Effects of Urban Forest Types and Traits on Soil Organic Carbon Stock in Beijing
Abstract
:1. Introduction
2. Study Area and Methods
2.1. Study Area
2.2. Methods
2.2.1. Soil Sampling and Vegetation Investigation
2.2.2. Soil Preparation and Analysis
2.3. Statistical Analyses
3. Results
3.1. Variance of Soil Properties under Urban Forests
3.2. Variance of Forest Traits
3.3. Effect of Forest Traits on SOC
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Number | Park Name | Size (ha) | Age (Year) | Species | Location of Ring Road | |
---|---|---|---|---|---|---|
Conifer | Broadleaf | |||||
1 | Dongfutougou Park | 24 | 8 | - | Salix matsudana Koidz. | 5 to 6 |
2 | Zhongguancun forest Park | 340 | 14 | Pinus tabuliformis Carr. | Ailanthus altissima (Mill.) Swingle | 5 to 6 |
3 | Spring Park | 11 | 12 | - | Ginkgo biloba L. | 5 to 6 |
4 | Dongxiaoying Park | 1 | 8 | - | Salix matsudana | 5 to 6 |
5 | Baiwang Park | 9 | 12 | - | Ginkgo biloba | 5 to 6 |
6 | Mingyuan Park | 3 | 3 | Juniperus chinensis Linn. | Euonymus maackii Rupr. | 5 to 6 |
7 | Riveside forest Park | 431 | 8 | Cedrus deodara (Roxburgh) G. Don | Platanus occidentalis L. | 5 to 6 |
8 | Huilongyuan | 10 | 20 | Metasequoia glyptostroboides Hu et W. C. Cheng | Sophora japonica L. | 5 to 6 |
9 | Bishuifenghe | 3 | 28 | Pinus bungeana Zucc. et Endi | Sophora japonica | 5 to 6 |
10 | Zhenggezhuang Park | 1 | 13 | - | Populus tomentosa Carr. | 5 to 6 |
11 | Haiyingluo Park | 74 | 5 | Pinus bungeana | Salix matsudana | 5 to 6 |
12 | Future technolgy Park | 314 | 5 | - | Fraxinus chinensis Roxb. | 5 to 6 |
13 | Banta country Park | 42 | 5 | Juniperus formosana | Populus tomentosa | 5 to 6 |
14 | Taiping country Park | 43 | 11 | - | Populus tomentosa | 5 to 6 |
15 | Huabohui thesis Park | 27 | 20 | - | Populus tomentosa | 5 to 6 |
16 | Hedi Park | 2 | 6 | Pinus tabuliformis | Fraxinus chinensis | 5 to 6 |
17 | Mananli Park | 2 | 25 | - | Sophora japonica | 5 to 6 |
18 | Yongshiying country Park | 21 | 8 | Pinus tabuliformis | Salix matsudana | 5 to 6 |
19 | Olympic Forest Park | 624 | 11 | Pinus tabuliformis | Ailanthus altissima | 4 to 5 |
20 | Heiqiao Park | 138 | 15 | - | Populus tomentosa | 5 to 6 |
21 | Yujin Park | 17 | 15 | Juniperus formosana | - | 5 to 6 |
22 | Riverside Park | 1 | 5 | Pinus tabuliformis | Sophora japonica | 5 to 6 |
23 | Yuwen river Park | 16 | 4 | Pinus tabuliformis | Salix matsudana | 5 to 6 |
24 | Dongba country Park | 234 | 10 | - | Salix matsudana | 5 to 6 |
25 | Entertainment sport Park | 7 | 8 | - | Salix matsudana | 4 to 5 |
26 | Baliqiao music Park | 17 | 10 | Pinus tabuliformis | Salix matsudana | 5 to 6 |
27 | Longwangzhuang Park | 4 | 9 | - | Sophora japonica | 5 to 6 |
28 | Taihu forest Park | 76 | 5 | Pinus tabuliformis | Robinia pseudoacacia L. | 5 to 6 |
29 | Dongshi Park | 20 | 3 | - | Fraxinus chinensis | 5 to 6 |
30 | Lvfeng Park | 23 | 5 | Pinus tabuliformis | Sophora japonica | 5 to 6 |
31 | Nanhaizi Park | 432 | 9 | Pinus tabuliformis | Platanus acerifolia (Aiton) Willdenow | 5 to 6 |
32 | Boda Park | 16 | 15 | Pinus tabuliformis | Eucommia ulmoides Oliver | 5 to 6 |
33 | Binhe Park | 312 | 2 | - | Salix matsudana | 5 to 6 |
34 | Yizhuang Park | 6 | 4 | Pinus tabuliformis | Salix matsudana | 5 to 6 |
35 | Laojuntang Park | 47 | 11 | - | Populus tomentosa | 4 to 5 |
36 | Huangcun Park | 5 | 35 | Juniperus formosana | - | 5 to 6 |
37 | Qingyuan Park | 124 | 10 | Platycladus orientalis (L.) Franco | Fraxinus chinensis | 5 to 6 |
38 | Gaoxin Park | 42 | 10 | Platycladus orientalis | Salix matsudana | 4 to 5 |
