Identification of Suitable Sites for Jatropha curcas L. Bioenergy Plantation Using the AquaCrop Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Site Suitability Modeling for JC Bioenergy Plantation
2.3. Estimation of Water Footprint and Yield of JC Bioenergy Plantation
3. Results and Discussion
3.1. Site Suitability for JC Plantation Based on Meteorological Parameters, Elevation and Slope
3.2. Site Suitability for JC Plantation Based on Water Footprint (WF) and Yield of JC Seeds
4. Discussion
5. Conclusions and Recommendations
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Grover, A.; Singh, S.; Singh, A.; Bala, M. Jatropha: From Seed to Plant, Seed, Oil, and Beyond. In Jatropha, Challenges for a New Energy Crop; Springer: Singapore, 2019; pp. 323–346. [Google Scholar]
- Mantri, V.A.; Parmar, D.R.; Rao, P.N.; Ghosh, A. Observations on ecosystem services in Jatropha curcas plantations established in degraded lands in India. Int. J. Environ. Stud. 2014, 71, 1–6. [Google Scholar] [CrossRef]
- Henning, R.K. The Jatropha Booklet. A Guide to the Jatropha System and Its Dissemination in Zambia, 1st ed.; Bagani GbR: Weissensberg, Germany, 2000. [Google Scholar]
- Achten, W. Sustainability Evaluation of Biodiesel from Jatropha curcas L. A life Cycle-Oriented Study, Belgium. 2010. Available online: https://perswww.kuleuven.be/u0053809/PhD/WA_PhDmanuscript_Final.pdf (accessed on 10 October 2020).
- Divakara, B.N.; Upadhyaya, H.D.; Wani, S.P.; Gowda, C.L. Biology and genetic improvement of Jatropha curcas L.: A review. Appl. Energy 2010, 87, 732–742. [Google Scholar] [CrossRef] [Green Version]
- Karmakar, A.; Karmakar, S.; Mukherjee, S. Properties of various plants and animals feedstocks for biodiesel production. Bioresour. Technol. 2010, 101, 7201–7210. [Google Scholar] [CrossRef] [PubMed]
- Mofijur, M.; Masjuki, H.H.; Kalam, M.A.; Hazrat, M.A.; Liaquat, A.M.; Shahabuddin, M.; Varman, M. Prospects of biodiesel from Jatropha in Malaysia. Renew. Sustain. Energy Rev. 2012, 16, 5007–5020. [Google Scholar] [CrossRef]
- Defence Institute of Bio-Energy Research (DIBER); Defence Research and Development Organization (DRDO). Army Bio Diesel Programme; Technical Report; Defence Institute of Bio-Energy Research (DIBER): Haldwani, India; Defence Research and Development Organization (DRDO): New Delhi, India, 2017. [Google Scholar]
- Heller, J. Physic nut. Jatropha curcas L. Promoting the Conservation and Use of Underutilized and Neglected Crops; Institute of Plant Genetics and Crop Plant Research: Gatersleben, Germany; International Plant Genetic Resources Institute: Rome, Italy, 1996. [Google Scholar]
- Hambali, E. Prospek Pengembangan Tanaman Jarak Pagar Untuk Biodiesel dan Produk Turunan Lainnya; Bogor Agricultural University: Bogor, Indonesia, 2006. [Google Scholar]
- Achten, W.; Muys, B.; Mathijs, E.; Singh, V.P.; Verchot, L. Life-cycle assessment of Bio-diesel from Jatropha curcas L. energy balance, impact on global warming, land use impact. In Proceedings of the 5th International Conference LCA in Foods, Gothenburg, Sweden, 25–26 April 2007; pp. 96–102. [Google Scholar]
- Parawira, W. Biodiesel production from Jatropha curcas: A review. Acad. J. Sci. Res. Essays 2010, 5, 1796e808. [Google Scholar]
- Silitonga, A.S.; Atabani, A.E.; Mahlia, T.M.I.; Masjuki, H.H.; Badruddin, I.A.; Mekhilef, S. A review on prospect of Jatropha curcas for biodiesel in Indonesia. Renew. Sustain. Energy Rev. 2011, 15, 3733–3756. [Google Scholar] [CrossRef]
- Akbar, E.; Yaakob, Z.; Kamarudin, S.K.; Ismail, M.; Salimon, J. Characteristic and Composition of Jatropha Curcas Oil Seed from Malaysia and Its Potential as Biodiesel Feedstock Feedstock. Eur. J. Sci. Res. 2009, 29, 396–403. [Google Scholar]
