A Passive Wood-Based Building in Slovakia: Exploring the Life Cycle Impact
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Impact Assessment of Individual Life Cycle Stages
3.2. Impact Assessment on Individual Impact Categories
3.2.1. Depletion of Abiotic Resources
3.2.2. Global Warming Potential, Ozone Layer Depletion, and Photochemical Oxidation
3.2.3. Toxicity and Ecotoxicity
3.2.4. Acidification and Eutrophication
3.3. Assessment of Construction Materials and Operational Energy
3.3.1. Embodied Environmental Impact of Construction Materials
3.3.2. Evaluation of the B6 Stage Impact
3.4. Sensitivity Analysis
3.4.1. Lifetime Perspective
3.4.2. Masonry Construction Perspective
4. Discussions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Construction Material | Database * | Share on Overall Construction Weight (%) ** |
---|---|---|
Gravel | Gravel, crushed {RoW}|market for gravel, crushed|APOS, U | 15.82 |
Foam glass | Foam glass {GLO}|market for|APOS, U | 8.05 |
Concrete | Concrete, 25 MPa {RoW}|market for concrete, 25 MPa|APOS, U | 30.15 |
Reinforcement | Reinforcing steel {GLO}|market for|APOS, U | 1.00 |
KVH Structural timber | Own assumption 1 | 10.70 |
Oriented strand board (OSB) | Oriented strand board {GLO}|market for|APOS, U | 5.99 |
High density fiberboard (HDF) | Fiberboard, hard {GLO}|market for|APOS, U | 1.87 |
Rock wool | Stone wool, packed {GLO}|market for stone wool, packed|APOS, U | 1.36 |
Gypsum plasterboard | Gypsum plasterboard {GLO}|market for|APOS, U | 5.12 |
Steel connections | Steel, chromium steel 18/8 {GLO}|market for|APOS, U | 1.55 |
Mineral plaster | Base plaster {GLO}|market for|APOS, U | 1.25 |
Brick | Clay brick {GLO}|market for|APOS, U | 3.84 |
Extensive vegetation | Own assumption 2 | 11.21 |
Windows and doors | Door, outer, wood-glass {GLO}|market for|APOS, U Door, inner, wood {GLO}|market for|APOS, U Window frame, wood, U = 1.5 W/(m2·K) {GLO}|market for|APOS, U Glazing, triple, U < 0.5 W/m2K {GLO}|market for|APOS, U | 2.08 |
Recuperation system | Ventilation system, central, 1 × 720 m3/h, polyethylene ducts, with earth tube heat exchanger {GLO}|market for|APOS, U | - |
Stage | Waste Type | Amount | Waste Scenario |
---|---|---|---|
A5 Construction process | Timber | 1604.37 kg | L |
OSB | 898.35 kg | FD | |
HDF | 280.28 kg | FD | |
Gypsum plasterboard | 767.22 kg | FD | |
Rock wool | 204.17 kg | L | |
Brick | 576.01 kg | FD | |
LDPE waste foil | 0.45 kg | M | |
Reinforcement steel | 72.50 kg | M | |
B2 Maintenance | Wastewater | 32 m3 | T |
Electronic waste | 40 kg | M | |
Waste paint | 4 kg | I | |
B4 Replacement | Used air filter in central unit | 50 u | T |
Used air filter in exhaust air | 50 u | T | |
Electronic scrap | 54.67 kg | M | |
Steel and iron | 241.67 kg | R | |
Waste glass sheet | 3.33 kg | M | |
Used blower and heat exchange unit | 2.5 u | T | |
Used refrigerant | 8.23 kg | T | |
Spent antifreezer liquid | 178.75 kg | I | |
B5 Refurbishment | Used inner door | 16.2 m2 | FD |
Waste paint | 2 kg | I | |
Waste plastic | 2 kg | M |
Construction Material | Database * | Share on Overall Construction Weight (%) ** |
---|---|---|
Gravel | Gravel, crushed {RoW}|market for gravel, crushed|APOS, U | 9.68 |
Foam glass | Foam glass {GLO}|market for|APOS, U | 4.92 |
Concrete | Concrete, 25 MPa {RoW}|market for concrete, 25 MPa|APOS, U | 18.46 |
Reinforcement | Reinforcing steel {GLO}|market for|APOS, U | 0.61 |
