Spatial Variability of Throughfall in a Larch (Larix gmelinii) Forest in Great Kingan Mountain, Northeastern China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Descriptions
2.2. Forest Canopy Structure Index Measurement
2.3. Measurements of Gross Rainfall and Throughfall
2.4. Statistical Analysis
3. Results
3.1. Gross Rainfall
3.2. Characteristics of Throughfall
3.3. Throughfall Variability in Relation to Rainfall Properties
3.4. Throughfall Variability in Relation to Canopy Structure
3.5. Temporal Stability of Throughfall
4. Discussion
4.1. Characteristics of Throughfall
4.2. Influencing Factors of Spatial Heterogeneity of Throughfall
4.3. Temporal Stability of Throughfall
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Durocher, M.G. Monitoring spatial variability of forest interception. Hydrol. Process. 1990, 4, 215–229. [Google Scholar] [CrossRef]
- Sheng, H.C.; Cai, T.J. Influence of rainfall on canopy interception in mixed broad-leaved-Korean pine forest in Xiaoxing’an Mountains, northeastern China. Forests 2019, 10, 248. [Google Scholar] [CrossRef] [Green Version]
- Van Stan, J.T.; Gordon, D.A. Mini-review: Stemflow as a resource limitation to near-stem soils. Front. Plant Sci. 2018, 9, 248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, L.; Xie, Z.Q.; Xu, W.T.; Zhao, C.M. Variability of throughfall quantity in a mixed evergreen-deciduous broadleaved forest in central China. J. Hydrol. Hydromech. 2019, 67, 225–231. [Google Scholar] [CrossRef] [Green Version]
- Levia, D.F.; Nanko, K.; Amasaki, H.; Giambelluca, T.W.; Hotta, N.; Iida, S.; Mudd, R.G.; Nullet, M.A.; Sakai, N.; Shinohara, Y.; et al. Throughfall partitioning by trees. Hydrol. Process. 2019, 33, 1698–1708. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.F.; Wang, X.P.; Hu, R.; Pan, Y.X. Throughfall and its spatial variability beneath xerophytic shrub canopies within water-limited arid desert ecosystems. J. Hydrol. 2016, 539, 406–416. [Google Scholar] [CrossRef]
- Janeau, J.L.; Grellier, S.; Podwojewski, P. Influence of rainfall interception by endemic plants versus short cycle crops on water infiltration in high altitude ecosystems of Ecuador. Hydrol. Res. 2015, 46, 1008–1018. [Google Scholar] [CrossRef]
- Yousefi, S.; Sadeghi, S.H.; Mirzaee, S.; Ploeg, M.V.D.; Keesstra, S.; Cerdà, A. Spatio-temporal variation of throughfall in a hyrcanian plain forest stand in Northern Iran. J. Hydrol. Hydromech. 2018, 66, 97–106. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.X.; Wu, H.W.; Li, J.; He, B.; Liu, J.F.; Wang, N.; Duan, W.L.; Liao, A.M. Spatial-temporal variability of throughfall in a subtropical deciduous forest from the hilly regions of eastern China. J. Mt. Sci. 2019, 16, 1788–1801. [Google Scholar] [CrossRef]
- Kowalska, A.; Boczoń, A.; Hildebrand, R.; Polkowska, Ż. Spatial variability of throughfall in a stand of scots pine (pinus sylvestris L.) with deciduous admixture as influenced by canopy cover and stem distance. J. Hydrol. 2016, 538, 231–242. [Google Scholar] [CrossRef]
- Fathizadeh, O.; Sadeghi, S.M.M.; Holder, C.; Su, L. Leaf phenology drives spatio-temporal patterns of throughfall under a single quercus castaneifolia C.A.Mey. Forests 2020, 11, 688. [Google Scholar] [CrossRef]
- Hall, R.L. Interception loss as a function of rainfall and forest types: Stochastic modelling for tropical canopies revisited. J. Hydrol. 2003, 280, 1–12. [Google Scholar] [CrossRef]
