] [CrossRef] [Green Version]
- Chaney, R.L.; Baklanov, I.A. Phytoremediation and Phytomining. Adv. Bot. Res. 2017, 83, 189–221. [Google Scholar] [CrossRef]
- Robinson, B.H.; Bañuelos, G.; Conesa, H.M.; Evangelou, M.W.H.; Schulin, R. The Phytomanagement of Trace Elements in Soil. Crit. Rev. Plant Sci. 2009, 28, 240–266. [Google Scholar] [CrossRef]
- Isebrands, J.G.; Aronsson, P.; Carlson, M.; Ceulemans, R.; Coleman, M.D.; Dickinson, N.M.; Dimitriou, J.; Doty, S.L.; Gardiner, E.S.; Heinsoo, K.; et al. Environmental applications of poplars and willows. Poplars Willows Trees Soc. Environ. 2014, 6, 258–336. [Google Scholar] [CrossRef]
- Zalesny, R.S., Jr.; Bauer, E.O. Selecting and utilizing Populus and Salix for landfill covers: Implications for leachate irrigation. Intl. J. Phytoremed. 2007, 9, 497–511. [Google Scholar] [CrossRef]
- Licht, L.A.; Isebrands, J. Linking phytoremediated pollutant removal to biomass economic opportunities. Biomass Bioenergy 2005, 28, 203–218. [Google Scholar] [CrossRef]
- Zalesny, R.S., Jr.; Stanturf, J.A.; Gardiner, E.S.; Perdue, J.H.; Young, T.M.; Coyle, D.R.; Headlee, W.L.; Bañuelos, G.S.; Hass, A. Ecosystem services of woody crop production systems. BioEnergy Res. 2016, 9, 465–491. [Google Scholar] [CrossRef] [Green Version]
- Zalesny, R.S., Jr.; Headlee, W.L.; Gopalakrishnan, G.; Bauer, E.O.; Hall, R.B.; Hazel, D.W.; Isebrands, J.G.; Licht, L.A.; Negri, M.C.; Guthrie-Nichols, E.; et al. Ecosystem services of poplar at long-term phytoremediation sites in the Midwest and Southeast, United States. Wiley Interdiscip. Rev. Energy Environ. 2019, 8, e349. [Google Scholar] [CrossRef]
- Burdon, R.D. Forest genetics and tree breeding: Current and future signposts. In Encyclopedia of Forest Sciences; Burley, J., Eveno, E., Youngquist, J.A., Eds.; Elsevier Academic: Amsterdam, The Netherlands, 2004; pp. 1538–1545. ISBN 978-0-12-145160-8. [Google Scholar]
- Stout, A.B.; Schreiner, E.J. Results of a project in hybridizing poplars. J. Hered. 1933, 24, 217–229. [Google Scholar] [CrossRef]
- Isebrands, J.; Zalesny, J.R. Reflections on the contributions of Populus research at Rhinelander, Wisconsin, USA. Can. J. For. Res. 2021, 51, 139–153. [Google Scholar] [CrossRef]
- Eckenwalder, J.E. Natural intersectional hybridization between North American species of Populus (Salicaceae) in sections Aigeiros and Tacamahaca. II. Taxonomy. Can. J. Bot. 1984, 62, 325–335. [Google Scholar] [CrossRef]
- Stanton, B.J.; Neale, D.B.; Li, S. Populus Breeding: From the Classical to the Genomic Approach. In Genetics and Genomics of Populus; Jansson, S., Bhalerao, R., Groover, A., Eds.; Springer: New York, NY, USA, 2010; Volume 8, pp. 309–348. [Google Scholar]
- Mahama, A.A.; Hall, R.B.; Zalesny, R.S., Jr. Differential interspecific incompatibility among Populus hybrids in sections Aigeiros Duby and Tacamahaca Spach. For. Chron. 2011, 87, 790–796. [Google Scholar] [CrossRef] [Green Version]
- De Leon, N.; Jannink, J.L.; Edwards, J.W.; Kaeppler, S.M. Introduction to a special issue on genotype by environment interaction. Crop Sci. 2016, 56, 2081–2089. [Google Scholar] [CrossRef] [Green Version]
- Calleja-Rodriguez, A.; Gull, B.A.; Wu, H.X.; Mullin, T.J.; Persson, T. Genotype-by-environment interactions and the dynamic relationship between tree vitality and height in northern Pinus sylvestris. Tree Genet. Genomes 2019, 15, 36. [Google Scholar] [CrossRef] [Green Version]