Reinforced concrete ceiling | fiber-reinforced concrete {BR}|market for fiber-reinforced concrete, steel|APOS, U | 29.30 |
Rock wool | Stone wool, packed {GLO}|market for stone wool, packed|APOS, U | 2.10 |
Mineral plaster | Base plaster {GLO}|market for|APOS, U | 3.13 |
Brick | Clay brick {GLO}|market for|APOS, U | 23.66 |
Extensive vegetation | Own assumption 1 | 6.86 |
Windows and doors | Door, outer, wood-glass {GLO}|market for|APOS, U Door, inner, wood {GLO}|market for|APOS, U Window frame, wood, U = 1.5 W/m2K {GLO}|market for|APOS, U Glazing, triple, U < 0.5 W/m2K {GLO}|market for|APOS, U | 1.27 |
Recuperation system | Ventilation system, central, 1 × 720 m3/h, polyethylene ducts, with earth tube heat exchanger {GLO}|market for|APOS, U | - |
Distance (km) | Product |
---|---|
100 | Steel |
Gravel | |
Foam glass | |
Windows and doors | |
50 | Rock wool |
Reinforced concrete ceiling | |
30 | Concrete |
20 | Extensive vegetation |
Base plaster | |
Transport of excavator | |
200 | Recuperation system |
Brick |
References
- World Economic Forum. The Global Risks Report. 2020. Available online: https://www.weforum.org/reports/the-global-risks-report-2020 (accessed on 23 March 2021).
- Asdrubali, F.; D’Alessandro, F.; Schiavoni, S.A. Review of unconventional sustainable building insulation materials. Sustain. Mater. Technol. 2015, 4, 1–17. [Google Scholar] [CrossRef]
- Ciambrone, D.F. Environmental Life Cycle Analysis; CRC Press: Boca Raton, FL, USA, 1997; p. 160. [Google Scholar]
- Feist, W.; Schnieders, J.; Dorer, V.; Haas, A. Re-inventing air heating: Convenient and comfortable within the frame of the Passive House concept. Energy Build. 2005, 37, 1186–1203. [Google Scholar] [CrossRef]
- Palumbo, E. Effect of LCA data sources on GBRS reference values: The envelope of an Italian Passive House. Energies 2021, 14, 1883. [Google Scholar] [CrossRef]
- Harvey, L.D.D. Recent advances in sustainable buildings: Review of the energy and cost performance of the state-of-the art best practices from around the world. Annu. Rev. Env. Resour. 2013, 38, 281–309. [Google Scholar] [CrossRef]
- European Parliament, Council of the European Union. Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the Energy Performance of Buildings. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32010L0031&from=EN (accessed on 2 June 2021).
- European Commission, Communication from the Commission—A Roadmap for Moving to a Competitive Low Carbon Economy in 2050. COM (2011) 112. Brussels. Available online: https://eur-lex.europa.eu/legal-content/en/ALL/?uri=CELEX%3A52011DC0112 (accessed on 23 March 2021).
- Guinée, J.B.; Gorrée, M.; Heijungs, R.; Huppes, G.; Kleijn, R.; de Koning, A.; van Oers, L.; Wegener Sleeswijk, A.; Suh, S.; Udo de Haes, H.A.; et al. Handbook on Life Cycle Assessment: Operational Guide to the ISO Standards; Kluwer Academic Publishers: Dordrecht, The Netherlands; Boston, MA, USA, 2002; p. 390. [Google Scholar]
- Edenhofer, O.; Pichs-Madruga, R.; Sokona, Y.; Farahani, E.; Kadner, S.; Seyboth, K.; Adler, A.; Baum, I.; Brunner, S.; Eickemeier, P.; et al. Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 1st ed.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; p. 1513. [Google Scholar]
- European Commission, New Rules for Greener and Smarter Buildings Will Increase Quality of Life for All Europeans. 2019. Available online: https://ec.europa.eu/info/news/new-rules-greener-and-smarter-buildings-will-increase-quality-life-alleuropeans-2019-apr-15_en (accessed on 1 June 2021).