39 | Yukang Park | 40 | 11 | Pinus tabuliformis | Salix matsudana | 4 to 5 |
40 | Kandan Park | 49 | 10 | - | Robinia pseudoacacia | 4 to 5 |
41 | Century Forest Park | 405 | 11 | Juniperus chinensis | Sophora japonica | 5 to 6 |
42 | Riverside Park | 312 | 16 | Pinus tabuliformis | Salix matsudana | 5 to 6 |
43 | Huangxinzhuang Green Fitness Park | 6 | 10 | - | Populus tomentosa | 5 to 6 |
44 | University Town Park | 6 | 6 | - | Populus tomentosa | 5 to 6 |
45 | Changyang Park | 10 | 15 | Pinus tabuliformis | Platanus orientalis | 5 to 6 |
46 | Changti Park | 1 | 11 | - | Koelreuteria paniculata Laxm. | 5 to 6 |
47 | Changxindian Park | 8 | 32 | Juniperus formosana | Koelreuteria paniculata | 5 to 6 |
48 | Xiaoyue country Park | 37 | 10 | Juniperus formosana | Sophora japonica | 5 to 6 |
49 | Guozhuang Park | 9 | 20 | Pinus bungeana | Salix matsudana | 4 to 5 |
50 | Small Park | 1 | 20 | Platycladus orientalis | Sophora japonica | 4 to 5 |
51 | Fengtai Science and Technology Park | 5 | 22 | - | Koelreuteria paniculata | 3 to 4 |
52 | Fengtai Garden | 8 | 30 | - | Koelreuteria paniculata | 3 to 4 |
53 | Wanfeng Park | 24 | 23 | Platycladus orientalis | Ginkgo biloba | 3 to 4 |
54 | Wukesong Cultural Park | 8 | 30 | Pinus tabuliformis | Salix matsudana | 3 to 4 |
55 | Hope Park | 9 | 15 | Juniperus chinensis | Populus tomentosa | 5 to 6 |
56 | Ancient City Park | 14 | 38 | Pinus tabuliformis | Ginkgo biloba | 5 to 6 |
57 | Pine Forest Park | 22 | 70 | Platycladus orientalis | - | 5 to 6 |
58 | Half-moon popular science garden | 3 | 20 | Pinus tabuliformis | Koelreuteria paniculata | 4 to 5 |
59 | Laoshan City Leisure Park | 91 | 11 | Juniperus formosana Hayata | Salix matsudana | 4 to 5 |
60 | Sunshine Wednesday | 6 | 16 | - | Salix matsudana | 4 to 5 |
61 | Pingzhuang country Park | 44 | 10 | - | Ginkgo biloba | 4 to 5 |
62 | Beijing Botanical Garden | 400 | 63 | Pinus tabuliformis | Salix matsudana | 5 to 6 |
63 | Chinese Academy of Sciences Botanical Garden | 74 | 89 | Juniperus chinensis | Populus tomentosa | 5 to 6 |
64 | Yudong Garden | 75 | 11 | Juniperus formosana | Ginkgo biloba | 4 to 5 |
65 | Haidian Park | 40 | 16 | - | Sophora japonica | 4 to 5 |
66 | Shuangyushu Park | 1 | 34 | Juniperus formosana | Sophora japonica | 3 to 4 |
67 | Dongsheng Bajia Country Park | 101 | 12 | - | Salix matsudana | 4 to 5 |
68 | Zhiyuanzhuang Park | 12 | 6 | Juniperus formosana | Fraxinus chinensis | 5 to 6 |
69 | International Camping Park replacement | 36 | 16 | Pinus bungeana | Sophora japonica | 4 to 5 |
70 | Nanyuan Park | 13 | 70 | Juniperus formosana | Populus tomentosa | 4 to 5 |
71 | Taoyuan Park | 11 | 18 | Juniperus formosana | Sophora japonica | 4 to 5 |
72 | Wanfang Pavilion | 8 | 29 | - | Sophora japonica | 2 to 3 |
73 | Fengyi Park | 10 | 15 | - | Populus tomentosa | 2 to 3 |
74 | Bihai Park | 20 | 16 | Pinus tabuliformis | Koelreuteria paniculata | 4 to 5 |
75 | Breeze Garden | 1 | 22 | Juniperus chinensis | Salix matsudana | 3 to 4 |
76 | Haitang Park | 34 | 11 | Juniperus chinensis | Robinia pseudoacacia | 4 to 5 |
77 | Guta Park | 56 | 11 | Pinus tabuliformis | Sophora japonica | 4 to 5 |
78 | Xinglong Park | 49 | 27 | Juniperus chinensis | - | 4 to 5 |
79 | Ditan Park | 35 | 479 | Platycladus orientalis | Salix matsudana | 2 to 3 |
80 | Nanguan Park | 3 | 63 | - | Sophora japonica | 1 to 2 |
81 | Xiangheyuan Park | 7 | 33 | - | Sophora japonica | 2 to 3 |
82 | Side Park | 17 | 21 | Pinus tabuliformis | Koelreuteria paniculata | 4 to 5 |
83 | Wanghe Park | 37 | 4 | Pinus tabuliformis | Fraxinus chinensis | 4 to 5 |