- Misra, M.; Misra, A.N. Jatropha: The biodiesel plant biology, tissue culture and genetic transformation—A review. Int. J. Pure Appl. Sci. Technol. 2010, 1, 11–24. [Google Scholar]
- Gudeta, T.B. Chemical Composition, Bio-Diesel Potential and Uses of Jatropha curcas L. (Euphorbiaceae). Am. J. Agric. For. 2016, 4, 35–48. [Google Scholar]
- Francis, G.; Edinger, R.; Becker, K. A concept for simultaneous wasteland reclamation, fuel production, and socio-economic development in degraded areas in India: Need, potential and perspectives of Jatropha plantations. Nat. Resour. Forum 2005, 29, 12–24. [Google Scholar] [CrossRef]
- Carels, N. Towards the Domestication of Jatropha: The Integration of Sciences. In Jatropha, Challenges for a New Energy Crop: Volume 2: Genetic Improvement and Biotechnology; Bahadur, B., Sujatha, M., Carels, N., Eds.; Springer: New York, NY, USA, 2013; pp. 263–299. ISBN 978-1-4614-4915-7. [Google Scholar]
- Ong, H.C.; Mahlia, T.M.I.; Masjuki, H. A review on emissions and mitigation strategies for road transport in Malaysia. Renew. Sustain. Energy Rev. 2011, 15, 3516–3522. [Google Scholar] [CrossRef]
- Lu, W.; Zhang, T. Life-Cycle Implications of Using Crop Residues for Various Energy Demands in China. Environ. Sci. Technol. 2010, 44, 4026–4032. [Google Scholar] [CrossRef] [PubMed]
- Dias, L.; Missio, R.; Dias, D. Review Antiquity, botany, origin and domestication of Jatropha curcas (Euphorbiaceae), a plant species with potential for biodiesel production. Genet. Mol. Res. 2012, 11, 2719–2728. [Google Scholar] [CrossRef] [PubMed]
- Pandey, V.C.; Singh, K.; Singh, J.S.; Kumar, A.; Singh, B.; Singh, R.P. Jatropha curcas: A potential biofuel plant for sustainable environmental development. Renew. Sustain. Energy Rev. 2012, 16, 2870–2883. [Google Scholar] [CrossRef]
- Edrisi, S.A.; Dubey, R.K.; Tripathi, V.; Bakshi, M.; Srivastava, P.; Jamil, S.; Singh, H.B.; Singh, N.; Abhilash, P.C. Jatropha curcas L.: A crucified plant waiting for resurgence. Renew. Sustain. Energ. Rev. 2015, 41, 855–862. [Google Scholar] [CrossRef]
- Sarin, R.; Sharma, M.; Sinharay, S.; Malhotra, R. Jatropha–Palm biodiesel blends: An optimum mix for Asia. Fuel 2007, 86, 1365–1371. [Google Scholar] [CrossRef]
- Maghuly, F.; Laimer, M. Jatropha curcas, a biofuel crop: Functional genomics for understanding metabolic pathways and genetic improvement. Biotechnol. J. 2013, 8, 1172–1182. [Google Scholar] [CrossRef] [Green Version]
- Tiwari, A.K.; Kumar, A.; Raheman, H. Biodiesel production from jatropha oil (Jatropha curcas) with high free fatty acids: An optimized process. Biomass-Bioenergy 2007, 31, 569–575. [Google Scholar] [CrossRef]
- Marasabessy, A. Valorization of Jatropha Fruit Biomass for Energy Applications. Ph.D. Thesis, Wageningen University, Wageningen, The Netherlands, 2015. [Google Scholar]
- Yaqoob, H.; Teoh, Y.; Sher, F.; Ashraf, M.; Amjad, S.; Jamil, M.; Jamil, M.; Mujtaba, M. Jatropha Curcas Biodiesel: A Lucrative Recipe for Pakistan’s Energy Sector. Processes 2021, 9, 1129. [Google Scholar] [CrossRef]
- Gubitz, G.; Mittelbach, M.; Trabi, M. Exploitation of the tropical oil seed plant Jatropha curcas L. Bio. Res. Technol. 1999, 67, 73–82. [Google Scholar] [CrossRef]
- Deng, X.; Han, J.; Yin, F. Net Energy, CO2 Emission and Land-Based Cost-Benefit Analyses of Jatropha Biodiesel: A Case Study of the Panzhihua Region of Sichuan Province in China. Energies 2012, 5, 2150–2164. [Google Scholar] [CrossRef]
- Chawla, P.; Chawla, V.; Maheshwari, R.; Saraf, S.A.; Saraf, S.K. Fullerenes: From Carbon to Nanomedicine. Mini-Rev. Med. Chem. 2010, 10, 662–677. [Google Scholar] [CrossRef]
