Competition for Light Affects Alfalfa Biomass Production More Than Its Nutritive Value in an Olive-Based Alley-Cropping System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of Experimental Site
2.2. Field Data Collection and Chemical Analysis
2.3. Light Transmittance Data Collection
2.4. Statistical Analysis
3. Results
3.1. Meteorological Data
3.2. Alfalfa Biomass Production Per Harvest Time in the Alley-Cropping System
3.3. Nutritive Value of Alfalfa Per Harvest Time in the Alley-Cropping System
3.4. Comparison between Alley-Cropping and Full-Sun Systems
3.5. Alfalfa Biomass Production According to Light Avialbility
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lutz, W.; Sanderson, W.; Scherbov, S. The end of world population growth. Nature 2001, 412, 543–545. [Google Scholar] [CrossRef] [Green Version]
- Pulina, G.; Francesconi, A.H.D.; Mele, M.; Ronchi, B.; Stefanon, B.; Sturaro, E.; Trevisi, E. Sfamare un mondo di nove miliardi di persone: Le sfide per una zootecnia sostenibile. Ital. J. Agron. 2011, 6, 39–44. [Google Scholar] [CrossRef] [Green Version]
- Burgess, P.J.; Rosati, A. Advances in European agroforestry: Results from the agforward project. Agrofor. Syst. 2018, 92, 801–810. [Google Scholar] [CrossRef] [Green Version]
- Pretty, J.; Bharucha, Z.P. Sustainable intensification in agricultural systems. Ann. Bot. 2014, 114, 1571–1596. [Google Scholar] [CrossRef]
- Wezel, A.; Casagrande, M.; Celette, F.; Vian, J.F.; Ferrer, A.; Peigné, J. Agroecological practices for sustainable agriculture: A review. Agron. Sustain. Dev. 2014, 34, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Altieri, M.A.; Nicholls, C.I.; Henao, A.; Lana, M.A. Agroecology and the design of climate change-resilient farming systems. Agron. Sustain. Dev. 2015, 869–890. [Google Scholar] [CrossRef] [Green Version]
- den Herder, M.; Moreno, G.; Mosquera-Losada, R.M.; Palma, J.H.N.; Sidiropoulou, A.; Santiago Freijanes, J.J.; Crous-Duran, J.; Paulo, J.A.; Tomé, M.; Pantera, A.; et al. Current extent and stratification of agroforestry in the European Union. Agric. Ecosyst. Environ. 2017, 241, 121–132. [Google Scholar] [CrossRef] [Green Version]
- Status, C.; Prospects, F. Agroforestry in Europe; Rigueiro-Rodróguez, A., McAdam, J., Mosquera-Losada, M.R., Eds.; Advances in Agroforestry; Springer: Dordrecht, The Netherlands, 2008; Volume 6, ISBN 978-1-4020-8271-9. [Google Scholar]
- Paolotti, L.; Boggia, A.; Castellini, C.; Rocchi, L.; Rosati, A. Combining livestock and tree crops to improve sustainability in agriculture: A case study using the Life Cycle Assessment (LCA) approach. J. Clean. Prod. 2016, 131, 351–363. [Google Scholar] [CrossRef]
- Paris, P.; Camilli, F.; Rosati, A.; Mantino, A.; Mezzalira, G.; Dalla Valle, C.; Franca, A.; Seddaiu, G.; Pisanelli, A.; Lauteri, M.; et al. What is the future for agroforestry in Italy? Agrofor. Syst. 2019, 93, 2243–2256. [Google Scholar] [CrossRef] [Green Version]
- Famiani, F.; Gucci, R. Modern Olive Orchard Design: Moderni Modelli Olivicoli; Accademia Nazionale dell’ Olivo e dell’ Olio di Spoleto, Ed.; Colla-na: Spoleto, Italy, 2014; Volume VII. [Google Scholar]
- Eichhorn, M.P.; Paris, P.; Herzog, F.; Incoll, L.D.; Liagre, F.; Mantzanas, K.; Mayus, M.; Moreno, G.; Papanastasis, V.P.; Pilbeam, D.J.; et al. Silvoarable systems in Europe-Past, present and future prospects. Agrofor. Syst. 2006, 67, 29–50. [Google Scholar] [CrossRef]
