Physiological and Morphological Variation in Balsam Fir Provenances Growing in New Brunswick, Canada
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Tree Sampling
2.3. Gas-Exchange Measurements
2.4. Data Analysis
2.4.1. Mixed Analysis of Variance (ANOVA)
2.4.2. Regression Analysis
3. Results
3.1. Intrinsic Water-Use Efficiency
3.2. Diameter at Breast Height Growth
3.3. Provenance–Climate Relationship
3.4. Survivorship-Diameter at Breast Height Relationship
3.5. Intrinsic Water-Use Efficiency-Diameter at Breast Height Relationship
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oechel, W.C.; Hastings, S.J.; Vourlrtis, G.; Jenkins, M.; Riechers, G.H.; Grulke, N. Recent change of Arctic tundra ecosystems from a net carbon dioxide sink to a source. Nat. Cell Biol. 1993, 361, 520–523. [Google Scholar] [CrossRef]
- Huang, J.; Tardif, J.C.; Bergeron, Y.; Denneler, B.; Berninger, F.; Girardin, M.P. Radial growth response of four dominant boreal tree species to climate along a latitudinal gradient in the eastern Canadian boreal forest. Glob. Chang. Biol. 2010, 16, 711–731. [Google Scholar] [CrossRef]
- Grossiord, C.; Sevanto, S.; Adams, H.D.; Collins, A.D.; Dickman, L.T.; McBranch, N.; Michaletz, S.T.; Stockton, E.A.; Vigil, M.; McDowell, N.G. Precipitation, not air temperature, drives functional responses of trees in semi-arid ecosystems. J. Ecol. 2016, 105, 163–175. [Google Scholar] [CrossRef]
- Keenan, T.F.; Hollinger, D.Y.; Bohrer, G.; Dragoni, D.; Munger, J.W.; Schmid, H.P.; Richardson, A.D. Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. Nat. Cell Biol. 2013, 499, 324–327. [Google Scholar] [CrossRef]
- Hetherington, A.M.; Woodward, F.I. The role of stomata in sensing and driving environmental change. Nature 2003, 424, 901–908. [Google Scholar] [CrossRef]
- Aphalo, J.; Jarvis, P.G. Do stomata respond to relative humidity? Plant Cell Environ. 1991, 14, 127–132. [Google Scholar]
- Papanatsiou, M.; Amtmann, A.; Blatt, M.R. Stomatal clustering in Begonia associates with the kinetics of leaf gaseous exchange and influences water use efficiency. J. Exp. Bot. 2017, 68, 2309–2315. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.; Chen, J.M.; Huang, L.; Tans, P.P. Modeling dynamics of stable carbon isotopic exchange between a boreal forest ecosystem and the atmosphere. Glob. Chang. Biol. 2006, 12, 1842–1867. [Google Scholar] [CrossRef]
- Xu, G.; Liu, X.; Belmecheri, S.; Chen, T.; Wu, G.; Wang, B.; Zeng, X.; Wang, W. Disentangling Contributions of CO2 Concentration and Climate to Changes in Intrinsic Water-Use Efficiency in the Arid Boreal Forest in China’s Altay Mountains. Forests 2018, 9, 642. [Google Scholar] [CrossRef] [Green Version]
- Intergovernmental Panel on Climate Change (IPCC). Summary for policymakers. In Climate Change 2007: The Physical Science Basis; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.; Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press: Cambridge, UK, 2007; pp. 1–18. [Google Scholar]
- Hayes, D.J.; McGuire, A.D.; Kicklighter, D.W.; Gurney, K.R.; Burnside, T.J.; Melillo, J.M. Is the northern high-latitude land-based CO2sink weakening? Glob. Biogeochem. Cycles 2011, 25. [Google Scholar] [CrossRef] [Green Version]
- Schroeder, P. Can intensive management increase carbon storage in forests? Environ. Manag. 1991, 15, 475–481. [Google Scholar] [CrossRef]
- Dixon, R.K.; Solomon, A.M.; Brown, S.; Houghton, R.A.; Trexier, M.C.; Wisniewski, J. Carbon Pools and Flux of Global Forest Ecosystems. Science 1994, 263, 185–190. [Google Scholar] [CrossRef]
- Vogt, K.A.; Vogt, D.J.; Palmiotto, P.A.; Boon, P.; O’Hara, J.; Asbjornsen, H. Review of root dynamics in forest ecosystems grouped by climate, climatic forest type and species. Plant Soil 1996, 187, 159–219. [Google Scholar] [CrossRef]