- Achten, W.; Verchot, L.; Franken, Y.; Mathijs, E.; Singh, V.; Aerts, R.; Muys, B. Jatropha bio-diesel production and use. Biomass-Bioenergy 2008, 32, 1063–1084. [Google Scholar] [CrossRef] [Green Version]
- Jongschaap, R.E.E.; Corre, W.J.; Bindraban, P.S.; Brandenburg, W.A. Claims and Facts on Jatropha curcas L.: Global Jatropha curcas Evaluation, Breeding and Propagation Programme; Report 158; Plant Research International BV: Wageningen, The Netherlands; Stichting Het Groene Woudt: Laren, The Netherlands, 2007. [Google Scholar]
- Jones, N.; Miller, J.H. Jatropha Curcas: A Multipurpose Species for Problematic Sites; World Bank, Asia Technical Dept.: Washington DC, WA, USA, 1992. [Google Scholar]
- Kumar, A.; Sharma, S. An evaluation of multipurpose oil seed crop for industrial uses (Jatropha curcas L.): A review. Ind. Crop. Prod. 2008, 28, 1–10. [Google Scholar] [CrossRef]
- Contran, N.; Chessa, L.; Lubino, M.; Bellavite, D.; Roggero, P.P.; Enne, G. State-of-the-art of the Jatropha curcas productive chain: From sowing to biodiesel and by-products. Ind. Crop. Prod. 2013, 42, 202–215. [Google Scholar] [CrossRef]
- Che Hamzah, N.H.; Khairuddin, N.; Siddique, B.M.; Hassan, M.A. Potential of Jatropha curcas L. as biodiesel feedstock in Malaysia: A concise review. Processes 2020, 8, 786. [Google Scholar] [CrossRef]
- Najafi, F.; Sedaghat, A.; Mostafaeipour, A.; Issakhov, A. Location assessment for producing biodiesel fuel from Jatropha curcas in Iran. Energy 2021, 236, 121446. [Google Scholar] [CrossRef]
- Pramanik, K. Properties and use of Jatropha curcas oil and diesel fuel blends in compression ignition engine. Renew. Energy 2003, 28, 239–248. [Google Scholar] [CrossRef]
- Shah, S.; Sharma, A.; Gupta, M. Extraction of oil from Jatropha curcas L. seed kernels by enzyme assisted three phase partitioning. Ind. Crop. Prod. 2004, 20, 275–279. [Google Scholar] [CrossRef]
- Nahar, K.; Sunny, S.A. Biodiesel, Glycerin and Seed-cake Production from Roof-top Gardening of Jatropha curcas L. Curr. Environ. Eng. 2016, 3, 18–31. [Google Scholar] [CrossRef]
- Muok, B. Feasibility Study of Jatropha curcas as a Biofuel Feedstock in Kenya; African Centre for Technology Studies (ACTS): Nairobi, Kenya, 2008. [Google Scholar]
- Grimm, C. The Jatropha project in Nicaragua. Bagani Tulu 1996, 1, 10–14. [Google Scholar]
- Skutsch, M.; Rios, E.D.L.; Solis, S.; Riegelhaupt, E.; Hinojosa, D.; Gerfert, S.; Gao, Y.; Masera, O. Jatropha in Mexico: Environmental and Social Impacts of an Incipient Biofuel Program. Ecol. Soc. 2011, 16, 11–27. [Google Scholar] [CrossRef]
- Abobatta, W.F. Jatropha curcas: An overview. J. Adv. Agric. 2019, 10, 1650–1656. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Xiao, Z.; He, L.; di Serio, M.; Xie, X. Industrial Oil Plant; Springer: Singapore, 2020. [Google Scholar]
- Ahmad, S.; Sultan, S.M. Physiological changes in the seeds of Jatropha curcas L. at different stages of fruit maturity. Braz. Arch. Biol. Technol. 2015, 58, 118–123. [Google Scholar] [CrossRef] [Green Version]
- Ogunwole, J.O.; Alabi, O.; Ugbabe, O.; Birhanu, B.Z. Promoting Jatropha Agriculture for Sustainable Soil Capital Improvement: A Win-Win Technology for Rehabilitating Degraded Lands in Africa. In New Frontiers in Natural Resources Management in Africa; Springer: Cham, Switzerland, 2019; pp. 27–39. [Google Scholar]
- Chaudhary, D.R.; Ghosh, A.; Chikara, J.; Patolia, J.S. Soil Characteristics and Mineral Nutrient in Wild Jatropha Population of India. Commun. Soil Sci. Plant Anal. 2008, 39, 1476–1485. [Google Scholar] [CrossRef]
- Zhuang, D.; Jiang, D.; Liu, L.; Huang, Y. Assessment of bioenergy potential on marginal land in China. Renew. Sustain. Energy Rev. 2011, 15, 1050–1056. [Google Scholar] [CrossRef]
