Root Biomass Distribution and Soil Physical Properties of Short-Rotation Coppice American Sycamore (Platanus occidentalis L.) Grown at Different Planting Densities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Experimental Design and Treatments
2.3. Root Biomass
2.4. Saturated Hydraulic Conductivity
2.5. Low-Pressure Water Retention
2.6. High-Pressure Water Retention
2.7. Pore Size Distribution
2.8. Statistical Analysis
3. Results
3.1. Fine and Coarse Root Biomass
3.2. Soil Water Retention
3.3. Soil Pore Size Distribution
3.4. Soil Porosity Components
3.5. Relationships among Root Biomass Distribution, Saturated Hydraulic Conductivity, and Water Retention
4. Discussion
4.1. Effects of Planting Density on Coarse and Fine Root Biomass
4.2. Impacts of Coarse and Fine Roots Biomass on Soil Pore Size Distribution and Total Porosity
4.3. Roots and Pore Size Distribution on Saturated Hydraulic Conductivity
4.4. Roots and Pore Size Distribution on Water-Retention Components
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zalesny, R.S.; Stanturf, J.A.; Gardiner, E.S.; Perdue, J.H.; Young, T.M.; Coyle, D.R.; Headlee, W.L.; Bañuelos, G.S.; Hass, A. Ecosystem Services of Woody Crop Production Systems. BioEnergy Res. 2016, 9, 465–491. [Google Scholar] [CrossRef] [Green Version]
- Doran, J.W.; Zeiss, M.R. Soil health and sustainability: Managing the biotic component of soil quality. Appl. Soil Ecol. 2000, 15, 3–11. [Google Scholar] [CrossRef] [Green Version]
- Karlen, D.L.; Andrews, S.S.; Doran, J.W. Soil quality: Current concepts and applications. Adv. Agron. 2001, 74, 1–40. [Google Scholar]
- Karlen, D.L.; Andrews, S.S.; Doran, J.W.; Wienhold, B.J. Soil quality—Humankind’s foundation for survival. J. Soil Water Conserv. 2003, 58, 171–179. [Google Scholar]
- Larson, W.E.; Pierce, F.J. The dynamics of soil quality as a measure of sustainable management. In Defining Soil Quality for a Sustainable Environment; Doran, J.W., Coleman, D.C., Bezdicek, D.F., Stewart, B.A., Eds.; Soil Science Society of America: Madison, WI, USA, 1994; pp. 37–51. [Google Scholar]
- Doran, J.; Safley, M. Defining and assessing soil health and sustainable productivity. In Biological Indicators of Soil Health; Pankhurst, C., Doube, B.M., Gupta, V.V.S.R., Eds.; CAB International: Wallingford, UK, 1997; pp. 1–28. [Google Scholar]
- Ile, O.J.; Aguilos, M.; Morkoc, S.; Minick, K.; Domec, J.-C.; King, J.S. Productivity of low-input short-rotation coppice American sycamore (Platanus occidentalis L.) grown at different planting densities as a bioenergy feedstock over two rotation cycles. Biomass Bioenergy 2021, 146, 105983. [Google Scholar] [CrossRef]
- Domec, J.-C.; Ashley, E.; Fischer, M.; Noormets, A.; Boone, J.; Williamson, J.C.; King, J.S. Productivity, Biomass Partitioning, and Energy Yield of Low-Input Short-Rotation American Sycamore (Platanus occidentalis L.) Grown on Marginal Land: Effects of Planting Density and Simulated Drought. BioEnergy Res. 2017, 10, 903–914. [Google Scholar] [CrossRef]
- Ghezehei, S.B.; Shifflett, S.D.; Hazel, D.W.; Nichols, E. SRWC bioenergy productivity and economic feasibility on marginal lands. J. Environ. Manag. 2015, 160, 57–66. [Google Scholar] [CrossRef] [Green Version]