- Sartori, I.; Hestnes, A.G. Energy use in the life cycle of conventional and low-energy buildings: A review article. Energ. Build. 2007, 39, 249–257. [Google Scholar] [CrossRef]
- Karimpour, M.; Belusko, M.; Xing, K.; Bruno, F. Minimising the life cycle energy of buildings: Review and analysis. Build. Environ. 2014, 73, 106–114. [Google Scholar] [CrossRef]
- Piccardo, C.; Dodoo, A.; Gustavsson, L. Retrofitting a building to passive house level: A life cycle carbon balance. Energ. Build. 2020, 223, 110135. [Google Scholar] [CrossRef]
- Gustavsson, L.; Pingoud, K.; Sathre, R. Carbon dioxide balance of wood substitution: Comparing concrete and wood-framed buildings. Mitig. Adapt. Strat. Glob. 2006, 11, 667–691. [Google Scholar] [CrossRef]
- Gerilla, G.P.; Teknomo, K.; Hokao, K. An environmental assessment of wood and steel reinforced concrete housing construction. Build. Environ. 2007, 42, 2778–2784. [Google Scholar] [CrossRef]
- Nässén, J.; Hedenus, F.; Karlsson, S.; Holmberg, J. Concrete vs. wood in buildings—An energy system approach. Build. Environ. 2012, 51, 361–369. [Google Scholar] [CrossRef]
- Dodoo, A.; Gustavsson, L.; Sathre, R. Carbon implications of end-of-life management of building materials. Resour. Conserv. Recycl. 2009, 53, 276–286. [Google Scholar] [CrossRef]
- Kylili, A.; Ilic, M.; Fokaides, P.A. Whole-building Life Cycle Assessment (LCA) of a passive house of the sub-tropical climatic zone. Resour. Conserv. Rycycl. 2017, 116, 169–177. [Google Scholar] [CrossRef]
- Chau, C.K.; Leung, T.M.; Ng, W.Y. A review on life cycle assessment, life cycle energy assessment and life cycle carbon emissions assessment on buildings. Appl. Energy 2015, 143, 395–413. [Google Scholar] [CrossRef]
- Svajlenka, J.; Kozlovska, M.; Vranay, F.; Posivakova, T.; Jamborova, M. Comparison of laboratory and computational models of selected thermal-technical properties of constructions systems based on wood. Energies 2020, 13, 3127. [Google Scholar] [CrossRef]
- Hong, S.J.; Arehart, J.H.; Srubar, W.V., III. Embodied and Operational energy analysis of passive house-inspired high-performance residential building envelopes. J. Archit. Eng. 2020, 26, 04020010. [Google Scholar] [CrossRef]
- EN ISO 14040:2006. Environmental Management. Life Cycle Assessment—Principles and Framework; International Organization for Standardization: Geneva, Switzerland, 2006. [Google Scholar]
- EN ISO 14044:2006. Environmental Management. Life Cycle Assessment—Requirements and Guidelines; International Organization for Standardization: Geneva, Switzerland, 2006. [Google Scholar]
- Zabalza Bribián, I.; Valero Capilla, A.; Aranda Usón, A. Life cycle assessment of building materials: A comparative analysis of the energy and environmental impacts and evaluation of the eco-efficiency improvement potential. Build. Environ. 2011, 46, 1133–1140. [Google Scholar] [CrossRef]