- Ferreira, I.Q.; Arrobas, M.; Claro, A.M.; Rodrigues, M.A. Soil management in rainfed olive orchards may result in conflicting effects on olive production and soil fertility. Spanish J. Agric. Res. 2013, 11, 472–480. [Google Scholar] [CrossRef]
- Gucci, R.; Caruso, G.; Bertolla, C.; Urbani, S.; Taticchi, A.; Esposto, S.; Servili, M.; Sifola, M.I.; Pellegrini, S.; Pagliai, M.; et al. Changes of soil properties and tree performance induced by soil management in a high-density olive orchard. Eur. J. Agron. 2012, 41, 18–27. [Google Scholar] [CrossRef]
- Durán Zuazo, V.H.; Rodríguez Pleguezuelo, C.R. Soil-erosion and runoff prevention by plant covers. A review. Agron. Sustain. Dev. 2008, 28, 65–86. [Google Scholar] [CrossRef] [Green Version]
- Vallebona, C.; Pellegrino, E.; Frumento, P.; Bonari, E. Temporal trends in extreme rainfall intensity and erosivity in the Mediterranean region: A case study in southern Tuscany, Italy. Clim. Chang. 2014, 128, 139–151. [Google Scholar] [CrossRef]
- Panagos, P.; Borrelli, P.; Poesen, J.; Ballabio, C.; Lugato, E.; Meusburger, K.; Montanarella, L.; Alewell, C. The new assessment of soil loss by water erosion in Europe. Environ. Sci. Policy 2015, 54, 438–447. [Google Scholar] [CrossRef]
- Palma, J.H.N.; Graves, A.R.; Bunce, R.G.H.; Burgess, P.J.; de Filippi, R.; Keesman, K.J.; van Keulen, H.; Liagre, F.; Mayus, M.; Moreno, G.; et al. Modeling environmental benefits of silvoarable agroforestry in Europe. Agric. Ecosyst. Environ. 2007, 119, 320–334. [Google Scholar] [CrossRef] [Green Version]
- Anglade, J.; Billen, G.; Garnier, J. Relationships for estimating N 2 fixation in legumes: Incidence for N balance of legume-based cropping systems in Europe. Ecosphere 2015, 6, 1–24. [Google Scholar] [CrossRef]
- Mahieu, S.; Metay, A.; Brunel, B.; Dufour, L. Nitrogen fluxes in chickpea grown in Mediterranean agroforestry systems. Agrofor. Syst. 2015, 90, 313–324. [Google Scholar] [CrossRef]
- Vallebona, C.; Mantino, A.; Bonari, E. Exploring the potential of perennial crops in reducing soil erosion: A GIS-based scenario analysis in southern Tuscany, Italy. Appl. Geogr. 2016, 66, 119–131. [Google Scholar] [CrossRef]
- Mele, M.; Mantino, A.; Antichi, D.; Mazzoncini, M.; Ragaglini, G.; Cappucci, A.; Serra, A.; Pelleri, F.; Chiarabaglio, P.; Mezzalira, G.; et al. Agroforestry system for mitigation and adaptation to climate change: Effects on animal welfare and productivity. Agrochimica 2019, 2019, 91–98. [Google Scholar]
- Soussana, J.F.; Tallec, T.; Blanfort, V. Mitigating the greenhouse gas balance of ruminant production systems through carbon sequestration in grasslands. Animal 2010, 4, 334. [Google Scholar] [CrossRef] [Green Version]
- Glover, J.D.; Reganold, J.P.; Bell, L.W.; Borevitz, J.; Brummer, E.C.; Buckler, E.S.; Cox, C.M.; Cox, T.S.; Crews, T.E.; Culman, S.W.; et al. Agriculture. Increased food and ecosystem security via perennial grains. Science 2010, 328, 1638–1639. [Google Scholar] [CrossRef] [Green Version]
- Lüscher, A.; Mueller-Harvey, I.; Soussana, J.F.; Rees, R.M.; Peyraud, J.L. Potential of legume-based grassland-livestock systems in Europe: A review. Grass Forage Sci. 2014, 69, 206–228. [Google Scholar] [CrossRef]