84 | Wong Tsao Wan Country Park | 39 | 10 | Pinus tabuliformis | Fraxinus chinensis | 4 to 5 |
85 | Zizhuyuan | 47 | 66 | Pinus bungeana | Tilia tuan Szyszyl. | 2 to 3 |
86 | Linglong Park | 9 | 30 | - | Robinia pseudoacacia | 3 to 4 |
87 | Huichengmen Park | 3 | 50 | Juniperus chinensis | Populus tomentosa | 2 to 3 |
88 | Cuifang Garden | 1 | 29 | Pinus tabuliformis | - | 1 to 2 |
89 | Nanlishi Road Park | 2 | 59 | Juniperus chinensis | Sophora japonica | 2 to 3 |
90 | Yuetan Park | 8 | 479 | Juniperus formosana | Euonymus maackii | 2 to 3 |
91 | Guanyuan Park | 2 | 19 | - | Koelreuteria paniculata | 1 to 2 |
92 | Longtan Lake Park | 120 | 9 | Pinus tabuliformis | - | 1 to 2 |
93 | Ritan Park | 21 | 479 | Platycladus orientalis | Euonymus maackii | 2 to 3 |
94 | Tuanjie Lake Park | 13 | 33 | Juniperus formosana | - | 3 to 4 |
95 | Red scarf Park | 24 | 61 | Juniperus chinensis | Ginkgo biloba | 4 to 5 |
96 | Chaoyang Park | 210 | 35 | Pinus tabuliformis | Populus tomentosa | 3 to 4 |
97 | Taoranting Park | 55 | 67 | Juniperus chinensis | Sophora japonica | 1 to 2 |
98 | Dongdan Park | 4 | 70 | - | Ginkgo biloba | 1 to 2 |
99 | Huangchenggen Heritage Park | 8 | 18 | - | Ginkgo biloba | 1 to 2 |
100 | Jingshan Park | 19 | 101 | Juniperus chinensis | - | 1 to 2 |
101 | Xitucheng Park | 18 | 13 | - | Sophora japonica | 2 to 3 |
102 | Rending Lake Park | 9 | 71 | - | Ginkgo biloba | 2 to 3 |
103 | Rose Garden | 1 | 16 | Platycladus orientalis | Ailanthus altissima | 3 to 4 |
104 | Madian Park | 8 | 16 | Pinus tabuliformis | Ginkgo biloba | 3 to 4 |
105 | Arctic Temple Park | 5 | 6 | Pinus tabuliformis | Ulmus pumila L. | 3 to 4 |
106 | Xinglong Park | 49 | 27 | - | Sophora japonica | 4 to 5 |
107 | Xiangheyuan Park | 7 | 33 | Juniperus chinensis | - | 2 to 3 |
References
- Francini, G.; Hui, N.; Jumpponen, A.; Kotze, D.J.; Romantschuk, M.; Allen, J.A.; Setälä, H. Soil biota in boreal urban greenspace: Responses to plant type and age. Soil Biol. Biochem. 2018, 118, 145–155. [Google Scholar] [CrossRef] [Green Version]
- Bolund, P.; Hunhammar, S. Ecosystem services in urban areas. Ecol. Econ. 1999, 29, 293–301. [Google Scholar] [CrossRef]
- Pandit, R.; Polyakov, M.; Tapsuwan, S.; Moran, T. The effect of street trees on property value in Perth, Western Australia. Landsc. Urban Plan. 2013, 110, 134–142. [Google Scholar] [CrossRef]
- Llausàs, A.; Roe, M. Green Infrastructure Planning: Cross-National Analysis between the North East of England (UK) and Catalonia (Spain). Eur. Plan. Stud. 2012, 20, 641–663. [Google Scholar] [CrossRef]
- Roeland, S.; Moretti, M.; Amorim, J.H.; Branquinho, C.; Fares, S.; Morelli, F.; Niinemets, Ü.; Paoletti, E.; Pinho, P.; Sgrigna, G.; et al. Towards an integrative approach to evaluate the environmental ecosystem services provided by urban forest. J. For. Res. 2019, 30, 1981–1996. [Google Scholar] [CrossRef] [Green Version]
- Lal, R. Residue management, conservation tillage and soil restoration for mitigating greenhouse effect by CO2-enrichment. Soil Tillage Res. 1997, 43, 81–107. [Google Scholar] [CrossRef]
- Schmidt, M.W.I.; Torn, M.S.; Abiven, S.; Dittmar, T.; Guggenberger, G.; Janssens, I.A.; Kleber, M.; Kögel-Knabner, I.; Lehmann, J.; Manning, D.A.C.; et al. Persistence of soil organic matter as an ecosystem property. Nature 2011, 478, 49–56. [Google Scholar] [CrossRef] [Green Version]
- Wiesmeier, M.; Urbanski, L.; Hobley, E.; Lang, B.; von Lützow, M.; Marin-Spiotta, E.; van Wesemael, B.; Rabot, E.; Ließ, M.; Garcia-Franco, N.; et al. Soil organic carbon storage as a key function of soils—A review of drivers and indicators at various scales. Geoderma 2019, 333, 149–162. [Google Scholar] [CrossRef]
