Changes in Soil’s Chemical and Biochemical Properties Induced by Road Geometry in the Hyrcanian Temperate Forests
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Experimental Setup
2.3. Statistical Analysis
2.4. Road Effect Zone
3. Results
3.1. Environmental Conditions
3.2. Extent of the Road Effects
3.3. Road Ecological Effect Zone
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Coffin, A.W. From roadkill to road ecology: A review of the ecological effects of roads. J. Trans. Geog. 2007, 15, 396–406. [Google Scholar] [CrossRef]
- Abdi, E.; Samdaliry, H.; Ghalandarayeshi, S.H.; Khoramizadeh, A.; Sohrabi, H.; Deljouei, A.; Kvist Johannsen, V.; Etemad, V. Modeling wind-driven tree mortality: The effects of forest roads. Austrian J. For. Sci. 2020, 137, 1–21. [Google Scholar]
- Deljouei, A.; Abdi, E.; Majnounian, B. Changes of trees regeneration diversity in main and secondary roads of Hyrcanian forests, Iran. J. Ins. Nat. App. Sci. 2014, 19, 30–35. [Google Scholar]
- Deljouei, A.; Abdi, E.; Marcantonio, M.; Majnounian, B.; Amici, V.; Sohrabi, H. The impact of forest roads on understory plant diversity in temperate hornbeam-beech forests of Northern Iran. Environ. Mon. Asses. 2017, 189, 392. [Google Scholar] [CrossRef] [PubMed]
- Deljouei, A.; Sadeghi, S.M.M.; Abdi, E.; Bernhardt-Römermann, M.; Louise Pascoe, E.; Marcantonio, M. The impact of road disturbance on vegetation and soil properties in a beech stand, Hyrcanian forest. Eur. J. For. Res. 2018, 137, 759–770. [Google Scholar] [CrossRef]
- Bowering, M.; LeMay, V.; Marshall, P. Effects of forest roads on the growth of adjacent lodgepole pine trees. Can. J. For. Res. 2011, 36, 919–929. [Google Scholar] [CrossRef]
- Dignan, P.; Bren, L. Modelling light penetration edge effects for stream buffer design in mountain ash forest in southeastern Australia. For. Ecol. Manag. 2003, 179, 95–106. [Google Scholar] [CrossRef]
- Joly, F.X.; Milcu, A.; Scherer-Lorenzen, M.; Jean, L.K.; Bussotti, F.; Dawud, S.M.; Müller, S.; Pollastrini, M.; Raulund-Rasmussen, K.; Vesterdal, L.; et al. Tree species diversity affects decomposition through modified micro-environmental conditions across European forests. New Phytol. 2017, 214, 1281–1293. [Google Scholar] [CrossRef] [Green Version]
- Oostra, S.; Majdi, H.; Olsson, M. Impact of tree species on soil carbon stocks and soil acidity in southern Sweden. Scand. J. For. Res. 2006, 21, 364–371. [Google Scholar] [CrossRef]
- Lopez, A.J.; Martinez-Zavala, L.; Bellinfante, N. Impact of different parts of unpaved forest roads on runoff and sediment yield in a Mediterranean area. Sci. Total Environ. 2009, 407, 937–944. [Google Scholar] [CrossRef]
- Rahbarisisakht, S.; Majnounian, B.; Saravi, M.M.; Abdi, E.; Surfleet, C. Impact of rainfall intensity and cutslope material on sediment concentration from forest roads in northern Iran. iFor.-Biogeosci. For. 2014, 7, 48–52. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.A.; Davies, L.; Power, S.A. Effects of roads on adjacent plant community composition and ecosystem function: An example from three calcareous ecosystems. Environ. Pol. 2012, 63, 273–280. [Google Scholar] [CrossRef]
- Olander, L.P.; Scatena, F.N.; Silver, W.L. Impacts of disturbance initiated by road construction in a subtropical cloud forest in the Luquillo Experimental Forest, Puerto Rico. For. Ecol. Manag. 1998, 109, 33–49. [Google Scholar] [CrossRef]