- Nanko, K.; Onda, Y.; Ito, A.; Moriwaki, H. Spatial variability of throughfall under a single tree: Experimental study of rainfall amount, raindrops, and kinetic energy. Agric. For. Meteorol. 2011, 151, 1173–1182. [Google Scholar] [CrossRef]
- Staelens, J.; De Schrijver, A.; Verheyen, K.; Verhoest, N.E.C. Rainfall partitioning into throughfall, stemflow, and interception within a single beech (Fagus sylvatica L.) canopy: Influence of foliation, rain event characteristics, and meteorology. Hydrol. Process. 2008, 22, 33–45. [Google Scholar] [CrossRef]
- Kato, H.; Onda, Y.; Kazuki, N.; Gomi, T.; Yamanaka, T.; Kawaguchi, S. Effect of canopy interception on spatial variability and isotopic composition of throughfall in Japanese cypress plantations. J. Hydrol. 2013, 504, 1–11. [Google Scholar] [CrossRef]
- Fang, S.M.; Zhao, C.Y.; Jian, S.Q. Spatial variability of throughfall in a Pinus tabulaeformis plantation forest in Loess Plateau, China. Scand. J. For. Res. 2016, 31, 1–39. [Google Scholar] [CrossRef]
- Vellak, K.; Paal, J.; Liira, J. Diversity and distribution pattern of bryophytes and vascular plants in a boreal spruce forest. Silva Fenn. 2003, 37, 3–13. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.; Onda, Y.; Chiara, S.; Kato, H.; Gomi, T. The effect of strip thinning on spatial and temporal variability of throughfall in a Japanese cypress plantation. Hydrol. Process. 2015, 29, 5058–5070. [Google Scholar] [CrossRef]
- Shi, L.; Sheng, H.C.; Man, X.L.; Cai, T.J. Rainfall redistribution and the spatial heterogeneity of throughfall in Larix gmelinii forest, northeast China. J. Nanjing For. Univ. 2017, 41, 90–96, (In Chinese with English abstract). [Google Scholar]
- Shen, H.T.; Wang, X.X.; Jiang, Y.; You, W.H. Spatial variations of throughfall through secondary succession of evergreen broad-leaved forests in eastern China. Hydrol. Process. 2012, 26, 1739–1747. [Google Scholar]
- Carlyle-Moses, D.E.; Laureano, J.S.F.; Price, A.G. Throughfall and throughfall spatial variability in Madrean oak forest communities of northeastern Mexico. J. Hydrol. 2004, 297, 124–135. [Google Scholar] [CrossRef]
- Sun, X.C.; Onda, Y.C.; Kato, H.K.; Gomic, T.S.; Liu, X.Y. Estimation of throughfall with changing stand structures for Japanese cypress and cedar plantations. For. Ecol. Manag. 2017, 402, 145–156. [Google Scholar] [CrossRef]
- Sadeghi, S.M.M.; Van Stan, J.T.; Pypker, T.G.; Tamjidi, J.; Friesen, J.; Farahnaklangroudi, M. Importance of transitional leaf states in canopy rainfall partitioning dynamics. Eur. J. For. Res. 2018, 137, 121–130. [Google Scholar] [CrossRef]
- Zhang, W.J.; Liu, W.J.; Li, W.X.; Zhu, X.A.; Chen, C.F.; Zeng, H.H.; Jiang, X.J.; Singh, A.K.; Yang, B. Characteristics of throughfall kinetic energy under the banana (Musa nana Lour.) canopy: The role of leaf shapes. Catena 2021, 197, 104985. [Google Scholar] [CrossRef]
- Carlyle-Moses, D.E.; Lishman, C.E. Temporal persistence of throughfall heterogeneity below and between the canopies of juvenile lodgepole pine (Pinus contorta). Hydrol. Process. 2015, 29, 4051–4067. [Google Scholar] [CrossRef]
- Liu, J.L.; Cheng, F.Y.; Munger, W.; Jiang, P.; Whitby, T.G.; Chen, S.Y.; Ji, W.W.; Man, X.L. Precipitation extremes influence patterns and partitioning of evapotranspiration and transpiration in a deciduous boreal larch forest. Agric. For. Meteorol. 2020, 287, 107936. [Google Scholar] [CrossRef]