- Iiyama, M.; Newman, D.; Munster, C.; Nyabenge, M.; Sileshi, G.W.; Moraa, V.; Onchieku, J.; Mowo, J.G.; Jamnadass, R. Productivity of Jatropha curcas under smallholder farm conditions in Kenya. Agrofor. Syst. 2013, 87, 729–746. [Google Scholar] [CrossRef]
- Mimien, H.; Almughfirah, C.; Irwan, D.; Oktanis, E.; Taizo, M.; Kazuyuki, N.; Tomio, I. Evaluation of land suitability and potential production of Jatropha (Jatropha curcas L.): A biodiesel resource in Solok Regency, West Sumatra, Indonesia. J. Environ. Res. Dev. 2013, 7, 1165–1173. [Google Scholar]
- Maes, W.; Achten, W.; Muys, B. Use of inadequate data and methodological errors lead to a dramatic overestimation of the water footprint of Jatropha curcas. Proc. Natl. Acad. Sci. USA 2009, 106, E91. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.G.; Huang, J.K.; Deng, X.Z. Potential land for plantation of Jatropha curcas as feedstocks for biodiesel in China. Sci. China Ser. D Earth Sci. 2010, 53, 120127. [Google Scholar] [CrossRef]
- Taddese, H. Suitability analysis for Jatropha curcas production in Ethiopia-a spatial modeling approach. Environ. Syst. Res. 2014, 3, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Sadiq, N. Thunderstorm and rainfall activity over Khyber Pakhtunkhwa (KPK), Pakistan. Nucleus 2012, 49, 231–237. [Google Scholar]
- Khan, A.; Ahmad, S.S. Application of GAINS model for assessing selected air pollutants in Khyber Pakhtunkhwa and Baluchistan, Pakistan. Arab. J. Geosci. 2018, 11, 1–10. [Google Scholar] [CrossRef]
- Gul, S.; Hussain, I.; Shad, M.Y.; Faisal, M.; Shoukry, A.M.; Adnan, S. Nonparametric trend analysis of reference evapotranspiration for Khyber Pakhtunkhwa, Pakistan. Int. J. Glob. Warm. 2018, 14, 313–329. [Google Scholar] [CrossRef]
- Shah, A.A.; Ye, J.; Abid, M.; Ullah, R. Determinants of flood risk mitigation strategies at household level: A case of Khyber Pakhtunkhwa (KP) province, Pakistan. Nat. Hazards 2017, 88, 415–430. [Google Scholar] [CrossRef]
- Khan, A.; Mushtaq, M.H.; Hussain, A.; Khan, A.; Khan, A.; Nabi, H. Incidence of repeat breeding in varying breeds of buffaloes and cattle in different climatic conditions in Khyber Pakhtunkhwa (Pakistan). Buffalo Bull. 2016, 35, 445–454. [Google Scholar]
- Saqib, R.; Tachibana, S. Contribution of agricultural and forestry extension services to inclusive extension system in North-West Pakistan: A case study of Mansehra and Swat districts of Khyber Pakhtunkhwa Province. J. Agric. Ext. Rural. Dev. 2014, 6, 175–187. [Google Scholar]
- International Institute for Applied Systems Analysis IIASA; International Soil Reference and Information Centre ISRIC; Institute of Soil Science, Chinese Academy of Sciences ISSCAS; Food and Agriculture Organization FAO; Joint Research Centre JRC. Harmonized World Soil Database; Version 1.2; Food and Agriculture Organization FAO: Rome, Italy; International Institute for Applied Systems Analysis IIASA: Laxenburg, Austria, 2018; Available online: http://www.fao.org/soils-portal/soil-survey/soil-maps-anddatabases/harmonized-world-soil-database-v12/en/ (accessed on 11 October 2020).
- Arslan, M.; Zaidi, A.Z.; Malik, S. Identification of Suitable Sites for Plantation of Biofuel Source Jatropha C. using Geospatial Techniques. J. Space Technol. 2015, 5, 55–62. [Google Scholar]
- Poonia, M.P.; Jethoo, A.S. Jatropha plantation for biodiesel production in Rajasthan: Climate, economics and employment. Univers. J. Environ. Res. Technol. 2012, 2, 14–20. [Google Scholar]
- Shiotsu, Y. Microwave Assisted Jatropha Biodiesel Production. Available online: https://digital.wpi.edu/downloads/bc386k78z (accessed on 12 October 2020).