- Deljouei, A.; Abdi, E.; Majnounian, B. Effect of forest roads on variability of soil fertility parameters (case study: Kheyroud Forest, Nowshahr). Iranian. J. For. 2018, 9, 445–456. [Google Scholar]
- Proto, A.R.; Macri, G.; Sorgona, A.; Zimbalatti, G. Impact of skidding operations on soil physical properties in southern Italy. Contemp. Eng. Sci. 2016, 23, 1095–1104. [Google Scholar] [CrossRef]
- Duţă, C.I.; Borz, S.A.; Sălăjan, A. Estimating current state of soil erosion induced by skid trails geometry in mountainous conditions. Environ. Eng. Manag. J. 2018, 17, 697–704. [Google Scholar]
- Tiță, G.C.; Marcu, M.V.; Ignea, G.; Borz, S.A. Near the forest road: Small changes in air temperature and relative humidity in mixed temperate mountainous forests. Transp. Res. Part D—Transp. Environ. 2019, 74, 82–92. [Google Scholar] [CrossRef]
- Heděnec, P.; Vindušková, O.; Kukla, J.; Šnajdr, J.; Baldrian, P.; Frouz, J. Enzyme activity of topsoil layer on reclaimed and unreclaimed post-mining sites. Biol. Commun. 2017, 62, 19–25. [Google Scholar] [CrossRef] [Green Version]
- Neher, D.A.; Asmussen, D.; Lovell, S.T. Roads in northern hardwood forests affect adjacent plant communities and soil chemistry in proportion to the maintained roadside area. Sci. Total Environ. 2013, 449, 320–329. [Google Scholar] [CrossRef]
- Mol Dijkstra, J.P.; Reinds, G.J.; Kros, H.; Berg, B.; De Vries, W. Modelling soil carbon sequestration of intensively monitored forest plots in Europe by three different approaches. For. Ecol. Manag. 2009, 258, 1780–1793. [Google Scholar] [CrossRef]
- Remy, E.; Wuyts, K.; Boeckx, P.; Ginzburg, S.; Gundersen, P.; Demey, A.; Van Den, B.J.; Van Acker, J.; Verheyen, K. Strong gradients in nitrogen and carbon stocks at temperate forest edges. For. Ecol. Manag. 2016, 376, 45–58. [Google Scholar] [CrossRef]
- Denk, T.R.A.; Mohn, J.; Decock, C.; Levicka-Szczebak, D.; Harris, E.; Butterbach-Bahl, K.; Kiese, R.; Wolf, B. The nitrogen cycle: A review of isotope effects and isotope modeling approaches. Soil Biol. Biochem. 2017, 105, 121–137. [Google Scholar] [CrossRef] [Green Version]
- Forman, R.T.T.; Sperling, D.; Bissonette, J.A.; Clevenger, A.P.; Cutshall, C.D.; Dale, V.H.; Fahrig, L.; France, R.; Goldman, C.R.; Heanue, K.; et al. Road Ecology: Science and Solutions; Island Press: Washington, DC, USA, 2002. [Google Scholar]
- Mclaren, A.D. Soil as a system of humus and clay immobilized enzymes. Chem. Scr. 1975, 8, 97–99. [Google Scholar]
- Aon, M.A.; Colaneri, A.C. Temporal and spatial evolution of enzymatic activities and physico-chemical properties in an agricultural soil. Appl. Soil Ecol. 2001, 18, 255–270. [Google Scholar] [CrossRef]
- Baum, C.; Leinweber, P.; Schlichting, A. Effects of chemical conditions in re-wetted peats temporal variation in microbial biomass and acid phosphatase activity within the growing season. Appl. Soil Ecol. 2003, 22, 167–174. [Google Scholar] [CrossRef]
- Sengupta, C.; Saha, R.; Bhakat, R.K. Study of dehydrogenase activity to select plant species for the perturbed overburden soil environment, Jharia Coalfields India. Acad. J. Environ. Sci. 2016, 4, 125–130. [Google Scholar]
- Veres, Z.; Kotroczo, Z.; Magyros, K.; Toth, J.A.; Tothmeres, B. Dehydrogenase Activity in a litter manipulation experiment in temperate forest soil. Acta Silv. Et Lignaria Hung. 2013, 9, 25–33. [Google Scholar] [CrossRef] [Green Version]