- Krišťák, L.; Igaz, R.; Brozman, D.; Réh, R.; Šiagiová, P.; Stebila, J.; Očkajová, A. Life cycle assessment of timber formwork: A case study. Adv. Mater. Res. 2014, 1001, 155–161. [Google Scholar] [CrossRef]
- Vaňová, R.; Vlčko, M.; Štefko, J. Life cycle impact assessment of load-bearing straw bale residential building. Materials 2021, 14, 3064. [Google Scholar] [CrossRef]
- Blegini, G.A.; Di Carlo, T. The changing role of life cycle phases, subsystems and materials in the LCA of low energy buildings. Energy Build. 2010, 42, 869–880. [Google Scholar] [CrossRef]
- Vilches, A.; Garcia-Matrinez, A.; Sanchez-Montanes, B. Life Cycle Assessment (LCA) of building refurbishment: A literature review. Energy Build. 2016, 135, 286–301. [Google Scholar] [CrossRef]
- CEN. EN 15978:2011 Sustainability of Construction Works—Assessment of Environmental Performance of Buildings—Calculation method; CEN: Brussels, Belgium, 2011. [Google Scholar]
- EN 15804:2012+A2:2019. Sustainability of Construction Works. Environmental Product Declarations; Core Rules for the Product Category of Construction Products: Bruxelles, Belgium, 2013. [Google Scholar]
- Bjorn, A.; Owsianiak, M.; Molin, C.; Hauschild, M.Z. LCA history. Life Cycle Assess. 2017, 17–30. [Google Scholar] [CrossRef]
- Mitterpach, J.; Ilečková, R.; Štefko, J. Life cycle impact assessment of construction materials of a wood-based building in an environmental context. Acta Fac. Xylologiae Zvolen. 2018, 60, 147–157. [Google Scholar] [CrossRef]
- Parobek, J.; Paluš, H.; Moravčík, M.; Kovalčík, M.; Dzian, M.; Murgaš, V.; Šimo-Svrček, S. Changes in carbon balance of harvested wood products resulting from different wood utilization scenarios. Forests 2019, 10, 590. [Google Scholar] [CrossRef] [Green Version]
- Mitterpach, J.; Igaz, R.; Štefko, J. Environmental evaluation of alternative wood-based external wall assembly. Acta Fac. Xylologiae Zvolen. 2020, 62, 133–149. [Google Scholar] [CrossRef]
- Dara, C.; Hachem-Vermette, C.; Assefa, G. Life cycle assessment and life cycle costing of container-based single-family housing in Canada: A case study. Build. Environ. 2019, 163, 106332. [Google Scholar] [CrossRef]
- Vivek, C.M.; Ramkumar, P.; Srividhya, P.K.; Sivasubramanian, M. Recent strategies and trends in implanting of renewable energy sources for sustainability—A review. In Materials Today, Proceedings of the 3rd International Conference on Materials, Manufacturing and Modelling, 1 April 2021; Elsevier: Amsterdam, The Netherlands, 2021; Volume 46, pp. 8204–8208. [Google Scholar] [CrossRef]
- UN General Assembly. Transforming Our World: The 2030 Agenda for Sustainable Development. 2015. Available online: https://sdgs.un.org/2030agenda (accessed on 3 June 2021).
- Goedkoop, M.; Oele, M.; Leijting, J.; Ponsioen, T.; Meijer, E. Introduction to LCA with SimaPro. Netherlands: PRé Consultants, Netherlands. 2013. Available online: https://www.pre-sustainability.com/download/SimaPro8IntroductionToLCA.pdf (accessed on 7 July 2021).