- Schulze, E.; Wirth, C.; Heimann, M. Managing forests after Kyoto. Science 2000, 289, 2058–2059. [Google Scholar] [CrossRef] [Green Version]
- Roberts, J.M. The role of forests in the hydrological cycle. For. For. Plants 2009, 3, 42–76. [Google Scholar]
- Monclus, R.; Dreyer, E.; Villar, M.; Delmotte, F.M.; DeLay, D.; Petit, J.-M.; Barbaroux, C.; Le Thiec, D.; Brechet, C.; Brignolas, F. Impact of drought on productivity and water use efficiency in 29 genotypes of Populus deltoides x Populus nigra. New Phytol. 2006, 169, 765–777. [Google Scholar] [CrossRef]
- Cernusak, L.A.; Aranda, J.; Marshall, J.D.; Winter, K. Large variation in whole-plant water-use efficiency among tropical tree species. New Phytol. 2006, 173, 294–305. [Google Scholar] [CrossRef] [Green Version]
- Barbour, M.M.; Tcherkez, G.; Bickford, C.P.; Mauve, C.; Lamothe, M.; Sinton, S.; Brown, H. δ13C of leaf-respired CO2 reflects intrinsic water-use efficiency in barley. Plant Cell Environ. 2011, 34, 792–799. [Google Scholar] [CrossRef]
- Battie-Laclau, P.; Delgado-Rojas, J.S.; Christina, M.; Nouvellon, Y.; Bouillet, J.-P.; Piccolo, M.D.C.; Moreira, M.Z.; Gonçalves, J.L.D.M.; Roupsard, O.; Laclau, J.-P. Potassium fertilization increases water-use efficiency for stem biomass production without affecting intrinsic water-use efficiency in Eucalyptus grandis plantations. For. Ecol. Manag. 2016, 364, 77–89. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Zhao, P.; Zhu, L.; Zhao, X.; Ni, G.; Ouyang, L.; Schäfer, K.V.; Shen, W. Responses of sap flux and intrinsic water use efficiency to canopy and understory nitrogen addition in a temperate broadleaved deciduous forest. Sci. Total. Environ. 2019, 648, 325–336. [Google Scholar] [CrossRef]
- Wang, W.; Liu, X.; An, W.; Xu, G.; Zeng, X. Increased intrinsic water-use efficiency during a period with persistent decreased tree radial growth in northwestern China: Causes and implications. For. Ecol. Manag. 2012, 275, 14–22. [Google Scholar] [CrossRef]
- Liu, X.; Shao, X.; Wang, L.; Liang, E.; Qin, D.; Ren, J. Response and dendroclimatic implications of δ13C in tree rings to increasing drought on the northeastern Tibetan Plateau. J. Geophys. Res. Biogeosciences 2008, 113. [Google Scholar] [CrossRef] [Green Version]
- Walters, R.G.; Horton, P. Acclimation of Arabidopsis thaliana to the light environment: Changes in composition of the photosynthetic apparatus. Planta 1994, 195, 248–256. [Google Scholar] [CrossRef]
- Zhang, S.; Ma, K.; Chen, L. Response of photosynthetic plasticity of Paeonia suffruticosa to changed light envi-ronments. Environ. Exp. Bot. 2003, 49, 121–133. [Google Scholar] [CrossRef]
- Legner, N.; Fleck, S.; Leuschner, C. Within-canopy variation in photosynthetic capacity, SLA and foliar N in tem-perate broad-leaved trees with contrasting shade tolerance. Trees 2014, 28, 263–280. [Google Scholar] [CrossRef]
- Niglas, A.; Papp, K.; Sękiewicz, M.; Sellin, A.; Goldstein, G. Short-term effects of light quality on leaf gas exchange and hydraulic properties of silver birch (Betula pendula). Tree Physiol. 2017, 37, 1218–1228. [Google Scholar] [CrossRef]
- Passos, L.C.; Da Silva, J.R.; Rodrigues, W.P.; Reis, F.D.O.; Vasconcellos, M.A.D.S.; Filho, J.A.M.; Campostrini, E. Leaf photosynthetic responses of passion fruit genotypes to varying sunlight exposure within the canopies. Theor. Exp. Plant Physiol. 2018, 30, 103–112. [Google Scholar] [CrossRef]
- Yu, M.; Xie, Y.; Zhang, X. Quantification of Intrinsic Water Use Efficiency along a Moisture Gradient in Northeastern China. J. Environ. Qual. 2005, 34, 1311–1318. [Google Scholar] [CrossRef]
- Catoni, R.; Gratani, L.; Sartori, F.; Varone, L.; Granata, M.U. Carbon gain optimization in five broadleaf deciduous trees in response to light variation within the crown: Correlations among morphological, anatomical and physiological leaf traits. Acta Bot. Croat. 2015, 74, 71–94. [Google Scholar] [CrossRef] [Green Version]