- Schumann, A.H. Thiessen polygon. In Encyclopedia of Hydrology and Lakes; Encyclopedia of Earth Science; Springer: Dordrecht, The Netherlands, 1998; ISBN 978-1-4020-4497-7. [Google Scholar] [CrossRef]
- Saxton, K.; Rawls, W.J.; Romberger, J.; Papendick, R. Estimating generalized soil water characteristics from texture. Soil Sci. Soc. Am. J. 1986, 50, 1031–1036. [Google Scholar] [CrossRef]
- Steduto, P.; Hsiao, T.C.; Fereres, E. On the conservative behavior of biomass water productivity. Irrig. Sci. 2007, 25, 189–207. [Google Scholar] [CrossRef] [Green Version]
- Steduto, P.; Hsiao, T.C.; Raes, D.; Fereres, E. AquaCrop—The FAO Crop Model to Simulate Yield Response to Water: I. Concepts and Underlying Principles. Agron. J. 2009, 101, 426–437. [Google Scholar] [CrossRef] [Green Version]
- Hoekstra, A.Y.; Chapagain, A.K.; Aldaya, M.M.; Mekonnen, M.M. The Water Footprint Assessment Manual; Routledge: London, UK, 2011; ISBN 978-1-84971279-8. [Google Scholar]
- Nouri, H.; Borujeni, S.C.; Hoekstra, A.Y. The blue water footprint of urban green spaces: An example for Adelaide, Australia. Landsc. Urban Plan. 2019, 190, 103613. [Google Scholar] [CrossRef]
- Chukalla, A.D.; Krol, M.S.; Hoekstra, A.Y. Green and blue water footprint reduction in irrigated agriculture: Effect of irrigation techniques, irrigation strategies and mulching. Hydrol. Earth Syst. Sci. 2015, 19, 4877–4891. [Google Scholar] [CrossRef] [Green Version]
- Yuan, L.; Zhao, Q.; Kang, P.; Yang, L.; Zhao, J.; Gou, P.; Wu, K.; Yang, F.; Yang, X.; Li, W.; et al. Investigation of geographical distribution and evaluation of Jatropha curcas in Yunnan province. Southwest China J. Agric. Sci. 2007, 20, 1283–1286. [Google Scholar]
- Luo, J.X.; Feng, Z.S.; Tang, P.; Gu, Y.J.; Cao, X.J.; Cai, X.H. Preliminary Study on Distribution Characteristics of Jatropha curcas and Selection of Its Suitable Habitat in Sichuan Province. J. Southwest For. Coll. 2007, 3, 6–10. [Google Scholar]
- Yu, B.; He, S.B.; He, C.J.; Tang, X.Z.; Zhu, Z.Z. Division of Suitable Arable Planting Area for Jatropha curcas in Sichuan Province. For. Inventory Plan. 2008, 1, 010. [Google Scholar]
- Jingura, R.M. Technical options for optimization of production of Jatropha as a biofuel feedstock in arid and semi-arid areas of Zimbabwe. Biomass-Bioenergy 2011, 35, 2127–2132. [Google Scholar] [CrossRef]
- Yamada, E.S.M.; Sentelhas, P.C. Agro-climatic zoning of Jatropha curcas as a subside for crop planning and implementation in Brazil. Int. J. Biometeorol. 2014, 58, 19952010. [Google Scholar] [CrossRef]
- Jepsen, J.K.; Henning, R.K.; Nyathi, B. Jatropha curcas in Zimbabwe. Generative Propagation of Jatropha curcas L. on Kalahari Sand. Environment Africa. Zimbabwe. Available online: https://en.calameo.com/read/0013653961c27b053a890 (accessed on 16 October 2020).