- Lorenz, K.; Lal, R. Biogeochemical C and N cycles in urban soils. Environ. Int. 2009, 35, 1–8. [Google Scholar] [CrossRef]
- Lukina, N.V.; Tikhonova, E.V.; Danilova, M.A.; Bakhmet, O.N.; Kryshen, A.M.; Tebenkova, D.N.; Kuznetsova, A.I.; Smirnov, V.E.; Braslavskaya, T.Y.; Gornov, A.V.; et al. Associations between forest vegetation and the fertility of soil organic horizons in northwestern Russia. For. Ecosyst. 2019, 6, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Liu, R.; Wang, M.; Chen, W. The influence of urbanization on organic carbon sequestration and cycling in soils of Beijing. Landsc. Urban Plan. 2018, 169, 241–249. [Google Scholar] [CrossRef]
- Bardgett, R.D.; Wardle, D.A. Aboveground-Belowground Linkages: Biotic Interactions, Ecosystem Processes, and Global Change; Oxford University Press: Oxford, UK, 2010; ISBN 0199546878. [Google Scholar]
- Jobbagy, E.G.; Jackson, R.B. The Vertical Distribution of Soil Organic Carbon and Its Relation to Climate and Vegetation. Ecol. Appl. 2000, 10, 423. [Google Scholar] [CrossRef]
- Canedoli, C.; Ferrè, C.; El Khair, D.A.; Padoa-Schioppa, E.; Comolli, R. Soil organic carbon stock in different urban land uses: High stock evidence in urban parks. Urban Ecosyst. 2020, 23, 159–171. [Google Scholar] [CrossRef]
- Reichert, B.L.; Jean-Philippe, S.R.; Oswalt, C.; Franklin, J.; Radosevich, M. Woody Vegetation and Soil Characteristics of Residential Forest Patches and Open Spaces along an Urban-to-Rural Gradient. Open J. For. 2015, 5, 90–104. [Google Scholar] [CrossRef] [Green Version]
- Day, S.D.; Wiseman, P.E.; Dickinson, S.B.; Harris, J.R. Tree root ecology in the Urban environment and implications for a sustainable rhizosphere. Arboric. Urban For. 2010, 36, 193–205. [Google Scholar]
- Edmondson, J.L.; O’Sullivan, O.S.; Inger, R.; Potter, J.; McHugh, N.; Gaston, K.J.; Leake, J.R. Urban tree effects on soil organic carbon. PLoS ONE 2014, 9. [Google Scholar] [CrossRef] [Green Version]
- Grime, J.P. Evidence for the Existence of Three Primary Strategies in Plants and Its Relevance to Ecological and Evolutionary Theory. Am. Nat. 1977, 111, 1169–1194. [Google Scholar] [CrossRef]
- Kara, Ö.; Bolat, I.; Çakiroǧlu, K.; Öztürk, M. Plant canopy effects on litter accumulation and soil microbial biomass in two temperate forests. Biol. Fertil. Soils 2008, 45, 193–198. [Google Scholar] [CrossRef]
- Tan, X.; Kan, L.; Su, Z.; Liu, X.; Zhang, L. The composition and diversity of soil bacterial and fungal communities along an urban-to-rural gradient in South China. Forests 2019, 10, 797. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Wang, W.; He, X.; Zhou, W.; Zhai, C.; Wang, P.; Tang, Z.; Wei, C.; Zhang, B.; Xiao, L.; et al. Urbanization-induced glomalin changes and their associations with land-use configuration, forest characteristics, and soil properties in Changchun, Northeast China. J. Soils Sediments 2019, 19, 2433–2444. [Google Scholar] [CrossRef]
- Frouz, J. Effects of Soil Development Time and Litter Quality on Soil Carbon Sequestration: Assessing Soil Carbon Saturation with a Field Transplant Experiment along a Post-mining Chronosequence. Land Degrad. Dev. 2017, 28, 664–672. [Google Scholar] [CrossRef]
- Jian, J.; Steele, M.K.; Day, S.D.; Quinn Thomas, R.; Hodges, S.C. Measurement strategies to account for soil respiration temporal heterogeneity across diverse regions. Soil Biol. Biochem. 2018, 125, 167–177. [Google Scholar] [CrossRef]