- Barnes, B.V.; Zak, D.R.; Denton, S.R.; Spurr, S.H. Forest Ecology, 4th ed.; John Wiley and Sons Inc.: New York, NY, USA, 1998. [Google Scholar]
- Duchesne, L.; Houle, D. Modelling day-to-day stem diameter variation and annual growth of balsam fir (Abies balsamea (L.) Mill.) from daily climate. For. Ecol. Manag. 2011, 262, 863–872. [Google Scholar] [CrossRef]
- Subedi, N.; Sharma, M. Climate-diameter growth relationships of black spruce and jack pine trees in boreal Ontario, Canada. Glob. Chang. Biol. 2013, 19, 505–516. [Google Scholar] [CrossRef] [PubMed]
- Fraser, D.A. Ecological Studies of Forest Trees at Chalk River, Ontario, Canada. I. Tree Species in Relation to Soil Moisture Sites. Ecology 1954, 35, 406. [Google Scholar] [CrossRef]
- Fritts, H.C. An Analysis of Radial Growth of Beech in a Central Ohio Forest during 1954–1955. Ecol. 1958, 39, 705–720. [Google Scholar] [CrossRef]
- Hofgaard, A.; Tardif, J.; Bergeron, Y. Dendroclimatic response of Picea mariana and Pinus banksiana along a longi-tudinal gradient in the eastern Canadian boreal forest. Can. J. For. Res. 1999, 29, 1333–1346. [Google Scholar] [CrossRef] [Green Version]
- Kulmala, L.; Read, J.; Nöjd, P.; Rathgeber, C.B.; Cuny, H.E.; Hollmén, J.; Mäkinen, H. Identifying the main drivers for the production and maturation of Scots pine tracheids along a temperature gradient. Agric. For. Meteorol. 2017, 232, 210–224. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Jiang, Y.; Dong, M.; Zhang, W.; Wang, B.; Zhang, Y.; Ding, X.; Kang, M.; Xu, H. The contributions of rate and duration of stem radial increment to annual increments of Picea meyeri in a sub-alpine habitat, North-Central China. Trees 2018, 32, 1029–1041. [Google Scholar] [CrossRef]
- Savva, Y.; Bergeron, Y.; Denneler, B.; Koubaa, A.; Tremblay, F. Effect of interannual climate variations on radial growth of jack pine provenances in Petawawa, Ontario. Can. J. For. Res. 2008, 38, 619–630. [Google Scholar] [CrossRef]
- Andalo, C.; Beaulieu, J.; Bousquet, J. The impact of climate change on growth of local white spruce populations in Québec, Canada. For. Ecol. Manag. 2005, 205, 169–182. [Google Scholar] [CrossRef]
- Thomson, A.M.; Riddell, C.L.; Parker, W.H. Boreal forest provenance tests used to predict optimal growth and response to climate change: 2. Black spruce. Can. J. For. Res. 2009, 39, 143–153. [Google Scholar] [CrossRef]
- Rehfeldt, G.E.; Tchebakova, N.M.; Parfenova, Y.I.; Wykoff, W.R.; Kuzmina, N.A.; Milyutin, L.I. Intraspecific responses to climate change in Pinus sylvestris. Glob. Chang. Biol. 2002, 8, 912–929. [Google Scholar] [CrossRef] [Green Version]
- Carter, K. Provenance tests as Indicators of growth response to climate change in 10 north temperate tree species. Can. J. For. Res. 1996, 26, 1089–1095. [Google Scholar] [CrossRef]
- MacGillivray, H.G. Progress Report, Balsam Fir Provenance Planting 1956 sowing, Project M. 95; Related Studies: Petawawa Experiments Number 63, Number 175 and Number 176; Department of Forestry, Forest Research Branch, Canada: Kamloops, BC, Canada, 1963. [Google Scholar]
- Bailey, R.G. Descriptions of the Ecoregions of the United States; US Department of Agriculture Forest Service: Washington, DC, USA, 1995.
- Ecological Stratification Working Group. A National Ecological Framework for Canada; Environment Canada: Gatineau, QC, Canada, 1996; p. 76.
- Environment and Climate Change Canada. 2018. Available online: http://climate.weather.gc.ca/climate_normals/index_e.html (accessed on 24 April 2018).
- National Oceanic and Atmospheric Administration, United States of America. Comparative Climatic Data. 2018. Available online: https://www.ncdc.noaa.gov/ghcn/comparative-climatic-data (accessed on 24 April 2018).