- Orlović, S.; Guzina, V.; Merkulov, L. Genetic variability in anatomical, physiological and growth characteristics of hybrid poplar (Populus × euramericana Dode (Guinier)) and eastern cottonwood (Populus deltoides Bartr.) clones. Silvae Genet. 1998, 47, 183–190. [Google Scholar]
- Kassen, R. The experimental evolution of specialists, generalists, and the maintenance of diversity. J. Evol. Biol. 2002, 15, 173–190. [Google Scholar] [CrossRef] [Green Version]
- Riemenschneider, D.E.; Isebrands, J.G.; Berguson, W.E.; Dickmann, D.I.; Hall, R.B.; Mohn, C.A.; Stanosz, G.R.; Tuskan, G.A. Poplar breeding and testing strategies in the north-central U.S.: Demonstration of potential yield and consideration of future research needs. For. Chron. 2001, 77, 245–253. [Google Scholar] [CrossRef]
- Hansen, E.A. Mid-Rotation Yields of Biomass Plantations in the North Central United States. Research Paper NC-309; U.S. Department of Agriculture, Forest Service, North Central Forest Experiment Station: St. Paul, MN, USA, 1992; p. 8. [CrossRef] [Green Version]
- Hansen, E.A.; Ostry, M.E.; Johnson, W.D.; Tolsted, D.N.; Netzer, D.A.; Berguson, W.E.; Hall, R.B. Field Performance of Populus in Short-Rotation Intensive Culture Plantations in the North-Central Research Paper NC-320; U.S. Department of Agriculture, Forest Service, North Central Forest Experiment Station: St. Paul, MN, USA, 1994; p. 13. [CrossRef] [Green Version]
- Volk, T.A.; Berguson, B.; Daly, C.; Halbleib, M.D.; Miller, R.; Rials, T.G.; Abrahamson, L.P.; Buchman, D.; Buford, M.; Cunningham, M.W.; et al. Poplar and shrub willow energy crops in the United States: Field trial results from the multiyear regional feedstock partnership and yield potential maps based on the PRISM-ELM model. GCB Bioenergy 2017, 10, 735–751. [Google Scholar] [CrossRef]
- Netzer, D.A.; Tolsted, D.; Ostry, M.E.; Isebrands, J.G.; Riemenschneider, D.E.; Ward, K.T. Growth, Yield, and Disease Resistance of 7- to 12-Year-Old Poplar Clones in the North Central United States. General Technical Report NC-229; U.S. Department of Agriculture, Forest Service, North Central Research Station: St. Paul, MN, USA, 2002; p. 31. [CrossRef]
- Zalesny, R.S., Jr.; Hall, R.B.; Zalesny, J.A.; Berguson, W.E.; McMahon, B.G.; Stanosz, G.R. Biomass and genotype × environment interactions of Populus energy crops in the Midwestern United States. BioEnergy Res. 2009, 2, 106–122. [Google Scholar] [CrossRef]
- Zalesny, R.S., Jr.; Stanturf, J.A.; Gardiner, E.S.; Bañuelos, G.S.; Hallett, R.A.; Hass, A.; Stange, C.M.; Perdue, J.H.; Young, T.M.; Coyle, D.R.; et al. Environmental technologies of woody crop production systems. BioEnergy Res. 2016, 9, 492–506. [Google Scholar] [CrossRef]
- Berguson, W.; McMahon, B.; Riemenschneider, D. Additive and Non-Additive Genetic Variances for Tree Growth in Several Hybrid Poplar Populations and Implications Regarding Breeding Strategy. Silvae Genet. 2017, 66, 33–39. [Google Scholar] [CrossRef] [Green Version]
- Nelson, N.D.; Berguson, W.E.; McMahon, B.G.; Cai, M.; Buchman, D.J. Growth performance and stability of hybrid poplar clones in simultaneous tests on six sites. Biomass Bioenergy 2018, 118, 115–125. [Google Scholar] [CrossRef]
- Nelson, N.D.; Meilan, R.; Berguson, W.E.; McMahon, B.G.; Cai, M.; Buchman, D. Growth performance of hybrid poplar clones on two agricultural sites with and without early irrigation and fertilization. Silvae Genet. 2019, 68, 58–66. [Google Scholar] [CrossRef] [Green Version]