- Hobbie, S.E.; Reich, P.B.; Oleksyn, J.; Ogdahl, M.; Zytkowiak, R.; Hale, C.; Karolewski, P. Tree species effects on decomposition and forest floor dynamics in a common garden. Ecology 2006, 87, 2288–2297. [Google Scholar] [CrossRef]
- Dawud, S.M.; Raulund-Rasmussen, K.; Domisch, T.; Finér, L.; Jaroszewicz, B.; Vesterdal, L. Is Tree Species Diversity or Species Identity the More Important Driver of Soil Carbon Stocks, C/N Ratio, and pH? Ecosystems 2016, 19, 645–660. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Trogisch, S.; He, J.S.; Niklaus, P.A.; Bruelheide, H.; Tang, Z.; Erfmeier, A.; Scherer-Lorenzen, M.; Pietsch, K.A.; Yang, B.; et al. Tree species richness increases ecosystem carbon storage in subtropical forests. Proc. R. Soc. B Biol. Sci. 2018, 285. [Google Scholar] [CrossRef] [Green Version]
- Díaz-Pinés, E.; Rubio, A.; Van Miegroet, H.; Montes, F.; Benito, M. Does tree species composition control soil organic carbon pools in Mediterranean mountain forests? For. Ecol. Manag. 2011, 262, 1895–1904. [Google Scholar] [CrossRef]
- Vesterdal, L.; Clarke, N.; Sigurdsson, B.D.; Gundersen, P. Do tree species influence soil carbon stocks in temperate and boreal forests? For. Ecol. Manag. 2013, 309, 4–18. [Google Scholar] [CrossRef]
- Vesterdal, L.; Schmidt, I.K.; Callesen, I.; Nilsson, L.O.; Gundersen, P. Carbon and nitrogen in forest floor and mineral soil under six common European tree species. For. Ecol. Manag. 2008, 255, 35–48. [Google Scholar] [CrossRef]
- Hansen, K.; Vesterdal, L.; Schmidt, I.K.; Gundersen, P.; Sevel, L.; Bastrup-Birk, A.; Pedersen, L.B.; Bille-Hansen, J. Litterfall and nutrient return in five tree species in a common garden experiment. For. Ecol. Manag. 2009, 257, 2133–2144. [Google Scholar] [CrossRef]
- Lukina, N.; Kuznetsova, A.; Tikhonova, E.; Smirnov, V.; Danilova, M.; Gornov, A.; Bakhmet, O.; Kryshen, A.; Tebenkova, D.; Shashkov, M.; et al. Linking forest vegetation and soil carbon stock in northwestern Russia. Forests 2020, 11, 979. [Google Scholar] [CrossRef]
- Binkley, D.; Giardina, C. Why do tree species affect soils? The Warp and Woof of tree-soil interactions. Biogeochemistry 1998, 42, 89–106. [Google Scholar] [CrossRef]
- Polglase, P.J.; Paul, K.I.; Khanna, P.K.; Nyakuengama, J.G.; O’Connell, A.M.; Grove, T.S.; Battaglia, M. Change in Soil Carbon Following Afforestation or Reforestation; Australian Greenhouse Office: Canberra, Australia, 2000; Volume 20. [Google Scholar]
- Nakane, K.; Lee, N.J. Simulation of soil carbon cycling and carbon balance following clear-cutting in a mid-temperate forest and contribution to the sink of atmospheric CO2. Vegetatio 1995, 121, 147–156. [Google Scholar] [CrossRef]
- Pollierer, M.M.; Langel, R.; Körner, C.; Maraun, M.; Scheu, S. The underestimated importance of belowground carbon input for forest soil animal food webs. Ecol. Lett. 2007, 10, 729–736. [Google Scholar] [CrossRef] [PubMed]
- Pardon, P.; Reubens, B.; Reheul, D.; Mertens, J.; De Frenne, P.; Coussement, T.; Janssens, P.; Verheyen, K. Trees increase soil organic carbon and nutrient availability in temperate agroforestry systems. Agric. Ecosyst. Environ. 2017, 247, 98–111. [Google Scholar] [CrossRef]
- Cheng, W.; Baoquan, J.; Guangfa, Q.; Jiali, J.; Lin, G.; Chang, Z.; Ruilin, S. Effect and Development Countermeasures of Beijing Plain Afforestation. J. Chin. Urban For. 2017, 15, 6–11. [Google Scholar] [CrossRef]
- Li, L. Impacts of Plain Afforestation on Forest Landscape Patterns in Beijing. J. Chin. Urban For. 2020, 18, 5–10. [Google Scholar] [CrossRef]