- Environment and Climate Change Canada. 2019. Available online: https://climate.weather.gc.ca/prods_servs/cdn_climate_summary_e.html (accessed on 16 December 2019).
- Canadian Soil Information Service. 2019. Available online: http://sis.agr.gc.ca/cansis/publications/index.html (accessed on 12 December 2019).
- Akalusi, M.E.; Bourque, C.P.-A. Effect of climatic variation on the morphological characteristics of 37-year-oldbalsam fir provenances planted in a common garden in New Brunswick, Canada. Ecol. Evol. 2018, 8, 3208–3218. [Google Scholar] [CrossRef] [PubMed]
- Richardson, A.D.; Berlyn, G.P. Changes in foliar spectral reflectance and chlorophyll fluorescence of four temperate species following branch cutting. Tree Physiol. 2002, 22, 499–506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clark, J. The Immediate Effect of Severing on the Photosynthetic Rate of Norway Spruce Branches. Plant Physiol. 1954, 29, 489–490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koike, T.; Sakagami, Y. Examination of methods of measuring photosynthesis with detached parts of three species of birch in Hokkaido. J. Jpn. For. Soc. 1984, 66, 337–340. [Google Scholar]
- Gauthier, M.-M.; Jacobs, D.F. Reductions in net photosynthesis and stomatal conductance vary with time since leaf detachment in three deciduous angiosperms. Trees 2018, 32, 1247–1252. [Google Scholar] [CrossRef]
- Matyas, C.S.; Yeatman, C.W. Effect of geographical transfer on growth and survival of jack pine (Pinus banksiana Lamb.) populations. Silvae Genet. 1992, 41, 370–376. [Google Scholar]
- Thomson, A.M.; Parker, W.H. Boreal forest provenance tests used to predict optimal growth and response to climate change. 1. Jack pine. Can. J. For. Res. 2008, 38, 157–170. [Google Scholar] [CrossRef]
- Sheil, D.; Burslem, D.F.R.P.; Alder, D. The Interpretation and Misinterpretation of Mortality Rate Measures. J. Ecol. 1995, 83, 331. [Google Scholar] [CrossRef]
- Roman, L.A.; Battles, J.J.; McBride, J.R. Determinants of establishment survival for residential trees in Sacramento County, CA. Landsc. Urban Plan. 2014, 129, 22–31. [Google Scholar] [CrossRef]
- Buchman, R.G.; Pederson, S.P.; Walters, N.R. A tree survival model with application to species of the Great Lakes region. Can. J. For. Res. 1983, 13, 601–608. [Google Scholar] [CrossRef]
- Monserud, R.A.; Sterba, H. Modeling individual tree mortality for Austrian forest species. For. Ecol. Manag. 1999, 113, 109–123. [Google Scholar] [CrossRef]
- Martin, B.; Nienhuis, J.; King, G.; Schaefer, A. Restriction Fragment Length Polymorphisms Associated with Water Use Efficiency in Tomato. Science 1989, 243, 1725–1728. [Google Scholar] [CrossRef]
- Masle, J.; Gilmore, S.R.; Farquhar, G.D. The ERECTA gene regulates plant transpiration efficiency in Arabidopsis. Nat. Cell Biol. 2005, 436, 866–870. [Google Scholar] [CrossRef]
- Flexas, J.; Niinemets, U.; Galle, A.; Barbour, M.M.; Centritto, M.; Diaz-Espejo, A.; Douthe, C.; Galmes, J.; Ribas-Carbo, M.; Rodriguez, P.L.; et al. Diffusional conductances to CO2 as a target for increasing photosynthesis and pho-tosynthetic water-use efficiency. Photosynth. Res. 2013, 117, 45–59. [Google Scholar] [CrossRef]
- Blum, A. Drought resistance, water-use efficiency, and yield potential—are they compatible, dissonant, or mutually exclusive? Aust. J. Agric. Res. 2005, 56, 1159–1168. [Google Scholar] [CrossRef]