- Crozier, C.R.; Carvalho, H.D.R.; Johnson, A.; Chinn, M.; Heitman, J.L. Appropriate “marginal” farmlands for second-generation biofuel crops in North Carolina. Agric. Environ. Lett. 2021, 6, e20041. [Google Scholar] [CrossRef]
- Mehmood, M.A.; Ibrahim, M.; Rashid, U.; Nawaz, M.; Ali, S.; Hussain, A.; Gull, M. Biomass production for bioenergy using marginal lands. Sustain. Prod. Consum. 2017, 9, 3–21. [Google Scholar] [CrossRef]
- Smith, S.L.; Thelen, K.D.; MacDonald, S.J. Yield and quality analyses of bioenergy crops grown on a regulatory brownfield. Biomass Bioenergy 2013, 49, 123–130. [Google Scholar] [CrossRef]
- Tilman, D.; Hill, J.; Lehman, C. Carbon-Negative Biofuels from Low-Input High-Diversity Grassland Biomass. Science 2006, 314, 1598–1600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nixon, D.; Stephens, W.; Tyrrel, S.; Brierley, E. The potential for short rotation energy forestry on restored landfill caps. Bioresour. Technol. 2001, 77, 237–245. [Google Scholar] [CrossRef]
- Maher, N.M.; Richter, D.D.; Markewitz, D. Understanding Soil Change: Soil Sustainability over Millennia, Centuries, and Decades. Environ. Hist. 2003, 8, 145–146. [Google Scholar] [CrossRef]
- Jackson, M.B.; Colmer, T.D. Response and Adaptation by Plants to Flooding Stress. Ann. Bot. 2005, 96, 501–505. [Google Scholar] [CrossRef] [PubMed]
- IPCC. Climate Change 2014: Mitigation of Climate Change. In Working Group III Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; p. 1435. [Google Scholar] [CrossRef] [Green Version]
- Yaduvanshi, N.P.S.; Setter, T.L.; Sharma, S.K.; Singh, K.N.; Kulshreshtha, N. Influence of waterlogging on yield of wheat (Triticum aestivum), redox potentials, and concentrations of microelements in different soils in India and Australia. Soil Res. 2012, 50, 489–499. [Google Scholar] [CrossRef]
- Food and Agriculture Organization [FAO]. Food and Agriculture Organization of the United Nations 2015. Available online: https://www.fao.org/3/i4910e/i4910e.pdf (accessed on 15 December 2021).
- Shaxson, F.; Barber, R. Optimizing Soil Moisture for Plant Production: The Significance of Soil Porosity; UN-FAO: Rome, Italy, 2003. [Google Scholar]
- Tilman, D.; Cassman, K.G.; Matson, P.A.; Naylor, R.; Polasky, S. Agricultural sustainability and intensive production practices. Nature 2002, 418, 671–677. [Google Scholar] [CrossRef] [PubMed]
- Manik, S.M.N.; Pengilley, G.; Dean, G.; Field, B.; Shabala, S.; Zhou, M. Soil and Crop Management Practices to Minimize the Impact of Waterlogging on Crop Productivity. Front. Plant Sci. 2019, 10, 140. [Google Scholar] [CrossRef] [Green Version]
- King, J.S.; Ceulemans, R.J.; Albaugh, J.M.; Dillen, S.Y.; Domec, J.-C.; Fichot, R.; Fischer, M.; Leggett, Z.H.; Sucre, E.B.; Trnka, M.; et al. The Challenge of Lignocellulosic Bioenergy in a Water-Limited World. Bioscience 2013, 63, 102–117. [Google Scholar] [CrossRef] [Green Version]