- Chakrabarti, K.; Sinha, N.; Chakraborty, A.; Bhattacharyya, P. Influence of soil properties on urease activity under different agro-ecosystems. Arch. Agron. Soil Sci. 2004, 50, 477–483. [Google Scholar] [CrossRef]
- Baldrian, P.; Štursova, M. Enzymes in Forest Soils. In Soil Enzymology; Shukla, G., Varma, A., Eds.; Springer Publication: Berlin, Germany, 2011; Volume 22, pp. 61–73. [Google Scholar]
- Kompała-Bąba, A.; Bierza, W.; Sierka, E.; Błońska, A.; Besenyei, L.; Woźniak, G. The role of plants and soil properties in the enzyme activities of substrates on hard coal mine spoil heaps. Sci. Rep. 2021, 11, 5155. [Google Scholar] [CrossRef] [PubMed]
- Ren, C.; Chen, J.; Lu, X.; Doughty, R.; Zhao, F.; Zhong, Z. Responses of soil total microbial biomass and community compositions to rainfall reductions. Soil Biol. Biochem. 2017, 116, 4–10. [Google Scholar] [CrossRef]
- Hayati, E.; Abdi, E.; Saravi, M.M.; Nieber, J.L.; Majnounian, B.; Chirico, G.B.; Wilson, B.; Nazarirad, M. Soil water dynamics under different forest vegetation cover: Implications for hillslope stability. Earth Surf. Process. Landf. 2018, 43, 2106–2120. [Google Scholar] [CrossRef]
- Azaryan, M.; Marvie Mohadjer, M.R.; Etemaad, V.; Shirvany, A.; Sadeghi, S.M.M. Morphological characteristics of old trees in hyrcanian forest (case study: Pattom and Namkhaneh districts, Kheyrud). For. Wood Prod. 2015, 68, 47–59. [Google Scholar]
- Haghshenas, M.; Marvie Mohadjer, M.R.; Attarod, P.; Pourtahmasi, K.; Feldhaus, J.; Sadeghi, S.M.M. Climate effect on tree-ring widths of Fagus orientalis in the Caspian forests, northern Iran. For. Sci. Technol. 2016, 12, 176–182. [Google Scholar]
- Deljouei, A.; Abdi, E.; Schwarz, M.; Majnounian, B.; Sohrabi, H.; Dumroese, R.K. Mechanical characteristics of the fine roots of two broadleaved tree species from the Temperate Caspian Hyrcanian Ecoregion. Forests 2020, 11, 345. [Google Scholar] [CrossRef] [Green Version]
- Boston, K. The potential effects of forest roads on the environment and mitigating their impacts. Curr. For. Rep. 2016, 2, 215–222. [Google Scholar] [CrossRef]
- Charlery, L.; Nielsen, M.; Meilby, H.; Smith-Hall, C. Effects of new roads on environmental resource use in the central Himalaya. Sustainability 2016, 142, 363. [Google Scholar] [CrossRef] [Green Version]
- Gumus, S.; Acar, H.H.; Toksoy, D. Functional forest road network planning by consideration of environmental impact assessment for wood harvesting. Environ. Mon. Assess. 2008, 142, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Rudko, I.; Bakay, B.; Akay, A.; Baryliak, V.; Horzov, S. Identification of curvature radius for curved sections on forest roads in the process of utilisation. Bull. Transilv. Univ. Brasov. For. Wood Ind. Agric. Food Eng. Ser. II 2021, 14, 47–56. [Google Scholar] [CrossRef]
- Avon, C.; Bergèrs, L.; Dumas, Y.; Dupouey, J.L. Does the effect of forest road extend a few meters or more into the adjacent forest? A study on understory plant diversity in managed oak stands. For. Ecol. Manag. 2010, 259, 1546–1555. [Google Scholar] [CrossRef]
- Auerbach, N.A.; Marilyn, D.; Walker, D.; Walker, A. Effects of roadside disturbance on substrate and vegetation properties in Arctic Tundra. Ecol. Appl. 1997, 7, 218–235. [Google Scholar] [CrossRef]