- Roussel, M.; Le Thiec, D.; Montpied, P.; Ningre, N.; Guehl, J.-M.; Brendel, O. Diversity of water use efficiency among Quercus robur genotypes: Contribution of related leaf traits. Ann. For. Sci. 2009, 66, 408. [Google Scholar] [CrossRef] [Green Version]
- Tomás, M.; Medrano, H.; Escalona, J.M.; Martorell, S.; Pou, A.; Ribas-Carbó, M.; Flexas, J. Variability of water use efficiency in grapevines. Environ. Exp. Bot. 2014, 103, 148–157. [Google Scholar] [CrossRef]
- Flexas, J.; Díaz-Espejo, A.; Conesa, M.A.; Coopman, R.; Douthe, C.; Gago, J.; Gallé, A.; Galmés, J.; Medrano, H.; Ribas-Carbo, M.; et al. Mesophyll conductance to CO2 and Rubisco as targets for improving intrinsic water use efficiency in C3 plants. Plant Cell Environ. 2015, 39, 965–982. [Google Scholar] [CrossRef]
- Medrano, H.; Flexas, J.; Galmés, J. Variability in water use efficiency at the leaf level among Mediterranean plants with different growth forms. Plant Soil 2008, 317, 17–29. [Google Scholar] [CrossRef]
- Gago, J.; Douthe, C.; Florez-Sarasa, I.; Escalona, J.M.; Galmes, J.; Fernie, A.R.; Flexas, J.; Medrano, H. Opportunities for improving leaf water use efficiency under climate change conditions. Plant Sci. 2014, 226, 108–119. [Google Scholar] [CrossRef]
- Galmés, J.; Conesa, M.À.; Ochogavía, J.M.; Perdomo, J.A.; Francis, D.M.; Ribas-Carbó, M.; Savé, R.; Flexas, J.; Medrano, H.; Cifre, J. Physiological and morphological adaptations in relation to water use efficiency in Mediterranean accessions of Solanum lycopersicum. Plant Cell Environ. 2010, 34, 245–260. [Google Scholar] [CrossRef] [PubMed]
- Murphy, M.R.C.; Jordan, G.J.; Brodribb, T.J. Differential leaf expansion can enable hydraulic acclimation to sun and shade. Plant Cell Environ. 2012, 35, 1407–1418. [Google Scholar] [CrossRef] [PubMed]
- Shirley, H.L. Is tolerance the capacity to endure shade? J. For. 1943, 41, 339–345. [Google Scholar]
- Anderson, R.C.; Loucks, O.L.; Swain, A.M. Herbaceous response to canopy cover, light intensity and through fall precipitation in coniferous forests. Ecology 1969, 50, 255–263. [Google Scholar] [CrossRef]
- Kobe, R.K.; Pacala, S.W.; Silander, J.A., Jr.; Canham, C.D. Juvenile tree survivorship as a component of shade tol-erance. Ecol. Appl. 1995, 5, 517–532. [Google Scholar] [CrossRef]
- Kneeshaw, D.D.; Kobe, R.K.; Coates, K.D.; Messier, C. Sapling size influences shade tolerance ranking among southern boreal tree species. J. Ecol. 2006, 94, 471–480. [Google Scholar] [CrossRef] [Green Version]
- Humbert, L.; Gagnon, D.; Kneeshaw, D.; Messier, C. A shade tolerance index for common understory species of northeastern North America. Ecol. Indic. 2007, 7, 195–207. [Google Scholar] [CrossRef] [Green Version]
- Graham, S.A. Scoring Tolerance of Forest Trees; Research Note 4; University of Michigan, Department of Forestry, School of Natural Resources: Ann Arbor, MI, USA,, 1954. [Google Scholar]
- Hett, J.M.; Loucks, O.L. Age Structure Models of Balsam Fir and Eastern Hemlock. J. Ecol. 1976, 64, 1029. [Google Scholar] [CrossRef]
- Klinka, K.; Feller, M.C.; Green, R.N.; Meidinger, D.V.; Pojar, J.; Worrall, J. Ecological principles: Application. In Regenerating British Columbia’s Forests; Lavender, D.P., Parish, R., Johnson, C.M., Montgomery, G., Vyse, A., Willis, R.A., Winston, D., Eds.; University of British Columbia Press: Vancouver, BC, Canada, 1990; pp. 55–72. [Google Scholar]