- King, J.S.; Albaugh, T.J.; Allen, H.L.; Buford, M.; Strain, B.R.; Dougherty, P. Below-ground carbon input to soil is controlled by nutrient availability and fine root dynamics in loblolly pine. New Phytol. 2002, 154, 389–398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bharati, L.; Lee, K.H.; Isenhart, T.M.; Schultz, R.C. Soil water infiltration under crops, pasture and established riparian buffer in mid-western USA. Agrofor. Syst. 2002, 56, 49–257. [Google Scholar] [CrossRef]
- Udawatta, R.P.; Kremer, R.J.; Nelson, K.A.; Jose, S.; Bardhan, S. Soil Quality of a Mature Alley Cropping Agroforestry System in Temperate North America. Commun. Soil Sci. Plant Anal. 2014, 45, 2539–2551. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, W. The decomposition of fine and coarse roots: Their global patterns and controlling factors. Sci. Rep. 2015, 5, 9940. [Google Scholar] [CrossRef] [PubMed]
- John, B.; Pandey, H.N.; Tripathi, R.S. Decomposition of fine roots of Pinus kesiya and turnover of organic matter, N and P of coarse and fine pine roots and herbaceous roots and rhizomes in subtropical pine forest stands of different ages. Biol. Fert. Soils. 2002, 35, 238–246. [Google Scholar]
- Pregitzer, K.S. Fine roots of trees: A new perspective. New Phytol. 2002, 154, 267–270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joslin, J.D.; Henderson, G.S. Organic matter and nutrients associated with fine root turnover in a white oak stand. For. Sci. 1987, 33, 330–346. [Google Scholar]
- Dhyani, S.K.; Tripathi, R.S. Biomass and production of fine and coarse roots of trees under agrisilvicultural practices in north-east India. Agrofor. Syst. 2000, 50, 107–121. [Google Scholar] [CrossRef]
- Hendrick, R.L.; Pregitzer, K.S. The dynamics of fine root length, biomass, and nitrogen content in two northern hardwood ecosystems. Can. J. For. Res. 1993, 23, 2507–2520. [Google Scholar] [CrossRef]
- Tobin, B.; Čermák, J.; Chiatante, D.; Danjon, F.; Di Iorio, A.; Dupuy, L.; Eshel, A.; Jourdan, C.; Kalliokoski, T.; Laiho, R.; et al. Towards developmental modelling of tree root systems. Plant Biosyst. Int. J. Deal. all Asp. Plant Biol. 2007, 141, 481–501. [Google Scholar] [CrossRef] [Green Version]
- Scanlan, C.A.; Hinz, C. A conceptual model to quantify plant root induced changes in soil hydraulic conductivity and water retention. In Proceedings of the EGU General Assembly 2008, Vienna, Austria, 13–18 April 2008. [Google Scholar]
- Scholl, P.; Leitner, D.; Kammerer, G.; Loiskandl, W.; Kaul, H.-P.; Bodner, G. Root induced changes of effective 1D hydraulic properties in a soil column. Plant Soil 2014, 381, 193–213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jégou, D.; Schrader, S.; Diestel, H.; Cluzeau, D. Morphological, physical and biochemical characteristics of burrow walls formed by earthworms. Appl. Soil Ecol. 2001, 17, 165–174. [Google Scholar] [CrossRef] [Green Version]
- Banger, K.; Kukal, S.; Toor, G.; Sudhir, K.; Hanumanthraju, T. Impact of long-term additions of chemical fertilizers and farmyard manure on carbon and nitrogen sequestration under rice-cow pea cropping system in semi-arid tropics. Plant Soil. 2009, 318, 27–35. [Google Scholar] [CrossRef]
- Ishaq, M.; Hassan, A.; Saeed, M.; Ibrahim, M.; Lal, R. Subsoil compaction effects on crops in Punjab, Pakistan: I. Soil physical properties and crop yield. Soil Tillage Res. 2001, 59, 57–65. [Google Scholar] [CrossRef]