- Mantino, A.; Ragaglini, G.; Nassi, O.; Di Nasso, N.; Tozzini, C.; Taccini, F.; Bonari, E.; Di Nasso, N.; Tozzini, C.; Taccini, F.; et al. Alfalfa (Medicago sativa l.) overseeding on mature switchgrass (panicum virgatum l.) stand: Biomass yield and nutritive value after the establishment year. Ital. J. Agron. 2016, 11, 143–148. [Google Scholar] [CrossRef] [Green Version]
- Rivest, D.; Paquette, A.; Moreno, G.; Messier, C. A meta-analysis reveals mostly neutral influence of scattered trees on pasture yield along with some contrasted effects depending on functional groups and rainfall conditions. Agric. Ecosyst. Environ. 2013, 165, 74–79. [Google Scholar] [CrossRef]
- Moreno, G. Response of understorey forage to multiple tree effects in Iberian dehesas. Agric. Ecosyst. Environ. 2008, 123, 239–244. [Google Scholar] [CrossRef]
- Moreno, G.; Obrador, J.J.; García, A. Impact of evergreen oaks on soil fertility and crop production in intercropped dehesas. Agric. Ecosyst. Environ. 2007, 119, 270–280. [Google Scholar] [CrossRef]
- Seddaiu, G.; Porcu, G.; Ledda, L.; Paolo, P.; Agnelli, A.; Corti, G. Soil organic matter content and composition as influenced by soil management in a semi-arid Mediterranean agro-silvo-pastoral system. Agric. Ecosyst. Environ. 2013, 167, 1–11. [Google Scholar] [CrossRef]
- Rossetti, I.; Bagella, S.; Cappai, C.; Caria, M.C.; Lai, R.; Roggero, P.P.; Martins da Silva, P.; Sousa, J.P.; Querner, P.; Seddaiu, G. Isolated cork oak trees affect soil properties and biodiversity in a Mediterranean wooded grassland. Agric. Ecosyst. Environ. 2015, 202, 203–216. [Google Scholar] [CrossRef]
- Rivest, D.; Cogliastro, A.; Vanasse, A.; Olivier, A. Production of soybean associated with different hybrid poplar clones in a tree-based intercropping system in southwestern Québec, Canada. Agric. Ecosyst. Environ. 2009, 131, 51–60. [Google Scholar] [CrossRef]
- Mantino, A.; Volpi, I.; Micci, M.; Pecchioni, G.; Bosco, S.; Dragoni, F.; Mele, M.; Ragaglini, G. Effect of tree presence and soil characteristics on soybean yield and quality in an innovative alley-cropping system. Agronomy 2019, 10, 52. [Google Scholar] [CrossRef] [Green Version]
- AOAC. Official Methods of Analysis. In Association of Official Analytical Chemists, Gaithersburg, Maryland; AOAC: Rockville, MD, USA, 1990. [Google Scholar]
- Reynolds, P.E.; Simpson, J.A.; Thevathasan, N.V.; Gordon, A.M. Effects of tree competition on corn and soybean photosynthesis, growth, and yield in a temperate tree-based agroforestry intercropping system in southern Ontario, Canada. Ecol. Eng. 2007, 29, 362–371. [Google Scholar] [CrossRef]
- van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Frazer, G.; Canham, C.; Lertzman, K. Gap Light Analyzer (GLA), Version 2.0: Imaging Software to Extract Canopy Structure and Gap Light Transmission Indices from True-Colour fisheye Photographs, Users Manual and Program Documentation; Millbrook: New York, NY, USA, 1999; p. 36. [Google Scholar]
- QGIS Development Team. QGIS Geographic Information System. Open Source Geospat. Found. Proj. 2016. Available online: https://www.qgis.org/en/site/ (accessed on 1 February 2021).
- R Core Team. R: A Language and Environment for Statistical Computing. R Found. Stat. Comput. 2018. Available online: https://www.gbif.org/zh/tool/81287/r-a-language-and-environment-for-statistical-computing (accessed on 10 February 2015).