- Castro Gonzales, N.F. Food security and biofuel: A case study of Jatropha curcas in Bolivia. Int. J. Therm. Environ. Eng. 2012, 4, 57–64. [Google Scholar]
- Brittaine, R.; Lutaladio, N. Jatropha: A Smallholder Bioenergy Crop: The Potential for Pro-Poor Development; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2010; Volume 8. [Google Scholar]
- Dorado, M.P.; Cruz, F.; Palomar, J.M.; Lopez, F.J. An approach to the economics of two vegetable oil-based biofuels in Spain. Renew. Energy 2006, 31, 1231–1237. [Google Scholar] [CrossRef]
- Haas, M.J.; McAloon, A.J.; Yee, W.C.; Fogilia, T.A. A process model to estimate biodiesel production costs. Bioresour. Technol. 2006, 97, 671–678. [Google Scholar] [CrossRef]
- Yusuf, N.N.A.N.; Kamarudin, S.K.; Yaakub, Z. Overview on the current trends in biodiesel production. Energy Convers. Manag. 2011, 52, 2741–2751. [Google Scholar] [CrossRef]
- Hussain, G.; Rasul, A.; Anwar, H.; Sohail, M.U.; Kamran, S.K.S.; Baig, S.M.; Shabbir, A. Epidemiological data of neurological disorders in Pakistan and neighboring countries: A review. Pak. J. Neurol. Sci. 2017, 12, 52–70. [Google Scholar]
- Aslam, W.; Soban, M.; Akhtar, F.; Zaffar, N. Smart meters for industrial energy conversation and efficiency optimization in Pakistan: Scope, technology and applications. Renew. Sustain. Energy Rev. 2015, 44, 933–943. [Google Scholar] [CrossRef]
- Shakeel, S.R.; Takala, J.; Shakeel, W. Renewable Energy Sources in Power Generation in Pakistan. Renew. Sustain. Energy Rev. 2016, 64, 421–434. [Google Scholar] [CrossRef]
- Chakrabarti, M.H.; Ali, M.; Baroutian, S.; Saleem, M. Technoeconomic comparison between B10 of Eruca sativa L. and other indigenous seed oils in Pakistan. Proc. Saf. Env. Protect. 2011, 89, 165–171. [Google Scholar] [CrossRef]
- Tewari, D.N. Jatropha & Bio-Diesel; Prabhat Prakashan: New Delhi, India, 2007. [Google Scholar]
- Liu, L.; Zhuang, D.; Jiang, D.; Fu, J. Assessment of the biomass energy potentials and environmental benefits of Jatropha curcas L. in Southwest China. Biomass- Bioenergy 2013, 56, 342–350. [Google Scholar] [CrossRef]
- Almeida, J.; Moonen, P.; Soto, I.; Achten, W.M.; Muys, B. Effect of farming system and yield in the life cycle assessment of Jatropha-based bioenergy in Mali. Energy Sustain. Dev. 2014, 23, 258–265. [Google Scholar] [CrossRef]
- Kumar, A.; Patil, N.; Kumar, R.; Mandal, D. Irrigation Scheduling and Fertilization Improves Production Potential of Jatropha (Jatropha curcas L.): A Review. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 1703–1716. [Google Scholar] [CrossRef]
- Gmünder, S.; Singh, R.; Pfister, S.; Adheloya, A.; Zah, R. Environmental Impacts ofJatropha curcasBiodiesel in India. J. Biomed. Biotechnol. 2012, 2012, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Hoekstra, A.Y.; Gerbens-Leenes, P.W.; van der Meer, T.H. The Water Footprint of Bio-Energy. Climate Change and Water: International Perspectives on Mitigation and Adaptation; American Water Works Association: Denver, CO, USA; IWA Publishing: London, UK, 2010; pp. 81–95. [Google Scholar]
- Wani, S.P.; Garg, K.K.; Patil, M.D. Hydrological Consequences of Cultivating Jatropha crop in Degradable Waste Lands of India and Ecosystem Trade-Offs at Watershed Scale; European Commission: Luxembourg, 2013. [Google Scholar]
- Everson, C.; Mengistu, M.; Gush, M. A field assessment of the agronomic performance and water use of Jatropha curcas in South Africa. Biomass-Bioenergy 2013, 59, 59–69. [Google Scholar] [CrossRef]