- Wernet, G.; Bauer, C.; Steubing, B.; Reinhard, J.; Moreno-Ruiz, E.; Weidema, B. The ecoinvent database version 3 (part I): Overview and methodology. Int. J. Life Cycle Assess. 2016, 21, 1218–1230. Available online: http://link.springer.com/10.1007/s11367-016-1087-8 (accessed on 3 June 2021). [CrossRef]
- STN 73 0540-2+Z1+Z2. Thermal Protection of Buildings. Thermal Performance of Buildings and Components. Part 2: Functional Requirements; Slovak Office of Standards, Metrology and Testing: Geneva, Switzerland, 2019. [Google Scholar]
- Pierobon, F.; Huang, M.; Simonen, K.; Ganguly, I. Environmental benefits of using hybrid CLT structure in midrise non-residential construction: An LCA based comparative case study in the U.S. Pacific Northwest. J. Build. Eng. 2019, 26, 100862. [Google Scholar] [CrossRef]
- D’Agostino, D.; Cuniberti, B.; Bertoldi, P. Energy consumption and efficiency technology measures in European non-residential buildings. Energy Build. 2017, 153, 72–86. [Google Scholar] [CrossRef]
- Roeck, M.; Saade, M.R.M.; Balouktsi, M.; Rasmussen, F.; Birgisdottir, H.; Frischknecht, R.; Habert, G.; Luetzkendorf, T.; Passer, A. Embodied GHG emissions of buildings—The hidden challenge for effective climate change mitigation. Appl. Energy 2020, 258, 114107. [Google Scholar] [CrossRef]
- Ahmad Ludin, N.; Ahmad Affandi, N.A.; Purvis-Roberts, K.; Ahmad, A.; Ibrahim, M.A.; Sopian, K.; Jusoh, S. Environmental impact and levelised cost of energy analysis of solar photovoltaic systems in selected Asia Pacific region: A cradle-to-grave approach. Sustainability 2021, 13, 396. [Google Scholar] [CrossRef]
- Shirazi, A.; Ashuri, B. Embodied Life Cycle Assessment (LCA) comparison of residential building retrofit measures in Atlanta. Build. Environ. 2020, 171, 106644. [Google Scholar] [CrossRef]
- Oyarzo, J.; Peuportier, B. Life cycle assessment model applied to housing in Chile. J. Clean. Prod. 2014, 69, 109–116. [Google Scholar] [CrossRef]
- Dolezal, F.; Dornigg, I.; Wurm, M.; Figl, H. Overview and main findings for the Austrian case study. Sustainability 2021, 13, 7584. [Google Scholar] [CrossRef]
- Abouhamad, M.; Abu-Hamd, M. Life cycle environmental assessment of light steel framed buildings with cement-based walls and floors. Sustainability 2020, 12, 10686. [Google Scholar] [CrossRef]
- Saade, M.R.M.; Guest, G.; Amor, B. Comparative whole building LCAs: How far are our expectations from the documented evidence? Build. Environ. 2020, 167, 106449. [Google Scholar] [CrossRef]
- Kristak, L.; Ruziak, I.; Tudor, E.M.; Barbu, M.C.; Kain, G.; Reh, R. Thermophysical properties of larch bark composite panels. Polymers 2021, 13, 2287. [Google Scholar] [CrossRef]
- Tawalbeh, M.; Al-Othman, A.; Kafiah, F.; Abdelsalam, E.; Almomani, F.; Alkasrawi, M. Environmental impacts of solar photovoltaic systems: A critical review of recent progress and future outlook. Sci. Total Environ. 2021, 759, 143528. [Google Scholar] [CrossRef]