- Wang, M.; Faber, J.H.; Chen, W.; Li, X.; Markert, B. Effects of land use intensity on the natural attenuation capacity of urban soils in Beijing, China. Ecotoxicol. Environ. Saf. 2015, 117, 89–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hui, N.; Liu, X.; Johan Kotze, D.; Jumpponen, A.; Francini, G.; Setälä, H. Ectomycorrhizal fungal communities in urban parks are similar to those in natural forests but shaped by vegetation and park age. Appl. Environ. Microbiol. 2017, 83. [Google Scholar] [CrossRef] [Green Version]
- Setälä, H.M.; Francini, G.; Allen, J.A.; Hui, N.; Jumpponen, A.; Kotze, D.J. Vegetation type and age drive changes in soil properties, nitrogen, and carbon sequestration in urban parks under cold climate. Front. Ecol. Evol. 2016, 4, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Nero, B.F.; Anning, A.K. Variations in soil characteristics among urban green spaces in Kumasi, Ghana. Environ. Earth Sci. 2018, 77, 1–12. [Google Scholar] [CrossRef]
- Thimonier, A.; Sedivy, I.; Schleppi, P. Estimating leaf area index in different types of mature forest stands in Switzerland: A comparison of methods. Forest 2010, 543–562. [Google Scholar] [CrossRef]
- Böhm, W. Methods of Studying Root Systems; Springer: Berlin/Heidelberg, Germany, 1979; Volume 21, ISBN 9783642672842. [Google Scholar]
- Bauhus, J.; Messier, C. Soil exploitation strategies of fine roots in different tree species of the southern boreal forest of eastern Canada. Can. J. For. Res. 1999, 29, 260–273. [Google Scholar] [CrossRef]
- Li, Y.; Bruelheide, H.; Scholten, T.; Schmid, B.; Sun, Z.; Zhang, N.; Bu, W.; Liu, X.; Ma, K. Early positive effects of tree species richness on soil organic carbon accumulation in a large-scale forest biodiversity experiment. J. Plant Ecol. 2019, 12, 882–893. [Google Scholar] [CrossRef]
- Zhu, J.; Hu, H.; Tao, S.; Chi, X.; Li, P.; Jiang, L.; Ji, C.; Zhu, J.; Tang, Z.; Pan, Y.; et al. Carbon stocks and changes of dead organic matter in China’s forests. Nat. Commun. 2017, 8, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Scharenbroch, B.C.; Ow, L.F. Soil organic carbon distribution in roadside soils of Singapore. Chemosphere 2016, 165, 163–172. [Google Scholar] [CrossRef]
- Wold, S.; Sjöström, M.; Eriksson, L. PLS-regression: A basic tool of chemometrics. Chemom. Intell. Lab. Syst. 2001, 58, 109–130. [Google Scholar] [CrossRef]
- Błońska, E.; Lasota, J.; Gruba, P. Effect of temperate forest tree species on soil dehydrogenase and urease activities in relation to other properties of soil derived from loess and glaciofluvial sand. Ecol. Res. 2016, 31, 655–664. [Google Scholar] [CrossRef] [Green Version]
- Ribbons, R.R.; Kepfer-Rojas, S.; Kosawang, C.; Hansen, O.K.; Ambus, P.; McDonald, M.; Grayston, S.J.; Prescott, C.E.; Vesterdal, L. Context-dependent tree species effects on soil nitrogen transformations and related microbial functional genes. Biogeochemistry 2018, 140, 145–160. [Google Scholar] [CrossRef] [Green Version]
- Brumme, R.; Egenolf, M.; Aydin, C.; Block, J.; Meiwes, K.; Wilpert, K. Soil Organic Carbon and Nitrogen in Forest Soils of Germany. In Functioning and Management of European Beech Ecosystems. Ecological Studies; Khanna, P.K., Ed.; Springer: Berlin/Heidelberg, Germany, 2009; Volume 208, ISBN 9789400720596. [Google Scholar]
- Bae, J.; Ryu, Y. Land use and land cover changes explain spatial and temporal variations of the soil organic carbon stocks in a constructed urban park. Landsc. Urban Plan. 2015, 136, 57–67. [Google Scholar] [CrossRef]