- Avon, C.; Dumas, Y.; Bergèr, L. Management practices increase the impact of roads on plant communities in forests. Biol. Conserv. 2013, 159, 24–31. [Google Scholar] [CrossRef] [Green Version]
- Walkley, A.; Black, I.A. An examination of degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Kjeldahl, J. Neue Methode zur Bestimmung des Stickstoffs in organischen Körpern. Fresenius J. Anal. Chem. 1883, 22, 366–382. [Google Scholar] [CrossRef] [Green Version]
- Kandeler, E. Urease activity by colorimetric technique. In Methods in Soil Biology; Schinner, F., Kandeler, E., Ohlinger, R., Margesin, R., Eds.; Springer: Berlin/Heidelberg, Germany, 1996. [Google Scholar]
- Błońska, E.; Lasota, J.; Szuszkiewicz, M.; Łukasik, A.; Klamerus-Iwan, A. Assessment of forest soil contamination in Krakow surroundings in relation to the type of stand. Environ. Earth. Sci. 2016, 75, 1205. [Google Scholar] [CrossRef] [Green Version]
- Hakimi, L.; Sadeghi, S.M.M.; Van Stan, J.T.; Pypker, T.G.; Khosropour, E. Management of pomegranate (Punica granatum) orchards alters the supply and pathway of rain water reaching soils in an arid agricultural landscape. Agr. Ecos. Environ. 2018, 259, 77–85. [Google Scholar] [CrossRef]
- Sadeghi, S.M.M.; Van Stan II, J.T.; Pypker, T.G.; Friesen, J. Canopy hydrometeorological dynamics across a chronosequence of a globally invasive species, Ailanthus altissima (Mill., tree of heaven). Agric. For Met. 2017, 240, 10–17. [Google Scholar] [CrossRef]
- Sadeghi, S.M.M.; Van Stan, J.T.; Pypker, T.G.; Tamjidi, J.; Friesen, J.; Farahnaklangroudi, M. Importance of transitional leaf states in canopy rainfall partitioning dynamics. Eur. J. For. Res. 2018, 137, 121–130. [Google Scholar] [CrossRef]
- Li, B.; Zhang, L.; Yan, Q.; Xue, Y. Application of piecewise linear regression in the detection of vegetation greenness trends on the Tibetan Plateau. Int. J. Remote Sens. 2014, 35, 1526–1539. [Google Scholar] [CrossRef]
- Huang, B.; Li, Z.; Dong, C.; Zhu, Z.; Zeng, H. The effects of urbanization on vegetation conditions in coastal zone of China. Prog. Phys. Geogr. Earth Environ. 2021, 45, 564–579. [Google Scholar] [CrossRef]
- Brenden, T.; Wang, L.; Su, Z. Quantitative identification of disturbance thresholds in support of aquatic resource management. Environ. Manag. 2008, 42, 821–832. [Google Scholar] [CrossRef] [PubMed]
- Ficetola, G.; Denoël, M. Ecological thresholds: An assessment of methods to identify abrupt changes in species–habitat relationships. Ecography 2009, 32, 1075–1084. [Google Scholar] [CrossRef]
- Tomal, J.; Ciborowski, J.J. Ecological models for estimating breakpoints and prediction intervals. Ecol. Evol. 2020, 10, 13500–13517. [Google Scholar] [CrossRef] [PubMed]
- Tomal, J.H.; Rahman, H. A Bayesian piecewise linear model for the detection of breakpoints in housing prices. METRON 2021, 79, 361–381. [Google Scholar] [CrossRef]
- Toms, J.; Villard, M.A. Threshold detection: Matching statistical methodology to ecological questions and conservation planning objectives. Avian Conserv. Ecol. 2015, 10, 2. [Google Scholar] [CrossRef] [Green Version]
- Zheng, D.; Chen, J. Edge effects in fragmented landscapes: A generic model for delineating area of edge influences (D-AEI). Ecol. Model. 2000, 132, 75–190. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018; Available online: https://www.R-project.org/ (accessed on 13 August 2021).