- Tracy, S.; Black, C.R.; Roberts, J.A.; Mooney, S. Exploring the interacting effect of soil texture and bulk density on root system development in tomato (Solanum lycopersicum L.). Environ. Exp. Bot. 2013, 91, 38–47. [Google Scholar] [CrossRef]
- Tisdall, J.M.; Oades, J.M. Organic matter and water-stable aggregates in soils. Eur. J. Soil Sci. 1982, 33, 141–163. [Google Scholar] [CrossRef]
- Elliott, E.T.; Coleman, D.C. Let the soil work for us. Ecol. Bull. 1988, 39, 23–32. [Google Scholar]
- Scanlan, C.A. Processes and effects of root-induced changes to soil hydraulic properties. PhD Dissertation, University of Western Australia, Perth, Australia, 2009. [Google Scholar]
- Gish, T.J.; Jury, W.A. Effect of Plant Roots and Root Channels on Solute Transport. Trans. ASAE 1983, 26, 440–444. [Google Scholar] [CrossRef]
- Ghestem, M.; Sidle, R.C.; Stokes, A. The Influence of Plant Root Systems on Subsurface Flow: Implications for Slope Stability. Bioscience 2011, 61, 869–879. [Google Scholar] [CrossRef]
- Wuest, S.B. Soil biopore estimation: Effects of tillage, nitrogen, and photographic resolution. Soil Tillage Res. 2001, 62, 111–116. [Google Scholar] [CrossRef]
- Horn, R.; Smucker, A. Structure formation and its consequences for gas and water transport in unsaturated arable and forest soils. Soil Tillage Res. 2005, 82, 5–14. [Google Scholar] [CrossRef]
- Mitchell, A.; Ellsworth, T.; Meek, B.D. Effect of root systems on preferential flow in swelling soil. Commun. Soil Sci. Plant Anal. 1995, 26, 2655–2666. [Google Scholar] [CrossRef]
- National Center for Environmental Information, National Oceanic and Atmospheric Administration. Available online: https://www.ncdc.noaa.gov/cag/ (accessed on 29 August 2021).
- Web Soil Survey, Soil Survey Staff. Web Soil Survey: Soil Data Mart. USDA-NCRS. Available online: https://websoilsurvey.sc.egov.usda.gov/ (accessed on 20 October 2018).
- Luxmoore, R.J. Micro, Meso and Macro porosity of soils. Soil Sci. Soc. Am. 1981, 45, 671–672. [Google Scholar] [CrossRef]
- Douglas, G.B.; McIvor, I.R.; Potter, J.F.; Foote, L.G. Root distribution of poplar at varying densities on pastoral hill country. Plant Soil 2010, 333, 147–161. [Google Scholar] [CrossRef]
- Liu, L.; Gan, Y.; Bueckert, R.; Van Rees, K. Rooting systems of oilseed and pulse crops. II: Vertical distribution patterns across the soil profile. Field Crop. Res. 2011, 122, 248–255. [Google Scholar] [CrossRef]
- Berhongaray, G.; Janssens, I.; King, J.S.; Ceulemans, R.J. Fine root biomass and turnover of two fast-growing poplar genotypes in a short-rotation coppice culture. Plant Soil 2013, 373, 269–283. [Google Scholar] [CrossRef] [Green Version]
- Loades, K.W.; Bengough, A.G.; Bransby, M.F.; Hallett, P.D. Planting density influence on fibrous root reinforcement of soils. Ecol. Eng. 2010, 36, 276–284. [Google Scholar] [CrossRef]
- Gill, R.A.; Jackson, R.B. Global patterns of root turnover for terrestrial ecosystems. New Phytol. 2000, 147, 13–31. [Google Scholar] [CrossRef]