- Guo, L.B.; Halliday, M.J.; Siakimotu, S.J.M.; Gifford, R.M. Fine root production and litter input: Its effects on soil carbon. Plant Soil 2005, 272, 1–10. [Google Scholar] [CrossRef]
- Young, I.M. Biophysical interactions at the root-soil interface: A Review. J. Agric. Sci. 1998, 130, 1–8. [Google Scholar] [CrossRef]
- Bhattacharya, A.; Saikia, K.; Takhelmayum, M.; Sarkar, P. Carbon sequestration in the bio-edaphic ecosystem of National Highway-27 in Guwahati, Assam, India. Heliyon 2020, 6, e04969. [Google Scholar] [CrossRef] [PubMed]
- Toru, T.; Kibret, K. Carbon stock under major land use/land cover types of Hades sub-watershed, eastern Ethiopia. Carbon Balance Manag. 2019, 14, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Eni, D.D.; Iwara, A.I.; Offiong, R.A. Analysis of Soil-Vegetation Interrelationships in a South-Southern Secondary Forest of Nigeria. Int. J. For. Res. 2012, 2012, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Gholz, H.L.; Vogel, S.A.; Cropper, W.P.; Mckelvey, K.; Ewel, K.C.; Teskey, R.O.; Curran, P.J. Dynamics of canopy structure and light interception in Pinus elliottii stands, north Florida. Ecol. Monogr. 1991, 61, 33–51. [Google Scholar] [CrossRef] [Green Version]
- Lal, R.; Stewart, B.A. Urban Soils; Taylor & Francis: Cambridge, UK, 2017; ISBN 978-1-4987-7009-5. [Google Scholar]
- Niemelä, J. Urban Ecology: Patterns, Processes, and Applications; Oxford University Press: Oxford, UK, 2011; ISBN 978-0-19-956356-2. [Google Scholar]
- Kunstler, G.; Lavergne, S.; Courbaud, B.; Thuiller, W.; Vieilledent, G.; Zimmermann, N.E.; Kattge, J.; Coomes, D.A. Competitive interactions between forest trees are driven by species’ trait hierarchy, not phylogenetic or functional similarity: Implications for forest community assembly. Ecol. Lett. 2012, 15, 831–840. [Google Scholar] [CrossRef] [Green Version]
- Cannell, M.G.R. Forest canopies. Endeavour 1995, 19, 133. [Google Scholar] [CrossRef]
- Harte, J.; Rawa, A.; Price, V. Effects of manipulated soil microclimate on mesofaunal biomass and diversity. Soil Biol. Biochem. 1996, 28, 313–322. [Google Scholar] [CrossRef]
- Bokhorst, S.; Wardle, D.A. Microclimate within litter bags of different mesh size: Implications for the “arthropod effect” on litter decomposition. Soil Biol. Biochem. 2013, 58, 147–152. [Google Scholar] [CrossRef]
- Chen, S.; Zou, J.; Hu, Z.; Chen, H.; Lu, Y. Global annual soil respiration in relation to climate, soil properties and vegetation characteristics: Summary of available data. Agric. For. Meteorol. 2014, 198, 335–346. [Google Scholar] [CrossRef]
- Rothe, A.; Binkley, D. Nutritional interactions in mixed species forests: A synthesis. Can. J. For. Res. 2001, 31, 1855–1870. [Google Scholar] [CrossRef]
- Paul, K.I.; Polglase, P.J.; Nyakuengama, J.G.; Khanna, P.K. Change in soil carbon following afforestation. For. Ecol. Manag. 2002, 168, 241–257. [Google Scholar] [CrossRef]
- Huyler, A.; Chappelka, A.H.; Prior, S.A.; Somers, G.L. Influence of aboveground tree biomass, home age, and yard maintenance on soil carbon levels in residential yards. Urban Ecosyst. 2014, 17, 787–805. [Google Scholar] [CrossRef]
- Gill, R.A.; Jackson, R.B. Global patterns of root turnover for terrestrial ecosystems. New Phytol. 2000, 147, 13–31. [Google Scholar] [CrossRef]
- Vogt, K.A.; Grier, C.C.; Vogt, D.J. Production, Turnover, and Nutrient Dynamics of Above- and Belowground Detritus of World Forests. Adv. Ecol. Res. 1986, 15, 303–377. [Google Scholar] [CrossRef]