- Mortzek, R.; Pfirrmann, H.; Barge, U. Effect of road construction material and light on the vegetation along the roadsides and adjoining forest using the example of roads in the forest district Bramwald in Niedersachsen. Forstarchive 2000, 71, 234–244. [Google Scholar]
- Abdi, E.; Rahbarisisakht, S.; Moghadami-Rad, M. Improving cross drain systems to minimize sediment delivery using GIS. For. Stud. China 2012, 14, 299–306. [Google Scholar] [CrossRef]
- Reich, P.B.; Jacek, O.; Jerzy, M.; Pawel, M.; Sarah, E.H.; David, M.E.; Jon, C.; Oliver, A.C.; Cynthia, M.H.; Mark, G.T. Linking litter calcium, earthworms and soil properties: A common garden test with 14 tree species. Ecol. Lett. 2005, 8, 811–818. [Google Scholar] [CrossRef]
- Lim, S.S.; Baah-Acheamfour, M.; Choi, W.J.; Arshad, M.A.; Fatemi, F.; Banerjee, S.; Carlyle, C.N.; Bork, E.W.; Park, H.J.; Chang, S.X. Soil organic carbon stocks in three Canadian agroforestry systems: From surface organic to deeper mineral soils. For. Ecol. Manag. 2018, 417, 103–109. [Google Scholar] [CrossRef]
- Saeed, S.; Yujun, S.; Beckline, M.; Chen, L.; Zhang, B.; Ahmad, A.; Mannan, A.; Khan, A.; Iqbal, A. Forest edge effect on biomass carbon along altitudinal gradients in Chinese Fir (Cunninghamia lanceolata): A study from Southeastern China. Carbon Manag. 2019, 10, 11–22. [Google Scholar] [CrossRef]
- Vesterdal, L.; Clarke, N.; Sigurdsson, B.D.; Gundersen, P. Do tree species influence soil carbon stocks in temperate and boreal forests? For. Ecol. Manag. 2013, 309, 4–18. [Google Scholar] [CrossRef]
- Langenbruch, C.; Helfrich, M.; Flessa, H. Effects of beech (Fagus sylvatica), ash (Fraxinus excelsior) and lime (Tilia spec.) on soil chemical properties in a mixed deciduous forest. Plant Soil 2012, 352, 389–403. [Google Scholar] [CrossRef] [Green Version]
- Sahlodin, A.M.; Sotudeh-Gharebagh, R.; Zhu, Y. Modeling of dispersion near roadways based on the vehicle-induced turbulence concept. Atmos. Environ. 2007, 41, 92–102. [Google Scholar] [CrossRef]
- Smithwick, E.A.H.; Harmon, M.E.; Domingo, J.B. Modeling multi scale effects of light limitations and edge-induced mortality on carbon stores in forest landscapes. Landsc. Ecol. 2003, 18, 701–721. [Google Scholar] [CrossRef]
- Schuman, G.E.; Janzen, H.; Herrick, J.E. Soil carbon information and potential carbon sequestration by rangelands. Environ. Pollut. 2002, 116, 391–396. [Google Scholar] [CrossRef]
- Conant, R.T.; Ryan, M.G.; Ågren, G.I.; Birge, H.E.; Davidson, E.A.; Eliasson, P.E.; Evans, S.E.; Frey, S.D.; Giardina, C.P.; Hopkins, F.M.; et al. Temperature and soil organic matter decomposition rates 2014 synthesis of current knowledge and a way forward. Glob. Change Biol. 2011, 17, 3392–3404. [Google Scholar] [CrossRef]
- Forman, R.T.T.; Alexander, L.E. Roads and their major ecological effects. Ann. Rev. Ecol. Syst. 1998, 29, 207–231. [Google Scholar] [CrossRef] [Green Version]
- Hayati, E.; Abdi, E.; Mohseni Saravi, M.; Nieber, J.L.; Majnounian, B.; Chirico, G.B. How deep can forest vegetation cover extend their hydrological reinforcing contribution? Hydrol. Process. 2018, 2, 2570–2583. [Google Scholar] [CrossRef]