- Nelson, N.D.; Berguson, W.E.; McMahon, B.G.; Meilan, R.; Smart, L.B.; Gouker, F.E.; Bloese, P.; Miller, R.; Volk, T.A.; Cai, M.; et al. Discovery of Geographically Robust Hybrid Poplar Clones. Silvae Genet. 2019, 68, 101–110. [Google Scholar] [CrossRef] [Green Version]
- Zalesny, R.S., Jr.; Berndes, G.; Dimitriou, I.; Fritsche, U.; Miller, C.; Eisenbies, M.; Ghezehei, S.; Hazel, D.; Headlee, W.L.; Mola-Yudego, B.; et al. Positive water linkages of producing short rotation poplars and willows for bioenergy and phytotechnologies. Wiley Interdiscip. Rev. Energy Environ. 2019, 8, e345. [Google Scholar] [CrossRef]
- Lin, C.-H.; Goyne, K.W.; Kremer, R.J.; Lerch, R.N.; Garrett, H.E. Dissipation of Sulfamethazine and Tetracycline in the Root Zone of Grass and Tree Species. J. Environ. Qual. 2010, 39, 1269–1278. [Google Scholar] [CrossRef] [Green Version]
- Doty, S.L.; Freeman, J.L.; Cohu, C.M.; Burken, J.G.; Firrincieli, A.; Simon, A.; Khan, Z.; Isebrands, J.G.; Lukas, J.; Blaylock, M.J. Enhanced Degradation of TCE on a Superfund Site Using Endophyte-Assisted Poplar Tree Phytoremediation. Environ. Sci. Technol. 2017, 51, 10050–10058. [Google Scholar] [CrossRef] [PubMed]
- Pilipović, A.; Orlović, S.; Nikolić, N.; Borišev, M.; Krstić, B.; Rončević, S. Growth and plant physiological parameters as markers for selection of poplar clones for crude oil phytoremediation. Šumarski List 2012, 136, 273–281. Available online: https://www.sumari.hr/sumlist/pdf/201202730.pdf (accessed on 10 January 2021).
- Pilipović, A.; Zalesny, R.S., Jr.; Orlović, S.; Drekić, M.; Pekeč, S.; Katanić, M.; Poljaković-Pajnik, L. Growth and physiological responses of three poplar clones grown on soils artificially contaminated with heavy metals, diesel fuel, and herbicides. Int. J. Phytoremedia. 2019, 22, 436–450. [Google Scholar] [CrossRef]
- Gardea-Torresdey, J.L.; Peralta-Videa, J.R.; De La Rosa, G.; Parsons, J. Phytoremediation of heavy metals and study of the metal coordination by X-ray absorption spectroscopy. Coord. Chem. Rev. 2005, 249, 1797–1810. [Google Scholar] [CrossRef]
- Nikolić, N.; Zorić, L.; Cvetković, I.; Pajević, S.; Borišev, M.; Orlović, S.; Pilipović, A. Assessment of cadmium tolerance and phytoextraction ability in young Populus deltoides L. and Populus × euramericana plants through morpho-anatomical and physiological responses to growth in cadmium enriched soil. iFor. Biogeosci. For. 2017, 10, 635–644. [Google Scholar] [CrossRef] [Green Version]
- Pilipović, A.; Nikolić, N.; Orlović, S.; Petrović, N.; Krstić, B. Cadmium phytoextraction potential of poplar clones (Populus spp.). Z. Naturforsch. 2005, 60, 247–251. [Google Scholar]
- Pilipović, A.; Zalesny, R.S., Jr.; Rončević, S.; Nikolić, N.; Orlović, S.; Beljin, J.; Katanić, M. Growth, physiology, and phytoextraction potential of poplar and willow established in soils amended with heavy-metal contaminated, dredged river sediments. J. Environ. Manag. 2019, 239, 352–365. [Google Scholar] [CrossRef]
- Pierattini, E.C.; Francini, A.; Huber, C.; Sebastiani, L.; Schröder, P. Poplar and diclofenac pollution: A focus on physiology, oxidative stress and uptake in plant organs. Sci. Total Environ. 2018, 636, 944–952. [Google Scholar] [CrossRef]
- Raffaelli, A.; Pierattini, E.C.; Francini, A.; Sebastiani, L. ESI and APCI LC-MS/MS in model investigations on the absorption and transformation of organic xenobiotics by poplar plants (Populus alba L.). In Comprehensive Analytical Chemistry; Cappiello, A., Palma, P., Eds.; Elsevier Academic: Amsterdam, The Netherlands, 2018; Volume 79, pp. 241–266. ISBN 978-0-44-463914-1. [Google Scholar]