- Sims, R.A.; Kershaw, H.M.; Wickware, G.M. The Autecology of Major Forest Species in the North Central Region of Ontario; Forestry Canada–Ontario region: Sault Ste. Marie, ON, Canada, 1990; 126p. [Google Scholar]
- Claveau, Y.; Messier, C.; Comeau, P.G. Interacting influence of light and size on aboveground biomass distribution in sub-boreal conifer saplings with contrasting shade tolerance. Tree Physiol. 2005, 25, 373–384. [Google Scholar] [CrossRef] [Green Version]
- King, D.A. Correlations Between Biomass Allocation, Relative Growth Rate and Light Environment in Tropical Forest Saplings. Funct. Ecol. 1991, 5, 485. [Google Scholar] [CrossRef]
- King, D.A. Branch growth and biomass allocation in Abies amabilis saplings in contrasting light environments. Tree Physiol. 1997, 17, 251–258. [Google Scholar] [CrossRef] [PubMed]
- Saxe, H.; Cannell, M.G.R.; Johnsen, Ø.; Ryan, M.G.; Vourlitis, G. Tree and forest functioning in response to global warming. New Phytol. 2001, 149, 369–399. [Google Scholar] [CrossRef]
- Santini, F.; Ferrio, J.P.; Hereş, A.-M.; Notivol, E.; Piqué, M.; Serrano, L.; Shestakova, T.; Sin, E.; Vericat, P.; Voltas, J. Scarce population genetic differentiation but substantial spatiotemporal phenotypic variation of water-use efficiency in Pinus sylvestris at its western distribution range. Eur. J. For. Res. 2018, 137, 863–878. [Google Scholar] [CrossRef] [Green Version]
- Ferrio, J.P.; Voltas, J. Carbon and oxygen isotope ratios in wood constituents of Pinus halepensis as indicators of precipitation, temperature and vapour pressure deficit. Tellus B Chem. Phys. Meteorol. 2005, 57, 164–173. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, X.; Zhang, Q.; Zeng, X.; Xu, G.; Wu, G.; Wang, W. Species-specific tree growth and intrinsic water-use efficiency of Dahurian larch (Larix gmelinii) and Mongolian pine (Pinus sylvestris var. mongolica) growing in a boreal permafrost region of the Greater Hinggan Mountains, Northeastern China. Agric. For. Meteorol. 2018, 248, 145–155. [Google Scholar] [CrossRef]
- Schmidtling, R.C. Use of provenance tests to predict response to climate change: Loblolly pine and Norway spruce. Tree Physiol. 1994, 14, 805–817. [Google Scholar] [CrossRef]
- Frank, R.M. Abies balsamea. Silvics of North America: 1. Conifers; 2. Hardwoods. Agriculture Handbook 654 (Tech. Cords. R. M. Burns & B.H. Honkala); U.S. Department of Agriculture, Forest Service: Washington, DC, USA, 1990; Volume 1, 877p.
- Rossi, S.; DesLauriers, A.; Griçar, J.; Seo, J.-W.; Rathgeber, C.B.; Anfodillo, T.; Morin, H.; Levanic, T.; Oven, P.; Jalkanen, R. Critical temperatures for xylogenesis in conifers of cold climates. Glob. Ecol. Biogeogr. 2008, 17, 696–707. [Google Scholar] [CrossRef]
- Hamilton, D.A. A logistic model of mortality in thinned and unthinned mixed conifer stands of Northern Idaho. For. Sci. 1986, 32, 989–1000. [Google Scholar]
- Sims, A.; Kiviste, A.; Hordo, M.; Laarmann, D.; Von Gadow, K. Estimating Tree Survival: A Study Based on the Estonian Forest Research Plots Network. Ann. Bot. Fenn. 2009, 46, 336–352. [Google Scholar] [CrossRef]
- Cortini, F.; Comeau, P.G.; Strimbu, V.C.; Hogg, E.T.; Bokalo, M.; Huang, S. Survival functions for boreal tree species in northwestern North America. For. Ecol. Manag. 2017, 402, 177–185. [Google Scholar] [CrossRef]
- Luo, Y.; Chen, H.Y. Competition, species interaction and ageing control tree mortality in boreal forests. J. Ecol. 2011, 99, 1470–1480. [Google Scholar] [CrossRef]