- Berhongaray, G.; Verlinden, M.; Broeckx, L.S.; Janssens, I.; Ceulemans, R. Soil carbon and belowground carbon balance of a short-rotation coppice: Assessments from three different approaches. GCB Bioenergy 2016, 9, 299–313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aguilos, M.; Mitra, B.; Noormets, A.; Minick, K.; Prajapati, P.; Gavazzi, M.; Sun, G.; McNulty, S.; Li, X.; Domec, J.-C.; et al. Long-term carbon flux and balance in managed and natural coastal forested wetlands of the Southeastern USA. Agric. For. Meteorol. 2020, 288–289, 108022. [Google Scholar] [CrossRef]
- Aguilos, M.; Takagi, K.; Liang, N.; Ueyama, M.; Fukuzawa, K.; Nomura, M.; Kishida, O.; Fukazawa, T.; Takahashi, H.; Kotsuka, C.; et al. Dynamics of ecosystem carbon balance recovering from a clear-cutting in a cool-temperate forest. Agric. For. Meteorol. 2014, 197, 26–39. [Google Scholar] [CrossRef] [Green Version]
- Van Noordwijk, M.; Lawson, G.; Hairiah, K.; Wilson, J. Root Distribution of Trees and Crops: Competition and/or Complementarity Tree–Crop Interactions: Agroforestry in A Changing Climate; CABI: Wallingford, UK, 2015; pp. 221–257. [Google Scholar]
- Guo, D.L.; Mitchell, R.J.; Withington, J.M.; Fan, P.P.; Hendricks, J.J. Endogenous and exogenous controls of root life span, mortality and nitrogen flux in a longleaf pine forest, root branch order predominates. J. Ecol. 2008, 96, 737–745. [Google Scholar] [CrossRef]
- Farooq, T.H.; Wu, W.; Tigabu, M.; Ma, X.; He, Z.; Rashid, M.H.U.; Gilani, M.M.; Wu, P. Growth, Biomass Production and Root Development of Chinese fir in Relation to Initial Planting Density. Forests 2019, 10, 236. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.; Weil, R.R. Penetration of cover crop roots through compacted soils. Plant Soil 2010, 331, 31–43. [Google Scholar] [CrossRef]
- Hayashi, Y.; Ken’Ichirou, K.; Mizuyama, T. Changes in pore size distribution and hydraulic properties of forest soil resulting from structural development. J. Hydrol. 2006, 331, 85–102. [Google Scholar] [CrossRef]
- Bacq-Labreuil, A.; Crawford, J.; Mooney, S.J.; Neal, A.L.; Akkari, E.; McAuliffe, C.; Zhang, X.; Redmile-Gordon, M.; Ritz, K. Effects of cropping systems upon the three-dimensional architecture of soil systems are modulated by texture. Geoderma 2018, 332, 73–83. [Google Scholar] [CrossRef] [PubMed]
- Bodner, G.; Leitner, D.; Kaul, H.-P. Coarse and fine root plants affect pore size distributions differently. Plant Soil 2014, 380, 133–151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bengough, A. Water Dynamics of the Root Zone: Rhizosphere Biophysics and Its Control on Soil Hydrology. Vadose Zone J. 2012, 11, 460. [Google Scholar] [CrossRef] [Green Version]
- Feeney, D.S.; Crawford, J.W.; Daniell, T.; Hallett, P.D.; Nunan, N.; Ritz, K.; Rivers, M.; Young, I.M. Three-dimensional micro-organization of the soil–root–microbe system. Microb Ecol. 2006, 52, 151–158. [Google Scholar] [CrossRef] [PubMed]
- Six, J.; Bossuyt, H.; Degryze, S.; Denef, K. A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil Tillage Res. 2004, 79, 7–31. [Google Scholar] [CrossRef]