- Jongschaap, R.E.E.; Blesgraaf, R.A.R.; Bogaard, T.; van Loo, E.N.; Savenije, H. The water footprint of bioenergy from Jatropha curcas L. Proc. Natl. Acad. Sci. USA 2009, 106, E92. [Google Scholar] [CrossRef] [Green Version]
- Hoekstra, A.Y.; Gerbens-Leenes, W.; van der Meer, T.H. Reply to Jongschaap et al.: The water footprint of Jatropha curcas under poor growing conditions. Proc. Natl. Acad. Sci. USA 2009, 106, E119. [Google Scholar] [CrossRef] [Green Version]
- Gerbens-Leenes, W.; Hoekstra, A.Y.; van der Meer, T.H. Reply to Maes et al.: A global estimate of the water footprint of Jatropha curcas under limited data availability. Proc. Natl. Acad. Sci. USA 2009, 106, E113. [Google Scholar] [CrossRef] [Green Version]
- Xie, X.; Zhang, T.; Wang, L.; Huang, Z. Regional water footprints of potential biofuel production in China. Biotechnol. Biofuels 2017, 10, 95. [Google Scholar] [CrossRef]
- Aldaya, M.M.; Chapagain, A.K.; Hoekstra, A.Y.; Mekonnen, M.M. The Water Footprint Assessment Manual: Setting the Global Standard; Routledge: London, UK, 2012. [Google Scholar]
- Alherbawi, M.; AlNouss, A.; McKay, G.; Al-Ansari, T. Optimum sustainable utilisation of the whole fruit of Jatropha curcas: An energy, water and food nexus approach. Renew. Sustain. Energy Rev. 2021, 137, 110605. [Google Scholar] [CrossRef]
- Karanam, K.R.; Bhavanasi, J.K. Cultivation technology for Jatropha curcas. In Jatropha, Challenges for a New Energy Crop; Springer: New York, NY, USA, 2012; pp. 165–174. [Google Scholar]
S.# | Parameter | Range/Limitation | Suitability Classes | Data Source | Reference | ||
---|---|---|---|---|---|---|---|
More Suitable | Moderate Suitable | Less Suitable | |||||
1 | Elevation | 0–1800 m | <1500 m | 1500 m–2100 m | <0 and >2150 | SRTM DEM | [54] |
2 | Slope | Not exceed 30° | <15° | 15°–30° | >30° | SRTM DEM | [30] |
4 | Rainfall | 250 mm–3000 mm | 1000 mm–3000 mm | 250 mm–1000 mm | <250 mm and >3000 mm | NCEP Data | [64] |
5 | Temperature | 18 °C–28 °C | 20 °C–28 °C | 17 °C–20 °C | <17 °C and >28 °C | NCEP Data | [65] |
6 | Soil Type | Aerated sandy, gravelly, loamy or soil without/a little clay content | sandy or Loamy, gravelly, well-drained soil | Stony or rocky soil or a little part of clay/salt | Clay soil or waterlogged | Harmonised World Soil data based (HWSB) | [62,63] |
Name of Meteorological Station | Latitude | Longitude |
---|---|---|
Chitral | 35.85 | 71.78 |
Drosh | 35.57 | 71.78 |
Dir | 35.2 | 71.85 |
Pattan | 35.06 | 73 |
Timergara | 34.83 | 71.84 |
Saidu Shaif | 34.73 | 72.35 |
Balakot | 34.55 | 72.35 |
Abbottabad | 34.18 | 73.25 |
Resal pur | 34.07 | 71.97 |
Peshawar | 34.02 | 71.56 |
Bannu | 32.98 | 70.6 |
D.I.K | 31.82 | 70.93 |
Soil Type | Horizons | Texture USDA | Thickness (m) | Sand Fraction (%) | Silt Fraction (%) | Clay Fraction (%) | Bulk Density (kg/dm3) | Organic Matter (wt.%) | Salinity (ds/m) | Stoniness (%) | Soil Water | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PWP | FC | SAT | Ksat | |||||||||||
(Volume %) | (mm/day) | |||||||||||||
Calcisols | Top soil | Loam | 0.3 | 39 | 40 | 21 | 1.32 | 0.7 | 1.6 | 4 | 13.5 | 27 | 46 | 196.5 |
Sub soil | Loam | 0.7 | 36 | 40 | 24 | 1.42 | 0.29 | 1.6 | 3 | 15 | 29 | 41 | 131.5 | |
Cambisols | Top soil | Loam | 0.3 | 42 | 36 | 22 | 1.37 | 1 | 0.1 | 9 | 14 | 27 | 42 | 100 |
Sub soil | Loam | 0.7 | 40 | 35 | 25 | 1.39 | 0.4 | 0.1 | 12 | 15.3 | 28 | 41 | 116 | |