- Pinheiro, J.; Bates, D.; DebRoy, S.; Sarkar, D.; R Core Team. {nlme}: Linear and Nonlinear Mixed Effects Models. R Package Version 2006, 3, 109. [Google Scholar]
- Lenth, R.; Singmann, H.; Love, J.; Buerkner, P.; Herve, M. Emmeans: Estimated marginal means. R package version 1.4.4. Am. Stat. 2020, 34, 216–221. [Google Scholar]
- Bagnouls, F.; Gaussen, H. Les climats biologiques et leur classification. Annales Géographie 1957, 66, 193–220. [Google Scholar] [CrossRef]
- McGraw, R.L.; Stamps, W.T.; Houx, J.H.; Linit, M.J. Yield, maturation, and forage quality of alfalfa in a black walnut alley-cropping practice. Agrofor. Syst. 2008, 74, 155–161. [Google Scholar] [CrossRef]
- Varella, A.C.; Moot, D.J.; Pollock, K.M.; Peri, P.L.; Lucas, R.J. Do light and alfalfa responses to cloth and slatted shade represent those measured under an agroforestry system? Agrofor. Syst. 2011, 81, 157–173. [Google Scholar] [CrossRef]
- Perry, M.E.L.; Schacht, W.H.; Ruark, G.A.; Brandle, J.R. Tree canopy effect on grass and grass/legume mixtures in eastern Nebraska. Agrofor. Syst. 2009, 77, 23–35. [Google Scholar] [CrossRef]
- Kyriazopoulos, A.P.; Abraham, E.M.; Parissi, Z.M.; Koukoura, Z.; Nastis, A.S. Forage production and nutritive value of Dactylis glomerata and Trifolium subterraneum mixtures under different shading treatments. Grass Forage Sci. 2012, 68, 72–82. [Google Scholar] [CrossRef]
- Devkota, N.R.; Kemp, P.D.; Hodgson, J.; Valentine, I.; Jaya, I.K.D. Relationship between tree canopy height and the production of pasture species in a silvopastoral system based on alder trees. Agrofor. Syst. 2009, 76, 363–374. [Google Scholar] [CrossRef]
- Ehret, M.; Graß, R.; Wachendorf, M.; Graß, R.; Wachendorf, M. The effect of shade and shade material on white clover/perennial ryegrass mixtures for temperate agroforestry systems. Agrofor. Syst. 2015, 89, 557–570. [Google Scholar] [CrossRef]
- Cubera, E.; Manuel Nunes, J.; Madeira, M.; Gazarini, L. Influence of Quercus ilex trees on herbaceous production and nutrient concentrations in southern Portugal. J. Plant Nutr. Soil Sci. 2009, 172, 565–571. [Google Scholar]
- Gea-Izquierdo, G.; Montero, G.; Cañellas, I. Changes in limiting resources determine spatio-temporal variability in tree–grass interactions. Agrofor. Syst. 2009, 76, 375–387. [Google Scholar] [CrossRef]
- López-Carrasco, C.; López-Sánchez, A.; San Miguel, A.; Roig, S. The effect of tree cover on the biomass and diversity of the herbaceous layer in a Mediterranean dehesa. Grass Forage Sci. 2015, 70, 639–650. [Google Scholar] [CrossRef]
df | AGB | CP | NDF | ADF | ADL | |
---|---|---|---|---|---|---|
Position in the alley (P) | 2 | <0.0001 | 0.526 | 0.011 | 0.426 | 0.951 |
Harvest (H) | 9 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | 0.006 |
P × H | 18 | 0.458 | 0.093 | 0.001 | 0.085 | 0.277 |
Year | Harvest | Cropping System | AGB | CP | NDF | ADF | ADL | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2014 | June | ACS | 1.35 | ± | 0.09 | 21.87 | ± | 0.09 | 41.52 | ± | 1.12 | 31.58 | ± | 0.86 | 7.20 | ± | 0.15 | |||||
FSS | 2.57 | ± | 0.18 | 21.67 | ± | 0.96 | 39.93 | ± | 1.33 | 30.40 | ± | 1.04 | 7.09 | ± | 0.03 | |||||||