- Wang, H.; Liu, S.R.; Mo, J.M.; Wang, J.X.; Makeschin, F.; Wolff, M. Soil organic carbon stock and chemical composition in four plantations of indigenous tree species in subtropical China. Ecol. Res. 2010, 25, 1071–1079. [Google Scholar] [CrossRef]
- Yates, C.J.; Norton, D.A.; Hobbs, R.J. Grazing effects on plant cover, soil and microclimate in fragmented woodlands in south-western Australia: Implications for restoration. Austral Ecol. 2000, 25, 36–47. [Google Scholar] [CrossRef]
- Brubaker, S.C.; Jones, A.J.; Lewis, D.T.; Frank, K. Soil Properties Associated with Landscape Position. Soil Sci. Soc. Am. J. 1993, 57, 235–239. [Google Scholar] [CrossRef]
- Cambou, A.; Saby, N.P.A.; Hunault, G.; Nold, F.; Cannavo, P.; Schwartz, C.; Vidal-Beaudet, L. Impact of city historical management on soil organic carbon stocks in Paris (France). J. Soils Sediments 2021, 21, 1038–1052. [Google Scholar] [CrossRef]
- Cambou, A.; Shaw, R.K.; Huot, H.; Vidal-Beaudet, L.; Hunault, G.; Cannavo, P.; Nold, F.; Schwartz, C. Estimation of soil organic carbon stocks of two cities, New York City and Paris. Sci. Total Environ. 2018, 644, 452–464. [Google Scholar] [CrossRef] [Green Version]
Layers | Total | Coniferous Group | Broadleaved Group | ||
---|---|---|---|---|---|
n | Mean ± SE | Mean ± SE | Mean ± SE | ||
SOCC | 0–10 cm | 166 | 8.81 ± 0.19 b | 9.19 ± 0.30 b | 8.54 ± 0.25 b |
10–20 cm | 166 | 7.62 ± 0.21 a | 7.95 ± 0.31 a | 7.40 ± 0.28 a | |
20–30 cm | 162 | 7.65 ± 0.21 a | 8.04 ± 0.28 a | 7.38 ± 0.29 a | |
Total (each group) | 494 | 8.02 ± 0.12 | 8.40 ± 0.18 | 7.77 ± 0.16 | |
SOCD | 0–10 cm | 166 | 1.21 ± 0.03 | 1.24 ± 0.04 | 1.19 ± 0.03 |
10–20 cm | 166 | 1.17 ± 0.03 | 1.24 ± 0.05 | 1.15 ± 0.04 | |
20–30 cm | 162 | 1.24 ± 0.03 | 1.29 ± 0.04 | 1.20 ± 0.04 | |
Total (each group) | 494 | 1.21 ± 0.02 | 1.26 ± 0.03 | 1.17 ± 0.03 |
RV | Layer | R2 | Component | Explained in RV (%) | RMSEP |
---|---|---|---|---|---|
SOCC | Total | 0.35 | 3 | 42.07 | 0.79 |
0–10 cm | 0.25 | 2 | 39.24 | 0.86 | |
10–20 cm | 0.35 | 2 | 45.50 | 0.80 | |
20–30 cm | 0.27 | 2 | 38.29 | 0.85 | |
SOCD | Total | 0.29 | 3 | 35.83 | 0.83 |
0–10 cm | 0.18 | 2 | 33.70 | 0.90 | |
10–20 cm | 0.36 | 2 | 45.83 | 0.79 | |
20–30 cm | 0.21 | 2 | 33.02 | 0.88 |
Models | LAI | LIT | FRB | VD | H | UC | DBH | CA | HC | CD |
---|---|---|---|---|---|---|---|---|---|---|
SOCC | ||||||||||
Total | 1.29 | 1.06 | 1.61 | 1.03 | 1.00 | 1.23 | ||||
0–10 cm | 1.49 | 1.62 | 1.33 | |||||||
10–20 cm | 1.11 | 1.01 | 1.24 | 1.53 | 1.02 | 1.04 | ||||
20–30 cm | 1.09 | 1.07 | 1.49 | 1.21 | 1.22 | |||||
SOCD | ||||||||||
Total | 1.12 | 1.07 | 1.67 | 1.06 | 1.13 | 1.13 | ||||
0–10 cm | 1.25 | 1.74 | 1.05 | 1.22 | ||||||
10–20 cm | 1.02 | 1.01 | 1.20 | 1.58 | 1.03 | 1.09 | ||||
20–30 cm | 1.04 | 1.46 | 1.14 | 1.45 | 1.08 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, X.; Sun, Z.; Hao, Z.; Bian, Q.; Wei, K.; Wang, C. Effects of Urban Forest Types and Traits on Soil Organic Carbon Stock in Beijing. Forests 2021, 12, 394. https://doi.org/10.3390/f12040394
Xu X, Sun Z, Hao Z, Bian Q, Wei K, Wang C. Effects of Urban Forest Types and Traits on Soil Organic Carbon Stock in Beijing. Forests. 2021; 12(4):394. https://doi.org/10.3390/f12040394
Chicago/Turabian StyleXu, Xinhui, Zhenkai Sun, Zezhou Hao, Qi Bian, Kaiyue Wei, and Cheng Wang. 2021. "Effects of Urban Forest Types and Traits on Soil Organic Carbon Stock in Beijing" Forests 12, no. 4: 394. https://doi.org/10.3390/f12040394
APA StyleXu, X., Sun, Z., Hao, Z., Bian, Q., Wei, K., & Wang, C. (2021). Effects of Urban Forest Types and Traits on Soil Organic Carbon Stock in Beijing. Forests, 12(4), 394. https://doi.org/10.3390/f12040394