- Vannucchi, F.; Traversari, S.; Raffaelli, A.; Francini, A.; Sebastiani, L. Populus alba tolerates and efficiently removes caffeine and zinc excesses using an organ allocation strategy. Plant Growth Regul. 2020, 92, 597–606. [Google Scholar] [CrossRef]
- Zalesny, R.S., Jr.; Bauer, E.O.; Hall, R.B.; Zalesny, J.A.; Kunzman, J.; Rog, C.J.; Riemenschneider, D.E. Clonal variation in survival and growth of hybrid poplar and willow in an in situ trial on soils heavily contaminated with petroleum hydrocarbons. Intl. J. Phytoremed. 2005, 7, 177–197. [Google Scholar] [CrossRef]
- Zalesny, J.A.; Zalesny, R.S., Jr.; Coyle, D.R.; Hall, R.B. Growth and biomass of Populus irrigated with landfill leachate. For. Ecol. Manage. 2007, 248, 143–152. [Google Scholar] [CrossRef]
- Zalesny, R.S., Jr.; Bauer, E.O. Evaluation of Populus and Salix continuously irrigated with landfill leachate I. Genotype-specific elemental phytoremediation. Intl. J. Phytoremed. 2007, 9, 281–306. [Google Scholar] [CrossRef] [PubMed]
- Kebert, M.; Rapparini, F.; Neri, L.; Bertazza, G.; Orlović, S.; Biondi, S. Copper-Induced Responses in Poplar Clones are Associated with Genotype- and Organ-Specific Changes in Peroxidase Activity and Proline, Polyamine, ABA, and IAA Levels. J. Plant Growth Regul. 2017, 36, 131–147. [Google Scholar] [CrossRef]
- Bañuelos, G.S.; Shannon, M.C.; Ajwa, H.; Draper, J.H.; Jordahl, J.; Licht, J. Phytoextraction and Accumulation of Boron and Selenium by Poplar (Populus) Hybrid Clones. Int. J. Phytoremedia. 1999, 1, 81–96. [Google Scholar] [CrossRef]
- Baldantoni, D.; Cicatelli, A.; Bellino, A.; Castiglione, S. Different behaviours in phytoremediation capacity of two heavy metal tolerant poplar clones in relation to iron and other trace elements. J. Environ. Manag. 2014, 146, 94–99. [Google Scholar] [CrossRef]
- Zalesny, J.A.; Zalesny, R.S., Jr.; Wiese, A.H.; Hall, R.B. Choosing tree genotypes for phytoremediation of landfill leachate using phyto-recurrent selection. Intl. J. Phytoremed. 2007, 9, 513–530. [Google Scholar] [CrossRef] [Green Version]
- Rogers, E.R.; Zalesny, J.R.S.; Hallett, R.A.; Headlee, W.L.; Wiese, A.H. Relationships among Root–Shoot Ratio, Early Growth, and Health of Hybrid Poplar and Willow Clones Grown in Different Landfill Soils. Forest 2019, 10, 49. [Google Scholar] [CrossRef] [Green Version]
- Zalesny, R.S., Jr.; Bauer, E.O. Genotypic variability and stability of poplars and willows grown on nitrate-contaminated soils. Intl. J. Phytoremed. 2019, 21, 969–979. [Google Scholar] [CrossRef]
- Hansen, E.A. Root length in young hybrid Populus plantations: Its implications for border width of research plots. For. Sci. 1981, 27, 808–814. [Google Scholar] [CrossRef]
- Zavitkovski, J. Small plots with unplanted plot border can distort data in biomass production studies. Can. J. For. Res. 1981, 11, 9–12. [Google Scholar] [CrossRef]
- Kershaw, J.A.; Ducey, M.J.; Beers, T.W.; Husch, B. Forest Mensuration, 5th ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2016; p. 630. ISBN 978-1-118-90203-5. [Google Scholar]
- Headlee, W.L.; Zalesny, R.S., Jr. Allometric relationships for aboveground woody biomass differ among hybrid poplar genomic groups and clones in the north-central USA. BioEnergy Res. 2019, 12, 966–976. [Google Scholar] [CrossRef]