- Duan, L.L.; Man, X.L.; Kurylyk, B.L.; Cai, T.J.; Li, Q. Distinguishing streamflow trends caused by changes in climate, forest cover, and permafrost in a large watershed in northeastern China. Hydrol. Process. 2017, 31, 1938–1951. [Google Scholar] [CrossRef]
- Duan, L.L.; Cai, T.J. Quantifying Impacts of Forest Recovery on Water Yield in Two Large Watersheds in the Cold Region of Northeast China. Forests 2018, 9, 392. [Google Scholar] [CrossRef] [Green Version]
- Sheng, H.C.; Cai, T.J.; Li, Y.; Liu, Y.J. Rainfall redistribution in Larix gmelinii forest on northern of Daxing’an Mountains, northeast of China. J. Soil Water Conserv. 2014, 28, 101–105, (In Chinese with English abstract). [Google Scholar]
- Zimmermann, A.; Germer, S.; Neill, C.; Krusche, A.V.; Elsenbeer, H. Spatiotemporal patterns of throughfall and solute deposition in an open tropical rain forest. J. Hydrol. 2008, 360, 87–102. [Google Scholar] [CrossRef]
- Keim, R.F.; Skaugset, A.E.; Weiler, M. Temporal persistence of spatial patterns in throughfall. J. Hydrol. 2005, 314, 263–274. [Google Scholar] [CrossRef]
- Wei, X.H.; Liu, S.R.; Zhou, G.Y.; Wang, C.K. Hydrological processes in major types of Chinese forest. Hydrol. Process. 2005, 19, 63–75. [Google Scholar] [CrossRef]
- Tian, Y.H.; Man, X.L.; Liu, X.; Li, Y. Research on rainfall redistribution of Betula platyphylla secondary forests in north of Greater Xing’an Mountains. J. Soil Water Conserv. 2014, 28, 109–113, (In Chinese with English abstract). [Google Scholar]
- Li, Y.; Cai, T.J.; Man, X.L.; Sheng, H.C.; Ju, C.Y. Canopy interception loss in a Pinus sylvestris var. mongolica forest of Northeast China. J. Arid Land 2015, 7, 831–840. [Google Scholar] [CrossRef] [Green Version]
- Siegert, C.M.; Levia, D.F.; Hudson, S.A.; Dowtin, A.L.; Zhang, F.; Mitchell, M.J. Small-scale topographic variability influences tree species distribution and canopy throughfall partitioning in a temperate deciduous forest. For. Ecol. Manag. 2016, 359, 109–117. [Google Scholar] [CrossRef]
- Nanko, K.; Hotta, N.; Suzuki, M. Evaluating the influenc e of canopy species and meteorological factors on throughfall drop size distribution. J. Hydrol. 2006, 329, 422–431. [Google Scholar] [CrossRef]
- Teale, N.G.; Mahan, H.; Bleakney, S.; Berger, A.; Shibley, N.; Frauenfeld, O.W.; Quiring, S.M.; Rapp, A.D.; Roark, E.B.; Washington-Allen, R. Impacts of vegetation and precipitation on throughfall heterogeneity in a tropical premontane transitional cloud forest. Biotropica 2014, 46, 667–676. [Google Scholar] [CrossRef]
- Liu, J.Q.; Liu, W.J.; Li, W.X.; Zeng, H.H. How does a rubber plantation affect the spatial variability and temporal stability of throughfall? Hydrol. Res. 2019, 50, 60–74. [Google Scholar] [CrossRef] [Green Version]
- Fan, J.L.; Oestergaard, K.T.; Guyot, A.; Jensen, D.G.; Lockington, D.A. Spatial variability of throughfall and stemflow in an exotic pine plantation of subtropical coastal Australia. Hydrol. Process. 2015, 29, 793–804. [Google Scholar] [CrossRef]
- He, Z.B.; Yang, J.J.; Du, J.; Zhao, W.Z.; Liu, H.; Chang, X.X. Spatial variability of canopy interception in a spruce forest of the semiarid mountain regions of China. Agric. For. Meteorol. 2014, 188, 58–63. [Google Scholar] [CrossRef]