- Hollberg, A.; Kiss, B.; Röck, M.; Soust-Verdaguer, B.; Wiberg, A.H.; Lasvaux, S.; Galimshina, A.; Habert, G. Review of visualising LCA results in the design process of buildings. Build. Environ. 2021, 190, 107530. [Google Scholar] [CrossRef]
Structure | Specification |
---|---|
Foundations | Gravel |
Foam glass | |
Concrete | |
Reinforcement | |
External walls | KVH Structural timber |
Oriented strand board (OSB) | |
High density fiberboard (HDF) | |
Rock wool | |
Gypsum plasterboard | |
Steel connections | |
Mineral plaster | |
Partitions I | KVH Structural timber |
Oriented strand board (OSB) | |
Brick | |
Gypsum plasterboard | |
Steel connections | |
Partitions II | KVH Structural timber |
Rock wool | |
Gypsum plasterboard | |
Steel connections | |
Flooring | KVH Structural timber |
Steel connections | |
Roof | KVH Structural timber |
Oriented strand board (OSB) | |
High density fiberboard (HDF) | |
Rock wool | |
Gypsum plasterboard | |
Steel connections | |
Extensive vegetation | |
Openings | Wood-glass entrance door |
Wood inner door | |
Wood-frame windows with triple glazing |
Distance (km) | Product |
---|---|
100 | Timber |
Steel | |
Gravel | |
Foam glass | |
Windows and doors | |
50 | OSB |
HDF | |
Gypsum plasterboard | |
Rock wool | |
Brick | |
30 | Concrete |
20 | Extensive vegetation |
Base plaster | |
Transport of excavator | |
200 | Recuperation system |
Stage | Activity | Frequency |
---|---|---|
B2 Maintenance | Varnishing | Interior—every 20 years |
Exterior—every 10 years | ||
Cleaning of recuperation and photovoltaic panels Cleaning of windows | Two times a year | |
Cleaning of floor Vacuum cleaning | Every week | |
B4 Replacement | Filters for recuperation system | Once a year |
Blower and heat exchange unit Heat pump | Every 20 years | |
Photovoltaic panel | Every 30 years | |
Coolants | Every 16 years | |
B5 Refurbishment | Inner door Repainting | Once in a lifetime |
Stage | AD-E | AD-F | GWP | ODP | HT | FAE | MAE | TE | POP | AP | EP |
---|---|---|---|---|---|---|---|---|---|---|---|
A1–A3 | 7.85 | 865.08 | 78.92 | 5.65 | 267.34 | 86.86 | 142.73 | 763.29 | 24.52 | 393.34 | 189.53 |
A4 | 0.03 | 18.01 | 1.20 | 0.22 | 0.55 | 0.19 | 0.38 | 1.84 | 0.16 | 3.87 | 0.89 |
A5 | 0.03 | 8.20 | 1.03 | 0.05 | 11.60 | 2.28 | 4.39 | 17.94 | 0.80 | 11.28 | 14.75 |
B1 | 0.00 | 0.00 | 0.09 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 8.17 | 0.00 | 0.00 |
B2 | 0.03 | 18.65 | 1.72 | 0.21 | 2.08 | 2.65 | 4.75 | 11.45 | 0.57 | 12.50 | 7.50 |
B4 | 4.79 | 103.16 | 20.98 | 9.36 | 69.51 | 47.86 | 59.70 | 57.43 | 5.17 | 91.72 | 37.23 |
B5 | 0.13 | 13.81 | 1.26 | 0.09 | 0.95 | 0.73 | 2.01 | 10.19 | 0.62 | 7.96 | 5.55 |
B6 | 4.06 | 754.61 | 79.09 | 13.68 | 130.27 | 142.88 | 229.95 | 507.36 | 20.24 | 481.80 | 323.66 |
B7 | 0.00 | 0.05 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.06 | 0.00 | 0.02 | 0.01 |
Lifetime | Stage | AD-E | AD-F | GWP | ODP | HT | FAE | MAE | TE | POP | AP | EP |