2014 | July | ACS | 0.97 | ± | 0.17 | b | 19.92 | ± | 0.28 | 40.95 | ± | 1.44 | 32.72 | ± | 1.09 | 8.36 | ± | 0.27 | ||||
FSS | 2.58 | ± | 0.63 | a | 19.38 | ± | 0.40 | 46.10 | ± | 2.83 | 37.22 | ± | 2.08 | 8.90 | ± | 0.36 | ||||||
2014 | September | ACS | 1.23 | ± | 0.09 | b | 23.23 | ± | 0.15 | 42.95 | ± | 0.63 | b | 32.76 | ± | 0.87 | b | 7.71 | ± | 0.25 | b | |
FSS | 2.56 | ± | 0.19 | a | 20.61 | ± | 1.53 | 55.54 | ± | 0.83 | a | 45.13 | ± | 0.96 | a | 10.78 | ± | 0.45 | a | |||
2014 | October | ACS | 0.66 | ± | 0.06 | b | 26.20 | ± | 0.99 | a | 37.56 | ± | 1.12 | 28.63 | ± | 1.41 | 8.73 | ± | 0.28 | |||
FSS | 2.11 | ± | 0.17 | a | 19.54 | ± | 0.79 | b | 46.81 | ± | 2.83 | 36.39 | ± | 2.55 | 9.12 | ± | 0.53 | |||||
2015 | April | ACS | 1.36 | ± | 0.23 | b | 19.42 | ± | 0.24 | 43.98 | ± | 1.27 | 30.94 | ± | 1.44 | 5.28 | ± | 1.54 | ||||
FSS | 2.92 | ± | 0.20 | a | 18.83 | ± | 0.54 | 45.56 | ± | 0.85 | 35.22 | ± | 0.56 | 7.92 | ± | 0.69 | ||||||
2015 | May | ACS | 1.07 | ± | 0.20 | 20.49 | ± | 0.33 | 45.60 | ± | 1.10 | 32.75 | ± | 1.56 | 7.43 | ± | 0.29 | |||||
FSS | 1.97 | ± | 0.31 | 20.32 | ± | 0.24 | 45.79 | ± | 0.84 | 34.39 | ± | 0.80 | 6.41 | ± | 0.12 | |||||||
2015 | June | ACS | 1.54 | ± | 0.25 | b | 17.68 | ± | 0.37 | 43.68 | ± | 0.34 | b | 35.84 | ± | 0.25 | b | 8.42 | ± | 0.34 | ||
FSS | 3.19 | ± | 0.02 | a | 16.78 | ± | 0.21 | 48.53 | ± | 0.66 | a | 40.08 | ± | 0.57 | a | 9.21 | ± | 0.09 | ||||
2015 | July | ACS | 0.40 | ± | 0.07 | b | 20.27 | ± | 1.47 | 34.96 | ± | 2.59 | 25.93 | ± | 1.50 | b | 7.08 | ± | 0.29 | |||
FSS | 1.55 | ± | 0.18 | a | 19.56 | ± | 0.08 | 41.31 | ± | 3.27 | 32.56 | ± | 1.57 | a | 8.50 | ± | 0.62 | |||||
2015 | September | ACS | 0.49 | ± | 0.08 | b | 21.66 | ± | 0.84 | 35.06 | ± | 0.66 | 27.15 | ± | 0.84 | 6.95 | ± | 0.26 | ||||
FSS | 1.21 | ± | 0.04 | a | 23.44 | ± | 0.97 | 35.37 | ± | 1.49 | 28.28 | ± | 1.84 | 5.83 | ± | 0.63 | ||||||
2015 | October | ACS | 0.30 | ± | 0.04 | b | 27.39 | ± | 0.46 | 34.34 | ± | 0.73 | 26.16 | ± | 0.69 | 6.00 | ± | 0.35 | ||||
FSS | 1.29 | ± | 0.05 | a | 28.96 | ± | 0.49 | 33.94 | ± | 0.34 | 25.71 | ± | 0.39 | 6.63 | ± | 0.27 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mantino, A.; Tozzini, C.; Bonari, E.; Mele, M.; Ragaglini, G. Competition for Light Affects Alfalfa Biomass Production More Than Its Nutritive Value in an Olive-Based Alley-Cropping System. Forests 2021, 12, 233. https://doi.org/10.3390/f12020233
Mantino A, Tozzini C, Bonari E, Mele M, Ragaglini G. Competition for Light Affects Alfalfa Biomass Production More Than Its Nutritive Value in an Olive-Based Alley-Cropping System. Forests. 2021; 12(2):233. https://doi.org/10.3390/f12020233
Chicago/Turabian StyleMantino, Alberto, Cristiano Tozzini, Enrico Bonari, Marcello Mele, and Giorgio Ragaglini. 2021. "Competition for Light Affects Alfalfa Biomass Production More Than Its Nutritive Value in an Olive-Based Alley-Cropping System" Forests 12, no. 2: 233. https://doi.org/10.3390/f12020233
APA StyleMantino, A., Tozzini, C., Bonari, E., Mele, M., & Ragaglini, G. (2021). Competition for Light Affects Alfalfa Biomass Production More Than Its Nutritive Value in an Olive-Based Alley-Cropping System. Forests, 12(2), 233. https://doi.org/10.3390/f12020233