- Nanko, K.; Onda, Y.; Kato, H.; Gomi, T. Immediate change in throughfall spatial distribution and canopy water balance after heavy thinning in a dense mature Japanese cypress plantation. Ecohydrology 2016, 9, 300–314. [Google Scholar] [CrossRef]
- Sato, A.M.; Avelar, A.D.; Netto, A.L.C. Spatial variability and temporal stability of throughfall in a eucalyptus plantation in the hilly lowlands of southeastern Brazil. Hydrol. Process. 2011, 25, 1910–1923. [Google Scholar] [CrossRef]
- Hsueh, Y.; Allen, S.T.; Keim, R.F. Fine-scale spatial variability of throughfall amount and isotopic composition under a hardwood forest canopy. Hydrol. Process. 2016, 30, 1796–1803. [Google Scholar] [CrossRef]
Tree Species | Total Number of Trees | Basal Area (m2 ha−1) | Mean DBH ± SD (cm) | Mean Height ± SD (m) | Max Height (m) |
---|---|---|---|---|---|
L. gmelinii | 1300 | 15.13 | 10.6 ± 6.1 | 12.34 ± 6.04 | 26.7 |
B. platyphylla | 153 | 0.49 | 5.8 ± 2.6 | 8.25 ± 3.71 | 18.94 |
P. sylvestris var. mongolica | 45 | 1.15 | 16.3 ± 7.9 | 16.85 ± 5.55 | 25.85 |
P. davidiana | 1 | 0.02 | 15.4 | 21.5 | - |
Event Date (2013) | Rainfall | |||
---|---|---|---|---|
Amount(mm) | Intensity (mm·h−1) | Maximum 5-Min Intensity (mm·h−1) | Duration (min) | |
06/10 | 0.83 | 1.24 | 4.8 | 40 |
06/14 | 18.24 | 0.99 | 10.8 | 1110 |
06/17 | 5.41 | 0.68 | 3.6 | 480 |
06/19 | 16.81 | 1.40 | 7.2 | 720 |
06/21 | 0.73 | 0.73 | 2.4 | 60 |
06/27 | 1.56 | 0.99 | 3.6 | 95 |
07/03 | 1.53 | 2.62 | 4.8 | 35 |
07/07 | 7.96 | 6.82 | 10.8 | 70 |
07/10 | 4.81 | 0.80 | 2.4 | 360 |
07/12 | 20.66 | 0.67 | 4.8 | 1860 |
07/13 | 3.63 | 2.07 | 3.6 | 105 |
07/15 | 0.22 | 0.33 | 1.2 | 40 |
07/18 | 16.84 | 1.30 | 4.8 | 780 |
07/19 | 12.73 | 5.09 | 13.2 | 150 |
07/20 | 9.50 | 6.00 | 8.4 | 95 |
07/21 | 7.51 | 1.32 | 7.2 | 340 |
07/22 | 0.86 | 1.72 | 4.8 | 30 |
07/28 | 10.60 | 0.62 | 3.6 | 1020 |
08/04 | 15.79 | 3.16 | 8.4 | 300 |
08/05 | 14.26 | 6.85 | 14.4 | 125 |
08/06 | 1.27 | 0.85 | 2.4 | 90 |
08/10 | 24.13 | 0.86 | 6.0 | 1680 |
Mean | 8.90 | 2.16 | 6.05 | 443 |
Sum | 195.88 | 9735 | ||
Min | 0.22 | 0.33 | 1.2 | 30 |
Max | 24.13 | 6.85 | 14.4 | 1860 |
C.V. (%) | 84.01 | 95.93 | 59.77 | 124 |
Collector Position | Number of Collectors (Serial Number) | Throughfall Amount/mm | Throughfall Ratio/% | Coefficient of Variation of Throughfall |
---|---|---|---|---|
Inner canopy | 15(1–3,5,7,8,10,13,14,16,17,19,20,25,28) | 140.76 ± 13.18 | 71.86 | 9.36 |
Canopy periphery | 13(4,9,11,12,15,18,22–24,31,32,35,36) | 158.85 ± 19.35 | 81.96 | 12.18 |
Beneath gaps | 10(6,21,26,27,29,30,33,34,37,38) | 170.03 ± 19.27 | 86.80 | 11.34 |
Total | 38 | 159.18 ± 21.22 | 81.26 | 13.32 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sheng, H.; Cai, T. Spatial Variability of Throughfall in a Larch (Larix gmelinii) Forest in Great Kingan Mountain, Northeastern China. Forests 2021, 12, 393. https://doi.org/10.3390/f12040393
Sheng H, Cai T. Spatial Variability of Throughfall in a Larch (Larix gmelinii) Forest in Great Kingan Mountain, Northeastern China. Forests. 2021; 12(4):393. https://doi.org/10.3390/f12040393
Chicago/Turabian StyleSheng, Houcai, and Tijiu Cai. 2021. "Spatial Variability of Throughfall in a Larch (Larix gmelinii) Forest in Great Kingan Mountain, Northeastern China" Forests 12, no. 4: 393. https://doi.org/10.3390/f12040393
APA StyleSheng, H., & Cai, T. (2021). Spatial Variability of Throughfall in a Larch (Larix gmelinii) Forest in Great Kingan Mountain, Northeastern China. Forests, 12(4), 393. https://doi.org/10.3390/f12040393