- Farahnak, M.; Mitsuyasu, K.; Hishi, T.; Katayama, A.; Chiwa, M.; Jeong, S.; Otsuki, K.; Sadeghi, S.M.M.; Kume, A. Relationship between very fine root distribution and soil water content in pre- and post-harvest areas of two coniferous tree species. Forests 2020, 11, 1227. [Google Scholar] [CrossRef]
- Farahnak, M.; Mitsuyasu, K.; Jeong, S.; Otsuki, K.; Chiwa, M.; Sadeghi, S.M.M.; Kume, A. Soil hydraulic conductivity differences between upslope and downslope of two coniferous trees on a hillslope. J. For. Res. 2019, 24, 143–152. [Google Scholar] [CrossRef]
- Fathizadeh, O.; Sadeghi, S.M.M.; Holder, C.D.; Su, L. Leaf phenology drives spatio-temporal patterns of throughfall under a single Quercus castaneifolia C.A.Mey. Forests 2020, 11, 688. [Google Scholar] [CrossRef]
- Forrester, D.I.; Ammer, C.; Annighöfer, P.J.; Barbeito, I.; Bielak, K.; Bravo-Oviedo, A.; Coll, L.; del Río, M.; Drössler, L.; Heym, M.; et al. Effects of crown architecture and stand structure on light absorption in mixed and monospecific Fagus sylvatica and Pinus sylvestris forests along a productivity and climate gradient through Europe. J. Ecol. 2018, 106, 746–760. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Chaudhuri, S.; Maiti, S.K. Soil dehydrogenase enzyme activity in natural and mine soil—A review. Middle-East J. Sci. Res. 2015, 13, 898–906. [Google Scholar]
- Shi, W.; Dell, E.; Bowman, D.; Iyyemperumal, K. Soil enzyme activities and organic matter composition in a turfgrass chronosequence. Plant Soil 2006, 288, 285–296. [Google Scholar] [CrossRef]
- Zhang, S.; Fang, Y.; Luo, Y.; Li, Y.; Ge, T.; Wang, Y.; Chang, S.X. Linking soil carbon availability, microbial community composition and enzyme activities to organic carbon mineralization of a bamboo forest soil amended with pyrogenic and fresh organic matter. Sci. Total Environ. 2021, 801, 149717. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Liu, G.; Xue, S.; Wang, G. Soil bacterial community dynamics reflect changes in plant community and soil properties during the secondary succession of abandoned farmland in the Loess Plateau. Soil Biol. Biochem. 2016, 97, 40–49. [Google Scholar] [CrossRef]
- Sardans, J.; Peñuelas, J. Soil enzyme activity in a Mediterranean forest after six years of drought. Soil Biol. Biochem. 2010, 74, 838–851. [Google Scholar] [CrossRef] [Green Version]
- Gonyou, H.W.; Brumm, M.C.; Bush, E.; Deen, J.; Edwards, S.A.; Fangman, T.; McGlone, J.J.; Meunier-Salaun, M.; Morrison, R.B.; Spoolder, H.; et al. Application of broken-line analysis to assess floor space requirements of nursery and grower-finisher pigs expressed on an allometric basis. J. Anim. Sci. 2006, 84, 229–235. [Google Scholar] [CrossRef]
- Robbins, K.R. A Method, SAS Program, and Examples for Fitting the Broken Line to Growth Data; Univ. Tennessee Res. Report 86–09; Univ. Tennessee Agric. Express: Knoxville, TN, USA, 1986. [Google Scholar]
- Vedenov, D.; Pesti, G.M. A comparison of methods of fitting several models to nutritional response data. J. Anim. Sci. 2014, 86, 500–507. [Google Scholar] [CrossRef]
RS | RG | ||