- Ghezehei, S.B.; Nichols, E.G.; Maier, C.A.; Hazel, D.W. Adaptability of Populus to physiography and growing conditions in the Southeastern USA. Forests 2019, 10, 118. [Google Scholar] [CrossRef] [Green Version]
- Sixto, H.; Gil, P.M.; Ciria, P.; Camps, F.; Cañellas, I.; Voltas, J. Interpreting genotype-by-environment interaction for biomass production in hybrid poplars under short-rotation coppice in Mediterranean environments. GCB Bioenergy 2016, 8, 1124–1135. [Google Scholar] [CrossRef] [Green Version]
- Clifton-Brown, J.; Harfouche, A.; Casler, M.D.; Jones, H.D.; MacAlpine, W.J.; Murphy-Bokern, D.; Smart, L.B.; Adler, A.; Ashman, C.; Awty-Carroll, D.; et al. Breeding progress and preparedness for mass-scale deployment of perennial lignocellulosic biomass crops switchgrass, miscanthus, willow and poplar. GCB Bioenergy 2019, 11, 118–151. [Google Scholar] [CrossRef] [Green Version]
- Hall, R.B.; Hanna, R.D. Exchange, evaluation, and joint testing of genetic stock. Biomass Bioenergy 1995, 9, 81–87. [Google Scholar] [CrossRef]
- Vance, E.D.; Maguire, D.A.; Zalesny, R.S., Jr. Research strategies for increasing productivity of intensively managed forest plantations. J. For. 2010, 108, 183–192. [Google Scholar] [CrossRef]
- Headlee, W.L.; Zalesny, R.S., Jr.; Donner, D.M.; Hall, R.B. Using a process-based model (3-PG) to predict and map hybrid poplar biomass productivity in Minnesota and Wisconsin, USA. BioEnergy Res. 2013, 6, 196–210. [Google Scholar] [CrossRef]
- Zalesny, R.S., Jr.; Bauer, E.O. Evaluation of Populus and Salix continuously irrigated with landfill leachate II. Soils and early tree development. Intl. J. Phytoremed. 2007, 9, 307–323. [Google Scholar] [CrossRef] [Green Version]
- Hansen, E.A.; Netzer, D.A.; Tolsted, D.N. Guidelines for Establishing Poplar Plantations in the North-Central U.S. Research Paper NC-363; U.S. Department of Agriculture, Forest Service, North Central Forest Experiment Station: St. Paul, MN, USA, 1993; p. 6. [CrossRef]
- Andrašev, S.; Rončević, S. Developmental characteristics of selected black poplar clones (section Aigeiros Duby). For. J. 2008, 54, 3–10. [Google Scholar]
- Ghezehei, S.B.; Nichols, E.G.; Hazel, D.W. Early Clonal Survival and Growth of Poplars Grown on North Carolina Piedmont and Mountain Marginal Lands. BioEnergy Res. 2016, 9, 548–558. [Google Scholar] [CrossRef]
- Mullin, T.; Park, Y. Estimating genetic gains from alternative breeding strategies for clonal forestry. Can. J. For. Res. 1992, 22, 14–23. [Google Scholar] [CrossRef]
- Eriksson, G.; Ekberg, I.; Clapham, D. An Introduction to Forest Genetics; Swedish University of Agricultural Sciences (SLU): Uppsala, Sweden, 2006; p. 185. ISBN 91-576-7190-7. [Google Scholar]
- Pliura, A.; Zhang, S.; MacKay, J.; Bousquet, J. Genotypic variation in wood density and growth traits of poplar hybrids at four clonal trials. For. Ecol. Manag. 2007, 238, 92–106. [Google Scholar] [CrossRef]
- Cervera, M.T.; Storme, V.; Soto, A.; Ivens, B.; Van Montagu, M.; Rajora, O.P.; Boerjan, W. Intraspecific and interspecific genetic and phylogenetic relationships in the genus Populus based on AFLP markers. Theor. Appl. Genet. 2005, 111, 1440–1456. [Google Scholar] [CrossRef]
- Barrett, J.W.; Rajora, O.P.; Yeh, F.C.H.; Dancik, B.P.; Strobeck, C. Mitochondrial DNA variation and genetic relationships of Populus species. Genome 1993, 36, 87–93. [Google Scholar] [CrossRef]