Rock Outcrop | Top soil | Loam | 0.3 | 43 | 34 | 23 | 1.3 | 1.4 | 0.1 | 26 | 14.7 | 28 | 43 | 151.2 |
Sub soil | Clay loam | 0.7 | 42 | 30 | 28 | 1.37 | 0.3 | 0.7 | 3 | 17.1 | 29 | 41 | 118.56 | |
Liptosols | Top soil | Loam | 0.3 | 43 | 34 | 23 | 1.38 | 0.37 | 0.1 | 26 | 15.4 | 28.7 | 45.6 | 189.12 |
Sub soil | Clay loam | 0.65 | 30 | 42 | 28 | 1.34 | 0.29 | 0.1 | 30 | 18 | 33 | 47.7 | 62.64 | |
Fluvisols | Top soil | Loam | 0.3 | 35 | 47 | 18 | 1.39 | 0.6 | 0.7 | 10 | 12.6 | 28.2 | 46.5 | 211.2 |
Sub soil | Loam | 1 | 37 | 45 | 18 | 1.41 | 0.4 | 0.5 | 11 | 11.6 | 26 | 41.9 | 221.28 | |
Regosols | Top soil | Loam | 0.3 | 43 | 35 | 22 | 1.4 | 0.77 | 0.3 | 17 | 14.8 | 28.2 | 45.6 | 179.28 |
Sub soil | Loam | 1 | 38 | 36 | 26 | 1.52 | 0.53 | 0.3 | 18 | 16.2 | 29.5 | 42.8 | 115.44 |
More Suitable Areas | Moderate Suitable Areas | Less Suitable Areas |
---|---|---|
D.I. Khan | Buner | Lower Dir |
FR DIK | Balakot | Malakand Agency |
Tank | Mansehra | Bajaur Agency |
Peshawar | Haripur | Upper Dir |
Mohmand Agency | Abbottabad | Swat |
Orakzai Agency | Chitral | |
Khyber Agency | Shangla | |
Kohat | Batagram | |
Charsadda | Drosh | |
Mardan | Kohistan | |
Swabi | ||
Nowshera |
District Name | WFgreen (m3/ton) | WFblue (m3/ton) | Yield (ton/ha) |
---|---|---|---|
Bannu | 264 | 825 | 10 |
Karak | 264 | 825 | 10 |
Hangu | 264 | 825 | 10 |
Kurram Agency | 264 | 825 | 10 |
North Waziristan | 264 | 825 | 10 |
Lakki Marwat | 264 | 825 | 10 |
South Waziristan | 264 | 825 | 10 |
D.I.Khan | 214 | 846 | 10 |
FR DIK | 214 | 846 | 10 |
Tank | 214 | 846 | 10 |
Peshawar | 258 | 851 | 8 |
Mohmand Agency | 258 | 851 | 8 |
Orakzai Agency | 258 | 851 | 8 |
Khyber Agency | 258 | 851 | 8 |
Kohat | 258 | 851 | 8 |
Charsada | 258 | 851 | 8 |
Mardan | 239 | 869 | 8 |
Swabi | 239 | 869 | 8 |
Nowshehra | 239 | 869 | 8 |
Buner | 757 | 926 | 5 |
Balakot | 757 | 926 | 5 |
Mansehra | 799 | 1016 | 4 |
Haripur | 799 | 1016 | 4 |
Abbottabad | 799 | 1016 | 4 |
Lower Dir | 384 | 1688 | 3 |
Malakand Agency | 384 | 1688 | 3 |
Bajaur Agency | 384 | 1688 | 3 |
Upper Dir | 941 | 1528 | 3 |
Swat | 384 | 1688 | 3 |
Shangla | 384 | 1688 | 3 |
Batagram | 384 | 1688 | 3 |
Kohistan | 384 | 1688 | 3 |
Drosh | 384 | 1688 | 3 |
Chitral | 384 | 1688 | 3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khalid, F.; Ullah, S.; Rehman, F.; Hadi, R.; Khan, N.; Ibrahim, F.; Khan, T.; Aziz, F.; Feroz, D.A.; Nadeem, S.G.; et al. Identification of Suitable Sites for Jatropha curcas L. Bioenergy Plantation Using the AquaCrop Model. Forests 2021, 12, 1772. https://doi.org/10.3390/f12121772
Khalid F, Ullah S, Rehman F, Hadi R, Khan N, Ibrahim F, Khan T, Aziz F, Feroz DA, Nadeem SG, et al. Identification of Suitable Sites for Jatropha curcas L. Bioenergy Plantation Using the AquaCrop Model. Forests. 2021; 12(12):1772. https://doi.org/10.3390/f12121772
Chicago/Turabian StyleKhalid, Faisal, Sami Ullah, Fariha Rehman, Rana Hadi, Nasreen Khan, Farzana Ibrahim, Tariq Khan, Farha Aziz, Dania Aeema Feroz, Syeda Ghufrana Nadeem, and et al. 2021. "Identification of Suitable Sites for Jatropha curcas L. Bioenergy Plantation Using the AquaCrop Model" Forests 12, no. 12: 1772. https://doi.org/10.3390/f12121772
APA StyleKhalid, F., Ullah, S., Rehman, F., Hadi, R., Khan, N., Ibrahim, F., Khan, T., Aziz, F., Feroz, D. A., Nadeem, S. G., & Hussain, M. (2021). Identification of Suitable Sites for Jatropha curcas L. Bioenergy Plantation Using the AquaCrop Model. Forests, 12(12), 1772. https://doi.org/10.3390/f12121772