---|---|---|---|
Straight | Curved | Bent | |
Up slope (%) | 24 (±3.1) | 28.8 (±3.6) | 31.4 (±2.9) |
Down slope (%) | 21 (±3.2) | 28.7 (±3.3) | 29.9 (±4.3) |
Soil Variables | RS | RG | Interaction |
---|---|---|---|
SOC (mg × g soil−1) | 16.55 *** | 71.65 *** | 1.27 ns |
TN (%) | 11.17 ** | 88.30 *** | 22.46 *** |
DHA (µg TPF g−1 soil h−1) | 21.02 ** | 7.92 ** | 2.00 ns |
UA (µg N g−1 soil h−1) | 43.02 *** | 13.47 *** | 12.07 ** |
Soil Variables | Roadside (RS) | Road Geometry (RG) | ||
---|---|---|---|---|
Straight | Curved | Bent | ||
SOC (mg × gsoil−1) | Up slope | 2.70 ± 1.06B * | 4.78 ± 2.40A * | 4.96 ± 2.40A * |
Down slope | 1.94 ± 0.67B * | 3.07 ± 1.38A * | 3.48 ± 2.27A * | |
TN (%) | Up slope | 0.287 ± 0.10C ns | 0.335 ± 0.13B ns | 0.595 ± 0.30A * |
Down slope | 0.255 ± 0.09B ns | 0.302 ± 0.11B ns | 0.399 ± 0.16A * | |
DHA (µg TPF g−1 soil h−1) | Up slope | 5.47 ± 1.99B ns | 7.05 ± 3.20A * | 7.97 ± 3.27A * |
Down slope | 5.05 ± 1.61A ns | 5.41 ± 2.07A * | 5.55 ± 2.34A * | |
UA (µg N g−1 soil h−1) | Up slope | 6.16 ± 1.49A ns | 7.80 ± 2.55A * | 8.92 ± 2.81A * |
Down slope | 5.31 ± 1.77A ns | 5.99 ± 2.31A * | 6.07 ± 2.27A * |
Soil Variables | Roadside (RS) | Road Geometry (RG) | ||
---|---|---|---|---|
Straight (m) | Curved (m) | Bent (m) | ||
SOC | Up slope | 21.58 (±3.66) | 27.02 (±2.19) | 36.04 (±2.50) |
Down slope | 19.18 (±2.37) | 21.56 (±2.43) | 28.62 (±2.00) | |
TN | Up slope | 16.94 (±2.40) | 22.95 (±3.54) | 33.01 (±5.76) |
Down slope | 16.27 (±2.39) | 21.56 (±2.60) | 23.28 (±2.62) | |
DHA | Up slope | 20.85 (±1.00) | 26.17 (±1.16) | 36.75 (±2.36) |
Down slope | 19.98 (±1.37) | 24.77 (±3.95) | 26.76 (±1.66) | |
UA | Up slope | 24.04 (±1.56) | 35.90 (±2.90) | 48.23 (±1.78) |
Down slope | 17.08 (±1.94) | 25.22 (±4.17) | 26.63 (±4.08) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahbarisisakht, S.; Moayeri, M.H.; Hayati, E.; Sadeghi, S.M.M.; Kepfer-Rojas, S.; Pahlavani, M.H.; Kappel Schmidt, I.; Borz, S.A. Changes in Soil’s Chemical and Biochemical Properties Induced by Road Geometry in the Hyrcanian Temperate Forests. Forests 2021, 12, 1805. https://doi.org/10.3390/f12121805
Rahbarisisakht S, Moayeri MH, Hayati E, Sadeghi SMM, Kepfer-Rojas S, Pahlavani MH, Kappel Schmidt I, Borz SA. Changes in Soil’s Chemical and Biochemical Properties Induced by Road Geometry in the Hyrcanian Temperate Forests. Forests. 2021; 12(12):1805. https://doi.org/10.3390/f12121805
Chicago/Turabian StyleRahbarisisakht, Saeid, Mohammad Hadi Moayeri, Elyas Hayati, Seyed Mohammad Moein Sadeghi, Sebastian Kepfer-Rojas, Mohammad Hadi Pahlavani, Inger Kappel Schmidt, and Stelian Alexandru Borz. 2021. "Changes in Soil’s Chemical and Biochemical Properties Induced by Road Geometry in the Hyrcanian Temperate Forests" Forests 12, no. 12: 1805. https://doi.org/10.3390/f12121805
APA StyleRahbarisisakht, S., Moayeri, M. H., Hayati, E., Sadeghi, S. M. M., Kepfer-Rojas, S., Pahlavani, M. H., Kappel Schmidt, I., & Borz, S. A. (2021). Changes in Soil’s Chemical and Biochemical Properties Induced by Road Geometry in the Hyrcanian Temperate Forests. Forests, 12(12), 1805. https://doi.org/10.3390/f12121805