- Domec, J.-C.; Lachenbruch, B.; Meinzer, F.C.; Woodruff, D.R.; Warren, J.M.; McCulloh, K.A. Maximum height in a conifer is associated with conflicting requirements for xylem design. Proc. Natl. Acad. Sci. USA 2008, 105, 12069–12074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peñuelas, J.; Canadell, J.G.; Ogaya, R. Increased water-use efficiency during the 20th century did not translate into enhanced tree growth. Glob. Ecol. Biogeogr. 2010, 20, 597–608. [Google Scholar] [CrossRef]
- Silva, L.C.R.; Anand, M. Probing for the influence of atmospheric CO2 and climate change on forest ecosystems across biomes. Glob. Ecol. Biogeogr. 2012, 22, 83–92. [Google Scholar] [CrossRef]
Provenance | Seed Source | Latitude | Longitude | MAT (°C) | MWT (°C) | MST (°C) | TPPT (mm) | Ecozone/ Ecoregion |
---|---|---|---|---|---|---|---|---|
MS-131 | Airplane Bay, Manitoba (MB) | 50°40′ N | 100° W | 1.5 | −15.2 | 16.6 | 473.4 | Prairies |
MS-130 | Duck Mountain, Saskatchewan (SK) | 51°50′ N | 102° W | 1.9 | −14.5 | 16.8 | 449.3 | Prairies |
MS-133 | Roddickton, Newfoundland (NL) | 50°55′ N | 56° W | 2.4 | −8.5 | 12.8 | 1211.4 | Boreal Shield |
MS-126 | Hawke’s Bay, Newfoundland (NL) | 50°37′ N | 57°15′ W | 3.2 | −8.2 | 14.2 | 1010.2 | Boreal Shield |
MS-123 | Sandy Brook, Newfoundland (NL) | 48°44′ N | 56°04′ W | 3.4 | −7.2 | 14.2 | 1104.4 | Boreal Shield |
MS-2 | Green River Watershed, New Brunswick (NB) | 47°46′ N | 68°15′ W | 3.5 | −10.8 | 16.6 | 1104.1 | Atlantic Maritime |
Test Site | Salmon River Plantation, New Brunswick (NB) | 47°07′ N | 67°32′ W | 3.8 | −10.4 | 16.9 | 1085 | Atlantic Maritime |
MS-127 | Bonne Bay, Newfoundland (NL) | 49°25′ N | 57°44′ W | 4.4 | −6.2 | 15 | 1131.5 | Boreal Shield |
MS-124 | Valcartier Forest Station, Quebec (QC) | 46°55′ N | 71°32′ W | 4.9 | −9.9 | 18.3 | 1158.1 | Atlantic Maritime |
MS-118 | Acadia Research Forest, New Brunswick (NB) | 45°59′ N | 66°21′ W | 5.2 | −8.0 | 17.6 | 1175.8 | Atlantic Maritime |
MS-125 | Salmonier, Newfoundland (NF) | 47°17′ N | 53°20′ W | 5.6 | −2.6 | 13.7 | 1571.7 | Boreal Shield |
MS-117 | Oromocto, New Brunswick (NB) | 45°52′ N | 66°24′ W | 5.6 | −7.7 | 18.0 | 1077.7 | Atlantic Maritime |
MS-303 | Adirondack Mountains New York State (NY) | 44°42′ N | 74°W | 6.7 | −8.5 | 19.7 | 965.3 | Warm Continental |
Provenance | PAR (μmol m−2 s−1) | |
---|---|---|
300 | 1200 | |
MS-130 | 0.074(±0.010) | 0.068(±0.001) ac |
MS-133 | 0.052(±0.014) | 0.048(±0.012) a |
MS-126 | 0.083(±0.009) | 0.079(±0.006) ab |
MS-123 | 0.044(±0.012) | 0.051(±0.008) a |
MS-2 | 0.052(±0.002) | 0.067(±0.016) a |
MS-127 | 0.031(±0.010) | 0.028(±0.011) a |
MS-124 | 0.035(±0.014) | 0.044(±0.022) ab |
MS-118 | 0.078(±0.013) | 0.083(±0.021) a |
MS-125 | 0.049(±0.011) | 0.061(±0.016) a |
MS-117 | 0.032(±0.010) | 0.040(±0.008) a |
MS-303 | 0.064(±0.026) | 0.073(±0.017) ac |
Source | df | F-Value | p-Value | Partial Eta Squared |
---|---|---|---|---|
Provenance | 10 | 6.420 | <0.001 | 0.745 |
PAR | 1 | 4.398 | 0.048 | 0.167 |
Provenance × PAR | 10 | 1.084 | 0.415 | 0.330 |
Provenance | A | gs |
---|---|---|
MS-130 | 7.384[±2.445, 5.492–11.841] | 105.122[±41.487, 69.601–172.790] |
MS-133 | 7.478[±2.191, 5.094–11.132] | 156.507[±53.024, 79.226–226.079] |
MS-126 | 7.238[±1.613, 5.061–9.444] | 90.733[±25.353, 55.338–116.390] |
MS-123 | 8.783[±2.402, 6.331–12.477] | 189.164[±53.908, 117.719–253.607] |