- Orlović, S.; Galović, G.; Zorić, M.; Kovačević, B.; Pilipović, A.; Zoran, G. Evaluation of interspecific DNR variability in poplars using AFLP and SSR markers. Afr. J. Biotechnol. 2009, 8, 5241–5247. [Google Scholar] [CrossRef]
Site | Bellevue, WI | Caledonia, WI | Escanaba, MI | Manitowoc, WI | Marquette, MI |
---|---|---|---|---|---|
County | Brown | Racine | Delta | Manitowoc | Marquette |
Buffer group (i.e., year of planting) | 2017, 2018 | 2017, 2018 | 2019 | 2018 | 2018 |
Phyto buffer a | BC, BE, BW | CE, CW | EE, EW | MA | MQ |
Annual precipitation (P) (mm) b | 613 ± 27 | 686 ± 36 | 556 ± 32 | 614 ± 27 | 530 ± 28 |
Average temperature (Tavg) (°C) | 15.3 ± 0.2 | 15.7 ± 0.2 | 13.6 ± 0.2 | 14.8 ± 0.2 | 13.1 ± 0.4 |
Site | Menomonee Falls, WI | Munising, MI | Ontonagon, MI | Slinger, WI | Whitelaw, WI |
County | Waukesha | Alger | Ontonagon | Washington | Manitowoc |
Buffer group (i.e., year of planting) | 2017 | 2019 | 2019 | 2017 | 2017 |
Phyto Buffer | ME, MW | MU | ON, OS | SL | WH |
Annual precipitation (P) (mm) | 649 ± 23 | 655 ± 25 | 551 ± 26 | 653 ± 36 | 640 ± 26 |
Average temperature (Tavg) (°C) | 15.3 ± 0.1 | 12.3 ± 0.2 | 13.4 ± 0.2 | 15.1 ± 0.2 | 14.9 ± 0.1 |
Phyto Buffer a | BC | BE | BW | CE | CW | EE, EW | MA | ME, MW | MQ | MU | ON, OS | SL | WH |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Soil series | Manawa | Kewaunee | Bellevue | Fox | Matherton | Croswell | Hochheim | Sebewa | Schweitzer | Kalkaska | Oldman | Casco | Boyer |
Drainage class b | SPD | WD | SPD | MWD | SPD | MWD | WD | PD | WD | SED | MWD | SED | WD |
Texture c | SiCL | SiCL | SiCL | L | L | S | L | L | SL | S | L | SL | SCL |
Sand (%) | 10.1 | 13.3 | 19.8 | 39.5 | 50.1 | 87.4 | 45.4 | 37.3 | 55.9 | 94.7 | 51.4 | 54.0 | 58.2 |
Silt (%) | 45.9 | 47.7 | 50.0 | 39.7 | 28.1 | 10.4 | 34.4 | 42.1 | 41.1 | 4.4 | 41.4 | 28.6 | 18.8 |
Clay (%) | 44.0 | 39.0 | 30.2 | 20.8 | 21.8 | 2.2 | 20.2 | 20.6 | 3.0 | 0.9 | 7.2 | 17.4 | 23.0 |
pH | 7.0 | 6.6 | 7.2 | 5.8 | 6.2 | 4.9 | 7.4 | 7.0 | 4.9 | 5.0 | 4.6 | 7.4 | 6.9 |
Frost free days (#) | 160 | 160 | 135 | 173 | 150 | 130 | 145 | 152 | 115 | 130 | 110 | 169 | 140 |
Depth to water table (cm) | >200 | >200 | 0 | 178 | 30 | 60 | >200 | 15 | >200 | >200 | 30 | >200 | >200 |
Clone Group a,b | ||
---|---|---|
NRRI | Experimental | Common |
------------------------ 2017 Buffer group ------------------------ | ||
99038022 ‘DN’ | 7300502 ‘D’ | DN5 ‘DN’ |
99059016 ‘DN’ | DM114 ‘DM’ | DN34 ‘DN’ |
9732-36 ‘DN’ | NC14106 ‘DM’ | NM2 ‘NM’ |
DN177 ‘DN’ | NM6 ‘NM’ | |
NM5 ‘NM’ | ||
------------------------ 2018 Buffer group ------------------------ | ||
9732-11 ‘DN’ | 7300502 ‘D’ | DN5 ‘DN’ |
9732-24 ‘DN’ | DM114 ‘DM’ | DN34 ‘DN’ |
9732-31 ‘DN’ | DN2 ‘DN’ | NM2 ‘NM’ |
9732-36 ‘DN’ | NM5 ‘NM’ | NM6 ‘NM’ |
------------------------ 2019 Buffer group ------------------------ | ||
99038022 ‘DN’ | DM114 ‘DM’ | DN34 ‘DN’ |
9732-11 ‘DN’ | DN2 ‘DN’ | NM2 ‘NM’ |
9732-24 ‘DN’ | DN177 ‘DN’ | NM6 ‘NM’ |
9732-31 ‘DN’ | NM5 ‘NM’ | |
9732-36 ‘DN’ |
Clone Group a | ||||||||
---|---|---|---|---|---|---|---|---|
NRRI | ||||||||
Buffer b | 99038022 | 99059016 | 9732-36 | Experimental | Common | Overall | ||
-------------------------------------------------- 2017 Buffer group -------------------------------------------------- | ||||||||
BW | 100.0 | 75.0 | 100.0 | 97.5 | 100.0 | 96.9 | ||
CE | 100.0 | 87.5 | 87.5 | 100.0 | 93.8 | 95.8 | ||
ME | 100.0 | 37.5 | 100.0 | 100.0 | 100.0 | 94.8 | ||
MW | 100.0 | 100.0 | 100.0 | 90.0 | 100.0 | 95.8 | ||
SL | 100.0 | 75.0 | 100.0 | 95.0 | 100.0 | 95.8 | ||