- Whalley, W.R.; Leeds-Harrison, P.B.; Leech, P.K.; Riseley, B.; Bird, N.R.A. The hydraulic properties of soil at root-soil interface. Soil Sci. 2004, 169, 90–99. [Google Scholar] [CrossRef]
- Kahle, P.; Hildebrand, E.; Baum, C.; Boelcke, B. Long-term effects of short rotation forestry with willows and poplar on soil properties. Arch. Agron. Soil Sci. 2007, 53, 673–682. [Google Scholar] [CrossRef]
- Ferrant, V.; Bouharmont, J. Origin of gynogenetic embryos of Beta vulgaris L. Sex. Plant Reprod. 1994, 7, 12–16. [Google Scholar] [CrossRef]
- Stirzaker, R.J.; Passioura, J.; Wilms, Y. Soil structure and plant growth: Impact of bulk density and biopores. Plant Soil 1996, 185, 151–162. [Google Scholar] [CrossRef]
- Bruand, A.; Cousin, I.; Nicoullaud, B.; Duval, O.; Bégon, J.C. Backscattered Electron Scanning Images of Soil Porosity for Analyzing Soil Compaction around Roots. Soil Sci. Soc. Am. J. 1996, 60, 895–901. [Google Scholar] [CrossRef]
- Maggi, F.; Porporato, A. Coupled moisture and microbial dynamics in unsaturated soils. Water Resour. Res. 2007, 43. [Google Scholar] [CrossRef] [Green Version]
- Koebernick, N.; Daly, K.R.; Keyes, S.D.; George, T.; Brown, L.K.; Raffan, A.; Cooper, L.; Naveed, M.; Bengough, G.; Sinclair, I.; et al. High-resolution synchrotron imaging shows that root hairs influence rhizosphere soil structure formation. New Phytol. 2017, 216, 124–135. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.; Zhang, Q.; Wernerc, A.D.; Lia, Y.; Jianga, S.; Tana, Z. Root-induced changes of soil hydraulic properties—A review. J. Hydrol. 2020, 589, 125203. [Google Scholar] [CrossRef]
- Riquelme, V.V.; Fontenla-Razzetto, G.; Wahren, F.T.; Feger, K.-H.; Heil, B.; Heilig, D.; Kovacs, G.; Julich, S. The Impact of Poplar Short Rotation Coppice on Topsoil Physical Properties and Related Water Conditions. BioEnergy Res. 2021, 14, 399–408. [Google Scholar] [CrossRef]
- Dexter, A.R.; Czyż, E.A.; Niedźwiecki, J.; Maćkowiak, C. Water retention and hydraulic conductivity of a loamy sand soil as influenced by crop rotation and fertilization. Arch. Agron. Soil Sci. 2001, 46, 123–133. [Google Scholar] [CrossRef]
- Leung, A.K.; Garg, A.; Wang, C.; Ng, W. Effects of plant roots on soil-water retention and induced suction in vegetated soil. Eng. Geol. 2015, 193, 183–197. [Google Scholar] [CrossRef] [Green Version]
- Lu, J. Identification of Forensic Information from Existing Conventional Site-Investigation Data. In Introduction to Environmental Forensics; Murphy, B.L., Morrison, R.D., Eds.; Elsevier/Academic Press: San Diego, CA, USA, 2015; pp. 149–164. ISBN 978012406962. [Google Scholar] [CrossRef]
- García-Gutiérrez, C.; Pachepsky, Y.; Martín, M.Á. Technical note: Saturated hydraulic conductivity and textural heterogeneity of soils. Hydrol. Earth Syst. Sci. 2018, 22, 3923–3932. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Ghodrati, M. Preferential Transport of Nitrate through Soil Columns Containing Root Channels. Soil Sci. Soc. Am. J. 1994, 58, 653–659. [Google Scholar] [CrossRef]
- Scanlan, H.; Hinz, C. Insights into the processes and effects of root-induced changes to soil hydraulic properties. In Proceedings of the 19th World Congress of Soil Science, Soil Solutions for a Changing World, Brisbane, Australia, 1–16 August 2010. [Google Scholar]