MS-2 | 8.185[±2.397, 5.775–11.525] | 138.620[±40.869, 108.050–217.380] |
MS-127 | 7.037[±1.956, 4.822–10.436] | 252.835[±76.863, 174.345–352.125] |
MS-124 | 8.349[±2.315, 5.721–11.709] | 235.205[±87.675, 129.650–330.764] |
MS-118 | 8.036[±2.364, 5.187–11.305] | 104.501[±44.491, 60.055–172.055] |
MS-125 | 7.420[±2.365, 4.688–11.227] | 141.261[±51.410, 81.703–199.835] |
MS-117 | 8.426[±2.350, 5.475–11.365] | 246.983[±80.673, 130.110–316.316] |
MS-303 | 8.443[±4.135, 4.088–15.425] | 145.278[±101.174, 45.948–290.511] |
Provenance | Year | |
---|---|---|
1998 | 2014 | |
MS 131 | 11.82(±1.62) | 12.78(±1.91) a |
MS 130 | 15.26(±2.50) | 16.89(±3.10) ad |
MS 133 | 14.06(±0.34) | 15.24(±0.38) a |
MS 126 | 12.94(±3.55) | 15.16(±4.13) a |
MS 123 | 12.50(±1.82) | 15.39(±0.84) a |
MS 2 | 15.64(±1.87) | 18.60(±1.07) ac |
MS 127 | 14.48(±0.84) | 16.49(±1.09) ad |
MS 124 | 15.18(±0.62) | 17.29(±0.81) ad |
MS 118 | 16.38(±3.85) | 18.44(±4.88) ab |
MS 125 | 12.72(±0.97) | 14.50(±1.91) a |
MS 117 | 15.00(±2.26) | 17.28(±0.94) ad |
MS 303 | 15.58(±2.65) | 19.12(±1.14) ab |
Source | df | F-Value | p-Value | Partial Eta Squared |
---|---|---|---|---|
Provenance | 11 | 2.888 | <0.05 | 39.80 |
Growth period | 1 | 195.664 | <0.01 | 80.30 |
Provenance × Growth period | 11 | 1.936 | 0.058 | 30.70 |
Parameter | Abbreviation |
---|---|
Mean maximum annual temperature | MMAX |
Lowest temperature of the warmest month | LTWM |
Mean spring temperature | SpMN |
Mean minimum summer temperature | SMIN |
Growing degree-days > 10 °C | GDD10 |
Number of days with temperature > 20 °C | DMAX20 |
Number of days with precipitation > 25 mm | DPPT25 |
Number of days with rainfall > 25 mm | DRnF25 |
Climatic Variable | PAR (μmol m−2 s−1) | Regression Type | r2 | p |
---|---|---|---|---|
MMAX | 300 | Polynomial | 0.50 | 0.16 |
1200 | Polynomial | 0.30 | 0.45 | |
LTWM | 300 | Polynomial | 0.43 | 0.25 |
1200 | Polynomial | 0.26 | 0.53 | |
DPPT10 | 300 | Polynomial | 0.31 | 0.42 |
1200 | Polynomial | 0.32 | 0.40 | |
DPPT25 | 300 | Polynomial | 0.84 | >0.05 a |
1200 | Polynomial | 0.55 | 0.12 |
Provenance | Mean DBH-Increment | Survivorship |
---|---|---|
MS 131 | 0.96(±0.44) | 0.28 |
MS 130 | 1.63(±0.69) | 0.38 |
MS 133 | 1.18(±0.61) | 0.91 |
MS 126 | 2.22(±0.97) | 0.78 |
MS 123 | 2.89(±1.14) | 0.79 |
MS 2 | 2.96(±1.17) | 0.87 |
MS 127 | 2.01(±1.05) | 0.60 |
MS 124 | 2.11(±0.39) | 0.83 |
MS 118 | 2.06(±1.15) | 0.63 |
MS 125 | 1.78(±1.66) | 0.59 |
MS 117 | 2.28(±1.70) | 0.89 |
MS 303 | 3.54(±1.97) | 0.59 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akalusi, M.E.; Bourque, C.P.-A. Physiological and Morphological Variation in Balsam Fir Provenances Growing in New Brunswick, Canada. Forests 2021, 12, 186. https://doi.org/10.3390/f12020186
Akalusi ME, Bourque CP-A. Physiological and Morphological Variation in Balsam Fir Provenances Growing in New Brunswick, Canada. Forests. 2021; 12(2):186. https://doi.org/10.3390/f12020186
Chicago/Turabian StyleAkalusi, Matthew E., and Charles P.-A. Bourque. 2021. "Physiological and Morphological Variation in Balsam Fir Provenances Growing in New Brunswick, Canada" Forests 12, no. 2: 186. https://doi.org/10.3390/f12020186
APA StyleAkalusi, M. E., & Bourque, C. P.-A. (2021). Physiological and Morphological Variation in Balsam Fir Provenances Growing in New Brunswick, Canada. Forests, 12(2), 186. https://doi.org/10.3390/f12020186