---|---|---|---|---|---|---|---|---|---|---|---|---|
40 years | A1–A3 | 11.93 | 11.10 | 12.60 | 18.97 | 9.18 | 15.87 | 15.41 | 9.37 | 13.05 | 13.44 | 14.83 |
A4 | 11.93 | 11.10 | 12.60 | 18.97 | 9.18 | 15.87 | 15.41 | 9.37 | 13.05 | 13.44 | 14.83 | |
A5 | 11.93 | 11.10 | 12.60 | 18.97 | 9.18 | 15.87 | 15.41 | 9.37 | 13.05 | 13.44 | 14.83 | |
B1 | −9.92 | −9.56 | ||||||||||
B2 | −10.46 | −11.12 | −9.92 | −4.82 | −12.65 | −7.30 | −7.67 | −12.48 | −9.56 | −9.24 | −8.14 | |
B4 | −10.46 | −11.12 | −9.92 | −4.82 | −12.65 | −7.30 | −7.67 | −12.51 | −9.56 | −9.25 | −8.14 | |
B5 | −10.46 | −11.12 | −9.92 | −4.82 | −12.65 | −7.30 | −7.67 | −12.51 | −9.56 | −9.25 | −8.14 | |
B6 | −10.46 | −11.12 | −9.92 | −4.82 | −12.65 | −7.30 | −7.67 | −12.51 | −9.56 | −9.25 | −8.14 | |
B7 | −10.46 | −11.12 | −9.92 | −4.82 | −12.65 | −7.30 | −7.67 | −12.51 | −9.56 | −9.25 | −8.14 | |
60 years | A1–A3 | −9.63 | −9.09 | −10.07 | −13.75 | −7.76 | −12.05 | −11.78 | −7.89 | −10.35 | −10.59 | −11.44 |
A4 | −9.63 | −9.09 | −10.07 | −13.75 | −7.76 | −12.05 | −11.78 | −7.89 | −10.35 | −10.59 | −11.44 | |
A5 | −9.63 | −9.09 | −10.07 | −13.75 | −7.76 | −12.05 | −11.78 | −7.89 | −10.35 | −10.59 | −11.44 | |
B1 | 7.92 | 7.58 | ||||||||||
B2 | 8.45 | 9.10 | 7.92 | 3.50 | 10.69 | 5.54 | 5.86 | 10.57 | 7.58 | 7.29 | 6.28 | |
B4 | 8.44 | 9.09 | 7.92 | 3.50 | 10.69 | 5.54 | 5.86 | 10.53 | 7.58 | 7.28 | 6.27 | |
B5 | 8.44 | 9.10 | 7.92 | 3.50 | 10.69 | 5.54 | 5.86 | 10.53 | 7.58 | 7.29 | 6.28 | |
B6 | 8.44 | 9.10 | 7.92 | 3.50 | 10.69 | 5.54 | 5.86 | 10.53 | 7.58 | 7.29 | 6.28 | |
B7 | 8.44 | 9.10 | 7.92 | 3.50 | 10.69 | 5.54 | 5.86 | 10.53 | 7.58 | 7.29 | 6.28 |
Stage | AD-E | AD-F | GWP | ODP | HT | FAE | MAE | TE | POP | AP | EP |
---|---|---|---|---|---|---|---|---|---|---|---|
A1–A3 | −31.88 | −1.00 | 11.40 | 13.06 | −73.80 | −43.45 | −13.32 | −32.03 | −9.14 | −9.43 | −14.87 |
A4 | 185.10 | 261.21 | 255.41 | 261.61 | 277.22 | 230.54 | 245.99 | 265.40 | 253.34 | 261.27 | 257.00 |
A5 | 0.32 | 16.17 | −18.60 | 33.88 | −3.49 | −6.24 | −45.09 | −28.96 | −74.56 | −60.98 | −91.27 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vaňová, R.; Igaz, R.; Němec, M.; Štefková, J.; Štefko, J. A Passive Wood-Based Building in Slovakia: Exploring the Life Cycle Impact. Forests 2021, 12, 1613. https://doi.org/10.3390/f12121613
Vaňová R, Igaz R, Němec M, Štefková J, Štefko J. A Passive Wood-Based Building in Slovakia: Exploring the Life Cycle Impact. Forests. 2021; 12(12):1613. https://doi.org/10.3390/f12121613
Chicago/Turabian StyleVaňová, Rozália, Rastislav Igaz, Miroslav Němec, Jaroslava Štefková, and Jozef Štefko. 2021. "A Passive Wood-Based Building in Slovakia: Exploring the Life Cycle Impact" Forests 12, no. 12: 1613. https://doi.org/10.3390/f12121613
APA StyleVaňová, R., Igaz, R., Němec, M., Štefková, J., & Štefko, J. (2021). A Passive Wood-Based Building in Slovakia: Exploring the Life Cycle Impact. Forests, 12(12), 1613. https://doi.org/10.3390/f12121613