WH | 100.0 | 87.5 | 100.0 | 92.5 | 93.8 | 93.8 | ||
Overall | 100.0 | 77.3 | 97.7 | 95.9 | 97.7 | 95.5 | ||
Clone Group | ||||||||
NRRI | ||||||||
Buffer c | 9732-11 | 9732-24 | 9732-31 | 9732-36 | Experimental | Common | Overall | |
------------------------------------------------------------- 2018 Buffer group ------------------------------------------------------------- | ||||||||
BC | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 93.8 | 97.9 | |
BE | 100.0 | 100.0 | 100.0 | 100.0 | 93.8 | 90.6 | 94.8 | |
CW | 100.0 | 100.0 | 100.0 | 100.0 | 93.8 | 96.8 | 96.8 | |
MA | 100.0 | 100.0 | 100.0 | 100.0 | 90.6 | 100.0 | 96.9 | |
MQ | 100.0 | 100.0 | 100.0 | 87.5 | 96.9 | 90.6 | 94.8 | |
Overall | 100.0 | 100.0 | 100.0 | 97.5 | 95.0 | 94.3 | 96.2 | |
Clone Group | ||||||||
NRRI | ||||||||
Buffer d | 99038022 | 9732-11 | 9732-24 | 9732-31 | 9732-36 | Experimental | Common | Overall |
----------------------------------------------------------------- 2019 Buffer group ----------------------------------------------------------------- | ||||||||
EE | 100.0 | 100.0 | 100.0 | 87.5 | 100.0 | 100.0 | 100.0 | 99.0 |
EW | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
MU | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
ON | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
OS | 100.0 | 100.0 | 100.0 | 87.5 | 100.0 | 100.0 | 100.0 | 99.0 |
Overall | 100.0 | 100.0 | 100.0 | 95.0 | 100.0 | 100.0 | 100.0 | 99.6 |
Clone Group a | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
NRRI | ||||||||||||
Buffer b | 9732-11 | 9732-24 | 9732-31 | 9732-36 | Experimental | Common | ||||||
------------------------------------------------------------------------------ 2018 Measurement year ------------------------------------------------------------------------------- | ||||||||||||
BC | 57 ± 15 | f | 40 ± 21 | u | 69 ± 23 | e | 26 ± 26 | u | 36 ± 22 | v | 34 ± 28 | c |
BE | 70 ± 22 | f | 49 ± 23 | u | 59 ± 28 | e | 43 ± 20 | u | 40 ± 22 | v | 35 ± 20 | c |
CW | 157 ± 22 | f | 139 ± 22 | u | 182 ± 22 | e | 147 ± 22 | u | 113 ± 22 | v | 138 ± 22 | c |
MA | 133 ± 24 | f | 95 ± 21 | u | 143 ± 22 | e | 118 ± 25 | u | 86 ± 22 | v | 133 ± 23 | c |
MQ | 16 ± 28 | f | 31 ± 25 | u | 40 ± 23 | e | 31 ± 25 | u | 18 ± 22 | v | 18 ± 18 | c |
--------------------------------------------------------------------------- 2019 Measurement year ------------------------------------------------------------------------------------- | ||||||||||||
BC | 2344 ± 826 | de | 2422 ± 826 | we | 2496 ± 826 | cd | 1522 ± 826 | vu | 1968 ± 826 | w | 2207 ± 826 | c |
BE | 2239 ± 826 | e | 2117 ± 826 | wv | 2068 ± 883 | d | 1966 ± 826 | wv | 1970 ± 826 | xw | 1866 ± 826 | c |
CW | 5469 ± 826 | cd | 3901 ± 826 | yxw | 7876 ± 826 | b | 3893 ± 826 | xwv | 5632 ± 826 | y | 5978 ± 826 | b |
MA | 7857 ± 826 | b | 5378 ± 826 | yx | 7162 ± 826 | b | 5251 ± 883 | yx | 6185 ± 826 | y | 7976 ± 826 | b |
MQ | 474 ± 883 | ef | 718 ± 1045 | vu | 1002 ± 883 | de | 1068 ± 1045 | vu | 602 ± 826 | wv | 383 ± 826 | c |
--------------------------------------------------------------------------- 2020 Measurement year -------------------------------------------------------------------------------------- | ||||||||||||
BC | 6777 ± 2130 | bc | 7454 ± 2130 | y | 7886 ± 2130 | b | 5194 ± 2130 | yxw | 5356 ± 2130 | yx | 5415 ± 2130 | b |
BE | 6160 ± 2130 | bcd | 6240 ± 2130 | yx | 6031 ± 2277 | bc | 4870 ± 2130 | yxwv | 4521 ± 2130 | yxw | 3814 ± 2130 | bc |