- Leij, F.J.; Ghezzehei, T.A.; Or, D. Modeling the dynamics of the soil pore-size distribution. Soil Tillage Res. 2002, 64, 61–78. [Google Scholar] [CrossRef]
- Kalhoro, S.A.; Xu, X.; Ding, K.; Chen, W.; Shar, A.G.; Rashid, M. The effects of different land uses on soil hydraulic properties in the Loess Plateau, Northern China. Land Degrad. Dev. 2018, 29, 3907–3916. [Google Scholar] [CrossRef]
- Rasse, D.P.; Smucker, A.J.M.; Santos, D. Alfalfa Root and Shoot Mulching Effects on Soil Hydraulic Properties and Aggregation. Soil Sci. Soc. Am. J. 2000, 64, 725–731. [Google Scholar] [CrossRef]
- Schwarzel, K.; Carrick, S.; Wahren, A.; Feger, K.H.; Bodner, G.; Buchan, G. Soil hydraulic properties of recently tilled soil under cropping rotation compared with 2-years-pasture: Measurement and modeling the soil structure dynamics. Vadose Zone J. 2011, 11, 354–366. [Google Scholar] [CrossRef] [Green Version]
- Beven, K.; Germann, P. Macropores and water flow in soils. Water Resour. Res. 1982, 18, 1311–1325. [Google Scholar] [CrossRef] [Green Version]
- Blanco-Canqui, H. Energy Crops and Their Implications on Soil and Environment. Agron. J. 2010, 102, 403–419. [Google Scholar] [CrossRef]
- Kahle, P.; Möller, J.; Baum, C.; Gurgel, A. Tillage-induced changes in the distribution of soil organic matter and the soil aggregate stability under a former short rotation coppice. Soil Tillage Res. 2013, 133, 49–53. [Google Scholar] [CrossRef]
- Marshall, M.R.; Ballard, C.E.; Frogbrook, Z.L.; Solloway, I.; McIntyre, N.; Reynolds, B.; Wheater, H.S. The impact of rural land management changes on soil hydraulic properties and runoff processes: Results from experimental plots in upland UK. Hydrol. Process. 2014, 28, 2617–2629. [Google Scholar] [CrossRef]
- Morales-Olmedo, M.; Ortiz, M.; Sellés, G. Effects of transient soil waterlogging and its importance for rootstock selection. Chil. J. Agric. Res. 2015, 75, 45–56. [Google Scholar] [CrossRef] [Green Version]
- Ng, C.W.W.; Leung, A.K. Measurements of Drying and Wetting Permeability Functions Using a New Stress-Controllable Soil Column. J. Geotech. Geoenviron. Eng. 2012, 138, 58–68. [Google Scholar] [CrossRef]
- Ng, C.W.W.; Pang, Y.W. Experimental investigations of the soil-water characteristics of a volcanic soil. Can. Geotech. J. 2000, 37, 1252–1264. [Google Scholar] [CrossRef]
- Romero, E.; Gens, A.; Lloret, A. Water permeability, water retention and microstructure of unsaturated compacted Boom clay. Eng. Geol. 1999, 54, 117–127. [Google Scholar] [CrossRef]
- Brady, N.C.; Weil, R.R. The Nature and Properties of Soils, 13rd ed.; Prentice Hall: New York, NY, USA, 2000. [Google Scholar]
- Nicholls, R.J.; Wong, P.P.; Burkett, V.R.; Codignotto, J.O.; Hay, J.E.; McLean, R.F.; Ragoonaden, S.; Woodroffe, C.D. Coastal systems and low-lying areas. Climate Change 2007: Impacts, Adaptation and Vulnerability. In Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Parry, M.L., Canziani, O.F., Palutikof, J.P., van der Linden, P.J., Hanson, C.E., Eds.; Cambridge University Press: Cambridge, UK, 2007; pp. 315–356. [Google Scholar]
- Lutter, R.; Tullus, A.; Kanal, A.; Tullus, T.; Tullus, H. Above-ground growth and temporal plant–soil relations in midterm hybrid aspen (Populus tremula L. × P. tremuloides Michx.) plantations on former arable lands in hemiboreal Estonia. Scand. J. For. Res. 2017, 32, 688–699. [Google Scholar] [CrossRef]
- Tullus, A.; Kanal, A.; Soo, T.; Tullus, H. The impact of available water content in previous agricultural soils on tree growth and nutritional status in young hybrid aspen plantations in Estonia. Plant Soil 2010, 333, 129–145. [Google Scholar] [CrossRef]
- Petzold, R.; Schwärzel, K.; Feger, K.-H. Transpiration of a hybrid poplar plantation in Saxony (Germany) in response to climate and soil conditions. Eur. J. For. Res. 2011, 130, 695–706. [Google Scholar] [CrossRef]
- Ng, C.W.W.; Ni, J.J.; Leung, A.K.; Wang, Z.J. A new and simple water retention model for root-permeated soils. Géotechnique Lett. 2016, 6, 106–111. [Google Scholar] [CrossRef] [Green Version]
Planting Density (tph) | Field Capacity (m3 m−3) | Drainable Porosity (m3 m−3) | Permanent Wilting Point (m3 m−3) | Plant Available Water (%) | Total Porosity (m3 m−3) | Bulk Density (Mg m−3) |
---|---|---|---|---|---|---|
10,000 | 0.21 ± 0.01 a | 0.16 ± 0.03 a | 0.03 ± 0.00 a | 18 | 0.38 ± 0.01 a | 1.59 ± 0.02 a |
5000 | 0.28 ± 0.01 b | 0.09 ± 0.01 b | 0.05 ± 0.00 b | 23 | 0.37 ± 0.01 a | 1.60 ± 0.02 a |
2500 | 0.30 ± 0.02 b | 0.10 ± 0.03 b | 0.05 ± 0.00 b | 25 | 0.40 ± 0.01 a | 1.58 ± 0.03 a |
Planting Density | ||||
---|---|---|---|---|
Variables | Comparison of Slopes | |||
10,000 | 5000 | 2500 | ||
Macropores | 10,000 | |||
5000 | - | |||
2500 | - | - | ||
Mesopores | 10,000 | |||
5000 | ** | |||
2500 | ** | - | ||
Macro- + Mesopores | 10,000 | |||
5000 | * | |||
2500 | * | - | ||
Micropores | 10,000 | |||
5000 | * | |||
2500 | * | * | ||
Saturated | 10,000 | |||
hydraulic | 5000 | * | ||
conductivity | 2500 | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ile, O.J.; Aguilos, M.; Morkoc, S.; Heitman, J.; King, J.S. Root Biomass Distribution and Soil Physical Properties of Short-Rotation Coppice American Sycamore (Platanus occidentalis L.) Grown at Different Planting Densities. Forests 2021, 12, 1806. https://doi.org/10.3390/f12121806
Ile OJ, Aguilos M, Morkoc S, Heitman J, King JS. Root Biomass Distribution and Soil Physical Properties of Short-Rotation Coppice American Sycamore (Platanus occidentalis L.) Grown at Different Planting Densities. Forests. 2021; 12(12):1806. https://doi.org/10.3390/f12121806
Chicago/Turabian StyleIle, Omoyemeh Jennifer, Maricar Aguilos, Suna Morkoc, Joshua Heitman, and John S. King. 2021. "Root Biomass Distribution and Soil Physical Properties of Short-Rotation Coppice American Sycamore (Platanus occidentalis L.) Grown at Different Planting Densities" Forests 12, no. 12: 1806. https://doi.org/10.3390/f12121806
APA StyleIle, O. J., Aguilos, M., Morkoc, S., Heitman, J., & King, J. S. (2021). Root Biomass Distribution and Soil Physical Properties of Short-Rotation Coppice American Sycamore (Platanus occidentalis L.) Grown at Different Planting Densities. Forests, 12(12), 1806. https://doi.org/10.3390/f12121806