CW | 9917 ± 2130 | b | 7452 ± 2130 | y | 23,912 ± 2130 | a | 7554 ± 2130 | y | 16,443 ± 2130 | z | 16,333 ± 2130 | a |
MA | 20,902 ± 2130 | a | 14,368 ± 2130 | z | 18,160 ± 2130 | a | 15,068 ± 2277 | z | 16,444 ± 2130 | z | 19,315 ± 2130 | a |
MQ | 767 ± 2277 | ef | 945 ± 2694 | wvu | 1802 ± 2277 | de | 1935 ± 2694 | wvu | 1249 ± 2130 | wv | 632 ± 2130 | c |
Clone Group a | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
NRRI | ||||||||||||||
Buffer b | 99038022 | 9732-11 | 9732-24 | 9732-31 | 9732-36 | Experimental | Common | |||||||
---------------------------------------------------------- 2019 Measurement year ------------------------------------------------------------------------------- | ||||||||||||||
EE | 73 ± 26 | y | 49 ± 26 | c | 98 ± 26 | cd | 81 ± 28 | x | 44 ± 26 | d | 48 ± 26 | c | 47 ± 26 | x |
EW | 396 ± 26 | y | 239 ± 26 | bc | 198 ± 26 | c | 228 ± 26 | yx | 312 ± 26 | cd | 283 ± 26 | c | 295 ± 26 | x |
MU | 89 ± 26 | y | 28 ± 26 | c | 49 ± 26 | d | 20 ± 26 | x | 47 ± 26 | cd | 33 ± 26 | c | 50 ± 26 | x |
ON | 54 ± 26 | y | 28 ± 26 | c | 23 ± 26 | d | 29 ± 26 | x | 16 ± 26 | d | 20 ± 26 | c | 24 ± 26 | x |
OS | 60 ± 26 | y | 49 ± 26 | c | 56 ± 26 | d | 33 ± 28 | x | 28 ± 26 | d | 30 ± 26 | c | 30 ± 26 | x |
--------------------------------------------------------- 2020 Measurement year ------------------------------------------------------------------------------- | ||||||||||||||
EE | 517 ± 391 | y | 470 ± 391 | bc | 1553 ± 391 | ab | 1040 ± 418 | z | 463 ± 391 | c | 664 ± 391 | c | 607 ± 391 | x |
EW | 2397 ± 391 | z | 2206 ± 391 | a | 2444 ± 391 | a | 2155 ± 391 | z | 3189 ± 391 | a | 3994 ± 391 | a | 5640 ± 391 | z |
MU | 2075 ± 391 | z | 878 ± 391 | b | 1709 ± 391 | ab | 950 ± 391 | y | 1761 ± 391 | b | 1865 ± 391 | b | 2439 ± 391 | y |
ON | 691 ± 391 | y | 205 ± 391 | bc | 189 ± 391 | cd | 295 ± 391 | yx | 285 ± 391 | cd | 332 ± 391 | c | 296 ± 391 | x |
OS | 439 ± 391 | y | 785 ± 391 | bc | 805 ± 391 | bc | 494 ± 418 | yx | 441 ± 391 | cd | 526 ± 391 | c | 505 ± 391 | x |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pilipović, A.; Zalesny, R.S., Jr.; Rogers, E.R.; McMahon, B.G.; Nelson, N.D.; Burken, J.G.; Hallett, R.A.; Lin, C.-H. Establishment of Regional Phytoremediation Buffer Systems for Ecological Restoration in the Great Lakes Basin, USA. II. New Clones Show Exceptional Promise. Forests 2021, 12, 474. https://doi.org/10.3390/f12040474
Pilipović A, Zalesny RS Jr., Rogers ER, McMahon BG, Nelson ND, Burken JG, Hallett RA, Lin C-H. Establishment of Regional Phytoremediation Buffer Systems for Ecological Restoration in the Great Lakes Basin, USA. II. New Clones Show Exceptional Promise. Forests. 2021; 12(4):474. https://doi.org/10.3390/f12040474
Chicago/Turabian StylePilipović, Andrej, Ronald S. Zalesny, Jr., Elizabeth R. Rogers, Bernard G. McMahon, Neil D. Nelson, Joel G. Burken, Richard A. Hallett, and Chung-Ho Lin. 2021. "Establishment of Regional Phytoremediation Buffer Systems for Ecological Restoration in the Great Lakes Basin, USA. II. New Clones Show Exceptional Promise" Forests 12, no. 4: 474. https://doi.org/10.3390/f12040474
APA StylePilipović, A., Zalesny, R. S., Jr., Rogers, E. R., McMahon, B. G., Nelson, N. D., Burken, J. G., Hallett, R. A., & Lin, C.-H. (2021). Establishment of Regional Phytoremediation Buffer Systems for Ecological Restoration in the Great Lakes Basin, USA. II. New Clones Show Exceptional Promise. Forests, 12(4), 474. https://doi.org/10.3390/f12040474